
LATENT DIFFUSION MODEL

KAITIAN CHAO, BANGJIE WANG, AND GUANQIU WU

Abstract. Diffusion probabilistic models have demonstrated state-of-the-art per-

formance in various image synthesis benchmarks. However, they suffer from a lack

of low-dimensional, interpretable latent space and slow generation speed. Due

to operating directly in pixel space, optimizing powerful diffusion models often

requires hundreds of GPU days, and inference time is costly due to sequential

evaluations. In contrast, Variational Autoencoders (VAEs) provide access to a

low-dimensional latent space, but despite recent advances, they continue to ex-

hibit subpar sample quality.

To address these limitations according to the paper (Robin Rombach et al.,

2022)[4], Latent Diffusion Model(LDWM) was introduced as a combination of

VAE and Diffusion Model enabling efficient training on limited computational

resources without compromising quality and flexibility.

In our project, we explain the motivation and mathematical derivation of both

VAE and the Diffusion Model and discover that their mathematical principles are

deeply rooted in Markov chains, sampling, and other stochastic processes. Then

we introduce the Latent Diffusion Model as a combination of both. Furthermore,

we implemented the code for VAE, Diffusion Model, and Latent Diffusion model,

and trained all models and got some results.

Contents

1. Introduction 2

1.1. Summary of Our Work 2

1.2. Introduction to VAE 2

1.3. Introduction to Diffusion Model 3

2. VAE 4

2.1. Motivation of VAE 4

2.2. Mathematical Derivation of VAE 8

3. Diffusion Model 12

3.1. Motivation of Diffusion Model 12

3.2. Mathematical Derivation of Diffusion Model 14

4. Latent Diffusion Model 22

5. Implementation and Results 23

5.1. Coding part 1: VAE Implementation 23

5.2. Coding part 2: Diffusion Model Demo 25

5.3. Coding part 3: LDM Implementation 27
1

https://arxiv.org/abs/2112.10752

Latent Diffusion Model 2

6. Conclusions and Discussion 30

7. Contribution 31

References 31

1. Introduction

1.1. Summary of Our Work.

• Theoretical Part: During completing the project, our group conducted an

in-depth study of Variational Autoencoders (VAEs) and Diffusion Models,

gaining a profound understanding of both models. We proved and clarified all

the mathematical derivations, understanding all underlying stochastic math-

ematical principles. Remarkably, we also understand the motivations behind

these model formulations and mathematical derivations. Furthermore, we

successfully discover the seemingly indirect relationship between VAEs and

Diffusion Models.

• Practical Part: We successfully implemented the code for the VAE model,

the Diffusion model, and the Latent Diffusion model, which is the combina-

tion of the VAE and Diffusion models.

Specifically:

1. We implemented a VAE model capable of compressing handwritten dig-

its into a low-dimensional latent space and reconstructing them generatively.

(Stochastic Process Project VAE.ipynb)

2. We developed a Diffusion model that can generate images of cars.

(Stochastic Process Project DM.ipynb)

3. We combined the two models to create a Latent Diffusion model, capa-

ble of generating new images of handwritten digits.

(Stochastic Process Project LDM.ipynb)

1.2. Introduction to VAE. In machine learning, a variational autoencoder (VAE)

is an artificial neural network architecture.

In addition to being seen as an autoencoder neural network architecture, vari-

ational autoencoders can also be studied within the mathematical formulation of

variational Bayesian methods, connecting a neural encoder network to its decoder

through a probabilistic latent space (for example, as a multivariate Gaussian distri-

bution) that corresponds to the parameters of a variational distribution.

