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1 Introduction

With the rapid development of the Internet and the widespread use of social media,
people are increasingly expressing their opinions and emotions online. Understanding
and analyzing user sentiments on social media is of great significance for grasping the
public’s emotional tendencies towards events, products, services, etc. Sentiment analysis
aims to automatically identify, extract, and analyze people’s sentiments, opinions, and
attitudes from textual data. It has broad application prospects in areas such as public
opinion analysis, product reviews, and political elections.

Existing sentiment analysis methods mainly include lexicon-based methods and ma-
chine learning-based methods. Lexicon-based methods rely on sentiment dictionaries,
but constructing sentiment dictionaries requires a large amount of human and material
resources and lacks consideration of context. Although machine learning-based methods
have achieved good results, they cannot effectively utilize the sequential information of
text and lack interpretability.

To address the limitations of existing methods, this paper explores the use of Hid-
den Markov Models (HMMs) for sentiment analysis. HMMs are naturally suitable for
processing sequential data and can fully utilize the contextual relationships between
words in text. This paper proposes a novel interpretable HMM-based sentiment analysis
method and conducts systematic research on model architectures, training approaches,
higher-order HMMs, and model ensembles.

Lexicon-based approaches rely heavily on sentiment lexicons, which are utilized in
order to represent predetermined and precompiled, negative and positive words.
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Figure 1: Sentiment Lexicons

The main contributions of this paper include:
1.proposing a new interpretable HMM-based sentiment analysis method that can

reveal the internal decision-making process of the model;
2.exploring different HMM model architectures and training methods, and conduct-

ing detailed experimental comparisons;
3.investigating the application of higher-order HMMs in sentiment analysis;
4.proposing to integrate multiple HMMs for ensemble learning to further improve

performance.
Experimental results show that the proposed HMM-based sentiment analysis method

can achieve better performance than traditional machine learning methods and has good
interpretability.

2 Methodology

2.1 Hidden Markov Model

A Hidden Markov Model (HMM) is essentially a statistical model where the system
is considered a Markov process with unobservable, or hidden, states. It is a proba-
bilistic framework that assigns probabilities to different sequences of labels, essentially
functioning as a general mixture model that includes transition matrices. These hidden
states form a Markov chain characterized by specific transition probabilities and adhere
to the Markov property, implying that the state’s dependency is only on its immediate
predecessor, reflecting a property of memorylessness. Therefore, in predicting the next
item in a sequence, the model relies solely on the most recent observation, excluding all
others. The hidden states in this model are discrete, while the observations themselves
may be either continuous or discrete.

An HMM is a tuple θ = (X,O, π,A,B) where:
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X = {x1, x2, ..., xn} is a set of elements that are called states.
O = {o1, o2, ..., om} is a set of observations.
π = (π1, π2, . . . , πn) with πi = P (xi), is a vector of initial probabilities referring to

the initial state distribution, for which, 0 ≤ πi ≤ 1, and
∑

i πi = 1.
A is the transition probabilities matrix. The size is n × n. and aij = P (xi|xj)

represents the transition probability from the hidden state i to the hidden state j. An
alternative notation for aij is a[xi, xj ].

B is the observation probabilities sequence. Each bi(oi) = P (oi|xi) represents the
probability of an observation xi being generated from a state xi. An alternative notation
for bi(oi) is b[xi, oi].

HMMs feature a variety of advantages. A main strength that the HMMs possess is
that they have the ability to model sequences of varying lengths. Furthermore, HMMs
showcase a certain degree of invariance when it comes to time axis warping.

2.2 High-order Hidden Markov Models

The traditional HMM and the Markov chain it is based on, depend only on the value
of the immediately preceding observation and are independent of all earlier observations.
This is very restrictive.

One way to allow more than one of the previous observations to have an influence
on the model is to move to higher-order Markov chains. Any higher-order HMM, or
Markov chain, can be transformed into an equivalent general first-order HMM/process
and traditional training algorithms can be applied for training.

Figure 2: A first-order Markov Chain.

Figure 3: A second-order Markov Chain.
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For a traditional Markov chain, referred to as first-order, the joint distribution for a
sequence of N observations, x1, x2, ..., xN is given by:

p (x1, . . . , xN ) = p(x1)
N∏

n=2

p(xn|xn−1)

In Figure 2, the first-order Markov chain is illustrated.
For a second-order Markov chain, an observation depends on the values of the two

previous observations.

p (x1, . . . , xN ) = p(x1)p(x2|x1)
N∏

n=3

p(xn|xn−1, xn−2)

For example, the observation of x3 depends on the values of x2 and x1 as illustrated
in Figure 3.

In the same context, we can create higher-order HMMs instead of first-order HMMs.
An n-order HMM takes into account longer past state sequences and is represented by a
tuple θ similar to traditional HMMs except for the transition probabilities O1, O2, ..., On,
which is a set of transition matrices, and the initial probabilities.