Thus, the encoder maps each point (such as an image) from a large complex

dataset into a distribution within the latent space, rather than to a single point in

that space. The decoder has the opposite function, which is to map from the latent

space to the input space, again according to a distribution. By mapping a point

to a distribution instead of a single point, the network can avoid overfitting the

https://colab.research.google.com/drive/1pDvMUFAnu-qh7c3vKqWwDcUYFAoaav2q
https://colab.research.google.com/drive/1HPCgzSOi-SbfYZr3S8AevMonu4YEqJyx
https://colab.research.google.com/drive/1N07RlMNcWok5kZuVL1YipFZOytuthyLE

Latent Diffusion Model 3

Figure 1. An illustration that shows how VAE works

training data. Both networks are typically trained together with the usage of the

reparameterization trick, although the variance of the noise model can be learned

separately.

1.3. Introduction to Diffusion Model. Diffusion Models are a class of generative

models that create new data samples by iteratively denoising them. They first add

noise to the data in a series of steps and then learn the reverse process to remove

the noise, ultimately generating realistic data from pure noise.

In a word, the Diffusion Model consists of two processes:

Forward Process:

(1) Start with a clean image x0.

(2) Add noise step-by-step according to the noise schedule βt.

(3) After T steps, obtain a highly noisy image xT .

Reverse Process:

(1) Start with a random noise sample xT .

(2) Apply the learned reverse denoising steps iteratively.

(3) After T steps, obtain a generated image x0 that resembles the training data.

Figure 2. Forward and reverse diffusion process

Latent Diffusion Model 4

This is a good figure illustrating how the forward and reverse diffusion process

looks like, but it may cause some confusion. Note that, in the Diffusion Model, there

is 0 possibility of recovering the original figure (and as it is a generative model, it

is also not what we want), so running the learned reversed process, we will not get

the original dog picture back, but we expect to obtain a new dog picture resembling

the original dog picture.

So an intuitive and simplified explanation of what the Diffusion Model is doing is

that: We first learned a model which could step by step denoise from a noisy image

to our training data, then we apply this model to the Gaussian noise, and denoise it

step by step, then we could have a generated image that resemble our training data.

2. VAE

2.1. Motivation of VAE. There are 2 ways to understand VAE, short for Varia-

tional Autoencoder.

(1) From the perspective of an autoencoder

(2) From the perspective of a generative model

2.1.1. From the perspective of an autoencoder. The fisrt way is to view VAE as a vari-

ant of regular autoencoders. Autocoder is invented to reconstruct high-dimensional

data using a neural network model with a narrow bottleneck layer in the middle. A

nice byproduct is dimension reduction: the bottleneck layer captures a compressed

latent encoding. Such a low-dimensional representation can be used as an embed-

ding vector in various applications (i.e. search), help data compression, or reveal

the underlying data generative factors.

Figure 3. An illustration of a handwritten digit 4 com-

pressed and reconstructed by an autoencoder (Image source:

https://towardsdatascience.com/applied-deep-learning-part-3-

autoencoders-1c083af4d798)

Autoencoder is a neural network designed to learn an identity function in an

unsupervised way to reconstruct the original input while compressing the data in the

process so as to discover a more efficient and compressed representation.It consists

of two networks:

Latent Diffusion Model 5

• Encoder network: It translates the original high-dimension input into the

latent low-dimensional code. The input size is larger than the output size.

• Decoder network: The decoder network recovers the data from the code,

likely with larger and larger output layers.

Figure 4. Illustration of autoencoder model architecture.[7]

The encoder network essentially accomplishes the dimensionality reduction. In

addition, the autoencoder is explicitly optimized for the data reconstruction from

the code. A good intermediate representation not only can capture latent variables,

but also benefits a full decompression process.

The model contains an encoder function g(.) parameterized by ϕ and a decoder

function f(.) parameterized by θ. The low-dimensional code learned for input x in

the bottleneck layer is z = gϕ(x) and the reconstructed input is x′ = fθ(gϕ(x)).

The parameters (ϕ, θ) are learned together to output a reconstructed data sample

same as the original input, x ≈ fθ(gϕ(x)), or in other words, to learn an identity

function. There are various metrics to quantify the difference between two vectors,

such as cross entropy when the activation function is sigmoid, or as simple as MSE

loss:

LAE(θ, ϕ) =
1

n

n∑
i=1

(x(i) − fθ(gϕ(x
(i))))2

The idea of Variational Autoencoder[3] is to add randomness into the encoder

and the decoder, which heavily relies on the methods of variational bayesian and

graphical model. Instead of mapping the input into a fixed vector, we want to map

it into a distribution. If we label this distribution as pθ, parameterized by θ. The

relationship between the data input x and the latent encoding vector z can be fully

defined by:

• Prior: pθ(z)

• Likelihood: pθ(x|z)

Latent Diffusion Model 6

• Posterior: pθ(z|x)

Figure 5. The graphical model involved in Variational Autoencoder.

Solid lines denote the generative distribution pθ(.) and dashed lines

denote the distribution qϕ(z|x) to approximate the intractable poste-

rior pθ(z|x).[7]

Assuming that we know the real parameter θ∗ for this distribution. In order to

generate a sample that looks like a real data point x(i), we follow these steps:

First, sample a z(i) from a prior distribution pθ∗(z).Then a value x(i) is generated

from a conditional distribution pθ∗(x|z = z(i)). The optimal parameter θ∗ is the one

that maximizes the probability of generating real data samples:

θ∗ = argmax
θ

n∏
i=1

pθ(x
(i))

Commonly we use the log probabilities to convert the product on RHS to a sum:

θ∗ = argmax
θ

n∑
i=1

log pθ(x
(i))

Now let’s update the equation to better demonstrate the data generation process so

as to involve the encoding vector:

pθ(x
(i)) =

∫
pθ(x

(i)|z)pθ(z)dz

Unfortunately it is not easy to compute pθ(x
(i)) in this way, as it is very expensive

to check all the possible values of z and sum them up. To narrow down the value

space to facilitate faster search, we would like to introduce a new approximation

function to output what is a likely code given an input x, qϕ(z|x), parameterized by

ϕ.

Now the structure looks a lot like an autoencoder, but instead of a deterministic

vector in the latent space, VAE matches the input x to a Gaussian distribution with

parameters µ, σ, and gets a sample z ∼ N (µ, σ):

Latent Diffusion Model 7

• The conditional probability pθ(x|z) defines a generative model, similar to

the decoder fθ(x|z) introduced above. pθ(x|z) is also known as probabilistic

decoder.

• The approximation function qϕ(z|x) is the probabilistic encoder, playing a

similar role as gϕ(z|x) above.

2.1.2. From the perspective of a generative model. Another way to understand the

mechanics of VAE is to view it as a generative model that can generate new images

of a particular object, style, etc., based on the materials by which it is trained. For

example we want to generate new images of a car, having a dataset D of images

of cars already. Firstly we have a low-dimensional image z of pure Gaussian noise,

that is z ∼ N (0, I), where I is the identity matrix of corresponding size as ‡. We

want to have a neural network pθ(x|z), where θ is its parameter, that having z as

input, can generate an image x0 that is

Figure 6. The goal to generate an image of request from Gausian

noise by the modelpθ(x|z)
We want to maximize the likelihood of successesifully generating the desired x0,

that is

pθ(x0) :=

∫
pθ(z)dz

but we can not check all possible z to compute pθ(x0) above. A natural idea is that

we can only consider the zs that are highly likely to be sampled from the posterior

distribution of the generate model, z ∼ pθ(z|x0). But this posterior distribution is

also unknown.

Latent Diffusion Model 8

Figure 7. Consider only the zs that are highly likely to be sampled

from the posterior distribution of the generate model

Therefore we turn to build another neural network qϕ(z|x0), where as before ϕ

is the parameter of the neural network, to approximate this posterior distribution.

This neural network has data sample x ∈ D from the data set D as its input, and

gives out a Gaussian distribution of lower dimension with mean µϕ and variance σϕ.

Then through this neural network, we get the degenerated version z of the sample

x from D.