2.3 Training phase

In the HMM implementations that we introduce, we make use of either Baum Welch,
also called Maximum Likelihood Estimation method. This algorithm is based on the
expectation maximization theorem, which given a selection of observed feature vectors,
attempts to find the MLE of the parameters of a HMM.

The stages of the main procedures is:
1.Initiate with initial probability estimates referring to a model θ.
2. Calculate the expectations of how often each emission and transition is used,

corresponding to the parameters of model θ.
3. Implement proper changes to the model by maximizing paths.
4. Attempt to estimate the probabilities iteratively until convergence is reached.

2.4 Prediction phase

For the evaluation (prediction) phase, the two main options are the Viterbi path and
the maximum a-posteriori (MAP) method that is also known as the forward–backward
algorithm. The Viterbi path is the most likely sequence of states that generated the
sequence, given the full model. The MAP calculates the most likely state per observation
in the sequence given the entire remaining alignment.

We used those two algorithms in our first approach, called Approach A (see Figure
4), where a single HMM is used for training.
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Figure 4: Approach A for training and testing HMMs.

However, the prediction phase is significantly different when utilizing an alternative
approach used in classification tasks in which an HMM model is trained for each of
the class labels. We name this architecture Approach B (see Figure 5). When a new
instance arrives, we calculate the probability of the instance being generated by each of
the models using a custom formula. The instance is labeled with the class associated
with the maximum probability, i.e. the model that was most likely to have generated it.

Figure 5: Approach B for training and testing HMMs.

5



2.5 Implementation

Regarding the implementations of the HMMs, we first present two of the main chal-
lenges that need to be faced.

The first challenge that needs to be faced concerns the high feature space dimen-
sionality that leads to issues on the transition probabilities matrix. We present two
approaches in the experiments to solve the problem: “Clustering Solver” and “Artificial
Solver”.

The second concerns encountering out-of-vocabulary (OOV) new observations that
do not exist in the probability matrix. The solution is to utilize a smoothing factor also
referred to as emission pseudo-count as the probability estimate of out-of vocabulary
observations.

2.6 Ensemble learning

In general, ensemble learning aims to improve the performance of individual meth-
ods by combining learning algorithms. Ensembles combine hypotheses with the aim of
forming an even better solution.

The output class of a given instance is determined by the weighted vote of the log
probability of the multiple models combined in the ensemble

log(p (1)), log(p (2)), . . . , log(p (n)), where

n∑
i=0

p (i) = 1

Figure 6: The overview of the proposed ranked weighted vote ensemble scheme.
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3 Result

3.1 Design

A concrete experiment was designed and conducted with the aim to assess the per-
formance of the HMM and study their interpretability. Publicly available datasets were
utilized and different types of textual data were used to assess the performance of the
methods and also provide a deeper insight into their performance on heterogeneous data
from different sources.

We used the following data: Fine-Grained Sentiment Dataset, the Sentiment Polar-
ity Annotations Dataset(SPOT), the Movie Review Polarity(MR), the Movie Review
Subjectivity(SUBJ) and the IMDb Large Movie Review Dataset.

Figure 7: Fine-grained sentiment dataset.

Figure 8: Sentiment polarity annotations dataset.

Figure 9: Distribution of the instances of the MR, SUBJ, and IMDB datasets.
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3.2 Results on low dimensionality datasets

The objective of the conducted experiments is to assess the performance of models
under various feature sets, training parameters and architectures in low feature count
scenarios. The algorithms used to train the HMMs are Baum Welch algorithm (referred
to as “BW”) and the Labeled algorithm.

For the training procedure, the feature sets used in the experiments were:
(i) The words themselves, also known as the Bag-of-Words (BoW) model.
(ii) The sequence of labels of the sentences (noted as seqlabels).
(iii) Both of the above feature sets.

Figure 10: SPOT SENTENCE(ML&HMM)
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Figure 11: SPOT EDUs(ML&HMM)

Table 1: spot sentences and EDUs
Model Feature sets Sentences EDUs

Naive Bayes seq-labels 59.634 60.02

Decision Tree seq-labels 66.58 62.9

k-NN seq-labels 62.019 64.63

Random Forest seq-labels 64.023 63.741

Logistic Regression seq-labels 68.013 66.036

SVM Linear Kernel seq-labels 59.95 60.581

Naive Bayes BoW + seq-labels 59.634 60.015

Decision Tree BoW + seq-labels 60.068 60

k-NN BoW + seq-labels 63.369 64.994

Random Forest BoW + seq-labels 63.537 57.124

Logistic Regression BoW + seq-labels 69.688 66.124

SVM Linear Kernel BoW + seq-labels 66.019 66.537

State-emission HMM BW(Approach A) seq-labels 62.514 55.114

State-emission HMM BW (Approach B) seq-labels 67.7 66.596

State-emission HMM Labeled (Approach B) seq-labels 70.813 65.728

State-emission HMM 2nd-Order (Approach B) seq-labels 67.829 32.387

State-emission HMM 3rd-Order (Approach B) seq-labels 66.724 32.387

State-emission HMM 4th-Order (Approach B) seq-labels 60.247 -

Ensemble of 3 Best nth-Order HMMs (Approach B, Sum) seq-labels 69.816 71.217

Ensemble of 3 Best nth-Order HMMs (Approach B, Weighted Sum) seq-labels 70.342 69.852