The the 2 neural networks pθ(x|z) and qϕ(z|x0) are trained together, and now in

order to generate x0, we need to:

• minimize the KL divergence:

DKL(qϕ(z|x0) ∥θ (z|x0))

• maximize the log-likelihood of generating the desired resultx0:

log pθ(x0)

So instead of maximizing the likelihood log pθ(x0) directly, we are essentially

adding constraints and maximizing the lower bound of it. That is

log pθ(x0)−DKL(qϕ(z|x0) ∥θ (z|x0))

Figure 8. The 2 neural networks

Therefore, the loss function can be defined as

LV AE = − log pθ(x0) +DKL (qϕ(z|x0) ∥ pθ(z|x0))

Using methods like gradient descent we get the optimized parameters θ∗, ϕ∗.

2.2. Mathematical Derivation of VAE.

Latent Diffusion Model 9

2.2.1. KL Divergence and the Loss Function. Firstly we need to formally define

the KL-divergence, the standard measure of how different a distribution p is from

distribution q:

The KL-divergence of two distribution p and q is

DKL(p ∥ q) = −EX∼

[
log

(
q(X)

p(X)

)]

An interpretation of KL-divergence from information theory: If you’re trying to

encode values from true distribution p but use an encoder optimized for q, how

many extra bits will you need per value?

It is worth mentioning the choice of using DKL(qϕ|pθ) (reversed KL) instead of

DKL(pθ|qϕ) (forward KL)? Eric Jang has a great explanation in his post on Bayesian

Variational methods. As a quick recap:

Figure 9. Forward and reversed KL divergence have different

demands on how to match two distributions. (Image source:

blog.evjang.com/2016/08/variational-bayes.html)

• Forward KL divergence: DKL(P |Q) = Ez∼P (z) log
P (z)
Q(z)

; we have to ensure

that Q(z) > 0 wherever P (z) > 0. The optimized variational distribution

Q(z) has to cover over the entire P (z).

• Reversed KL divergence: DKL(Q|P) = Ez∼Q(z) log
Q(z)
P (z)

; minimizing the re-

versed KL divergence squeezes the Q(z) under P (z).

Let’s now expand the equation:

Latent Diffusion Model 10

DKL(qϕ(z|x)∥pθ(z|x))

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)pθ(x)
pθ(z,x)

dz Because p(z|x)=p(z,x)/p(x)

=

∫
qϕ(z|x)

(
log pθ(x) + log

qϕ(z|x)
pθ(z,x)

)
dz

= log pθ(x) +

∫
qϕ(z|x) log

qϕ(z|x)
pθ(z,x)

dz Because
∫
q(z|x)dz=1

= log pθ(x) +

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x|z)pθ(z)

dz Because p(z,x)=p(x|z)p(z)

= log pθ(x) + Ez∼qϕ(z|x)[log
qϕ(z|x)
pθ(z)

− log pθ(x|z)]

= log pθ(x) +DKL(qϕ(z|x)∥pθ(z))− Ez∼qϕ(z|x) log pθ(x|z)

So we have:

DKL(qϕ(z|x)∥pθ(z|x)) = log pθ(x) +DKL(qϕ(z|x)∥pθ(z))− Ez∼qϕ(z|x) log pθ(x|z)

Once rearrange the left and right hand side of the equation,

log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x)) = Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)∥pθ(z))

The LHS of the equation is exactly what we want to maximize when learning the

true distributions: we want to maximize the (log-)likelihood of generating real data

(that is log pθ(x)) and also minimize the difference between the real and estimated

posterior distributions (the term DKL works like a regularizer). Note that pθ(x) is

fixed with respect to qϕ.

The negation of the above defines our loss function:

LVAE(θ, ϕ) = − log pθ(x) +DKL(qϕ(z|x)∥pθ(z|x))

= −Ez∼qϕ(z|x) log pθ(x|z) +DKL(qϕ(z|x)∥pθ(z))

θ∗, ϕ∗ = argmin
θ,ϕ

LVAE

In Variational Bayesian methods, this loss function is known as the variational

lower bound, or evidence lower bound. The “lower bound” part in the name comes

from the fact that KL divergence is always non-negative and thus −LVAE is the

lower bound of log pθ(x).

Theorem 2.1. KL-divergence is always nonnegative, and equals 0 only when p and

q are the same distribution.

The proof of this theorem can be found in, for example Wikipedia.

https://en.wikipedia.org/wiki/Kullback–Leibler_divergence#Properties

Latent Diffusion Model 11

Therefore by minimizing the loss, we are maximizing the lower bound of the

probability of generating real data samples.

2.2.2. Reparameterization Trick. The expectation term in the loss function invokes

generating samples from z ∼ qϕ(z|x). Sampling is a stochastic process and therefore

we cannot backpropagate the gradient. To make it trainable, the reparameterization

trick is introduced: It is often possible to express the random variable z as a deter-

ministic variable z = Tϕ(x, ϵ), where ϵ is an auxiliary independent random variable,

and the transformation function Tϕ parameterized by ϕ converts ϵ to z.

For example, a common choice of the form of qϕ(z|x) is a multivariate Gaussian

with a diagonal covariance structure:

z ∼ qϕ(z|x(i)) = N (z;µ(i),σ2(i)I)

z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I) ; Reparameterization trick.

where ⊙ refers to element-wise product.

Figure 10. Illustration of variational autoencoder model with the

multivariate Gaussian assumption.[7]

The reparameterization trick works for other types of distributions too, not only

Gaussian. In the multivariate Gaussian case, we make the model trainable by learn-

ing the mean and variance of the distribution, and , explicitly using the reparame-

terization trick, while the stochasticity remains in the random variable ϵ ∼ N (0, I).

Latent Diffusion Model 12

Figure 11. Reparameterization trick.(Image source: Slide 12 in

Kingma’s NIPS 2015 workshop talk)

3. Diffusion Model

3.1. Motivation of Diffusion Model. In this section, I want to explain the fol-

lowing:

(1) Why Diffusion Model is designed like this?

(2) Why the Diffusion Models are philosophically similar to VAE?

3.1.1. How Diffusion Model work. For a generative model, our naive wish is:

Under the following model:

xT
N (0,1)

modelθ−→
pθ(x0|xT)

x0

we want to maximize log pθ(x0)

(which is the possibility of generating pictures we want)

here XT is a random Gaussian distribution, so our naive wish is to make the model

have the largest ability to use such random input to generate the figures we want.

(Note that the ability to generate pictures using totally random input is vital for

the generative model)

However, generate high-quality samples in one step is really hard, so we decompose

it into several steps, as following:

Latent Diffusion Model 13

Figure 12. Step by step generation

here pθ (x0|xT) is decomposed into several pθ (xt|xt+1) and we call such process

‘generate process’ (or what people called the ‘reverse process’)

However, for xt in each step, how could we know which xt−1 is the ‘best’ xt−1 to

generated in next step?

So we need to have samples to teach the model how to generate the ‘best’ xt−1 in

the next step.

Thus we need to establish the ‘degenerate process’ (or what people called the

‘forward process’), which adds Gaussian noise to a clean image step by step. Here

q(xt|xt−1) represents the degenerate process in the figure above.

So our target is:

(1) We want the model to generate xt sample at time stamp t, which are highly

likely to be sampled during the diffusion process at t.

(2) We want to train the model so that we can approximate the posterior

pθ(x1:T |x0) using q(x1:T |x0) as well as possible.

So on the one hand, we want to maximize log pθ (x0), on the other hand, we want

to minimize DKL (q (x1:T | x0) ∥pθ (x1:T | x0)).

So finally, it explain why we pick

L = − log pθ (x0) +DKL (q (x1:T | x0) ∥pθ (x1:T | x0))

as our loss function in training(We will show this later in mathematical derivation

part).