Ensemble of 3 Best nth-Order HMMs (Approach B, Product) seq-labels 70.402 69.34

Ensemble of 3 Best nth-Order HMMs (Approach B, Borda count) seq-labels 69.769 69.793

9



The results highlight the better performance of the HMMs. The main reason :they
use appropriately the sentence sequence labels, a piece of information that machine
learning algorithms cannot properly take into account.

3.3 Results on high dimensionality datasets

Datasets that consist of many instances something that results in high dimensionality
in terms of features for the HMM based methods. The best performance of the HMMs
models is achieved again by the Artificial Solver . The Artificial Solver approach has
the potential to take any base machine learning classifier and increase its performance
by utilizing the sequential information of the text. It is worth to notice that utilizing
higher-order HMMs leads to higher performance until the third-order on large datasets.
The result show that the larger the datasets are, the higher the performance of high-order
HMMs is.

Figure 12: SUBJ(ML&HMMs)

Figure 13: MR(ML&HMMs)
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Table 2: SUBJ and MR
Model Smoothing SUBJ MR

Naive Bayes - 90.659 76.842

Decision Tree - 78.215 64.243

k-NN - 86.998 72.9

Random Forest - 81.452 67.807

Logistic Regression - 89.139 76.075

SVM Linear Kernel - 88.859 75.063

HMM (Approach B) Clustering Solver 0.0/0.0 86.604 73.873

HMM (Approach B) Clustering Solver 0.005/0.0 87.434 74.349

HMM (Approach B) Clustering Solver 0.005/0.9 87.506 74.372

HMM (Approach B) Clustering Solver 0.005/1.5 87.532 74.405

HMM 2nd-Order (Approach B) Clustering Solver 0.005/0.0 77.015 64.32

HMM 3rd-Order (Approach B) Clustering Solver 0.005/0.0 69.658 58.769

Weighted Ensemble of 2 HMMs Clustering Solver(Approach B, Sum) - 89.69 74.583

Weighted Ensemble of 3 HMMs Clustering Solver(Approach B, Weighted Sum) - 88.087 74.678

Weighted Ensemble of 4 HMMs Clustering Solver(Approach B, Product) - 11.713 25.367

Weighted Ensemble of 5 HMMs Clustering Solver(Approach B, Borda count) - 88.388 73.882

State-emission HMM 3rd-Order (Approach B) seq-labels 66.724 32.387

State-emission HMM 4th-Order (Approach B) seq-labels 60.247 -

Ensemble of 3 Best nth-Order HMMs (Approach B, Sum) seq-labels 69.816 71.217

Ensemble of 3 Best nth-Order HMMs (Approach B, Weighted Sum) seq-labels 70.342 69.852

Ensemble of 3 Best nth-Order HMMs (Approach B, Product) seq-labels 70.402 69.34

Ensemble of 3 Best nth-Order HMMs (Approach B, Borda count) seq-labels 69.769 69.793

In general, the bigger a dataset is and the longer the sentences are, the more potent
the high order HMMs can be.
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Figure 14: SPOT Sentence(HMMs)

Figure 15: SPOT EDUs(HMMs)
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4 Conclusions and Discussion

This paper introduced a novel and interpretable sentiment analysis method using
Hidden Markov Models (HMMs). Through systematic research and comparisons of dif-
ferent HMM architectures and training approaches, we demonstrated the efficacy of
HMMs in processing sequential text data. Our experimental results indicate that our
HMM-based sentiment analysis method outperforms traditional machine learning ap-
proaches, offering enhanced performance and interpretability.

Our study confirms the advantages of higher-order HMMs in capturing long-distance
dependencies and shows that performance can be further improved by integrating mul-
tiple HMMs into an ensemble. Additionally, our approach provides insights into the
internal decision-making process of the model, which is crucial for explaining predic-
tions and gaining user trust.

Despite the promising outcomes, there are several limitations and challenges asso-
ciated with our method. First, the computational complexity of higher-order HMMs
may limit their application on large-scale datasets. Second, while our model offers in-
terpretability, further enhancing the transparency and understandability for end users
remains a challenge.

Moreover, the accuracy of sentiment analysis largely depends on the quality and
representativeness of the training data. In the future, we plan to explore more data
preprocessing and augmentation techniques to improve the robustness of our model
against imbalanced or biased data.

5 Contributions

Wenhao Xue: The writing of the paper.
Zihan Liu: Presentation.
Junjie Wang: Writing code and icon making.
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