3.1.2. Why the Diffusion Models are philosophically similar to VAE. Recall that our

naive wish is to generate samples using the following model:

xT
N (0,1)

modelθ−→
pθ(x0|xT)

x0

However, it is hard for us to generate high-quality samples in one step. So we

first decompose this into several steps. And to generate the learning data we need

Latent Diffusion Model 14

in these middle steps, we construct a degenerate process to do the following:

x0
dataset

degenerate−→
q(xt|xt−1)

xT

and our goal is to using the data generated by the degenerate process to teach the

model to generate samples that resemble our original dataset x0.

So the complete digram looks like this:

x0
dataset

degenerate−→
q(xt|xt−1)

xT
generate−→

pθ(xt|xt+1)
x̃0

where we want somehow x0 ≈ x̃0.

This is philosophically identical to VAE!

In VAE, what we want is making pθ(x|z) a good inverse to qϕ(x|z).
In the Diffusion Model, what we want is also making q(xt|xt−1) a good inverse to

qϕ (xt|xt+1).

So these two models are isomorphic to each other indeed.

The difference is Diffusion Model decomposes the single step in VAE into several

steps, which gives the model a better competence of generating high-quality new

samples. As in the following figure:

Figure 13. Diffusion and VAE

3.2. Mathematical Derivation of Diffusion Model.

3.2.1. Forward Diffusion Process. Given a data point sampled from a real data

distribution x0 ∼ q(x), let us define a forward diffusion process in which we add

small amount of Gaussian noise to the sample in T steps, producing a sequence of

noisy samples x1, . . . ,xT . The step sizes are controlled by a variance schedule:

{βt ∈ (0, 1)}Tt=1 One choice is β1 = 10−4 to βT = 0.02, T = 1000.

q (xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
q (x1:T | x0) =

T∏
t=1

q (xt | xt−1)

Latent Diffusion Model 15

The data sample x0 gradually loses its distinguishable features as the step t be-

comes larger. Eventually when T → ∞,xT is equivalent to an isotropic Gaussian

distribution.

Figure 14. Forward diffusion process

Figure 15. A visual representation of the forward diffusion process

A nice property of the above process is that we can sample xt at any arbitrary

time step t in a closed form using reparameterization trick. Let αt = 1 − βt and

ᾱt =
∏t

i=1 αi :

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt−2

= . . .

=
√
ᾱtx0 +

√
1− ᾱtϵ

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
where ϵt−1, ϵt−2, · · · ∼ N (0, I).

Note that we denote ϵt−2 as the merge of two Gaussians (∗).
Recall that when we merge two Gaussians with different variance, N (0, σ2

1I) and

N (0, σ2
2I), the new distribution is N (0, (σ2

1 + σ2
2) I). Here the merged standard

deviation is

√
(1− αt) + αt (1− αt−1) =

√
1− αtαt−1.

Usually, we can afford a larger update step when the sample gets noisier, so

β1 < β2 < · · · < βT and therefore ᾱ1 > · · · > ᾱT .

In practice, we use β1 = 0.001 to βT = 0.02 with linear growth between β1 to βT ,

or we use cosine function to create nonlinear growth between β1 to βT .

The following graph shows how ᾱt changes along with timestep.

Latent Diffusion Model 16

Figure 16. Linear and cosine-based scheduling

3.2.2. Reverse diffusion process. If we can reverse the above process and sample

from q (xt−1 | xt), we will be able to recreate the true sample from a Gaussian noise

input, xT ∼ N (0, I).

Figure 17. Reverse diffusion process

Note that if βt is small enough, q (xt−1 | xt) will also be Gaussian. Unfortunately,

we cannot easily estimate q (xt−1 | xt) because it needs to use the entire dataset and

therefore we need to learn a model pθ to approximate these conditional probabilities

in order to run the reverse diffusion process.

pθ (x0:T) = p (xT)
T∏
t=1

pθ (xt−1 | xt) pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))

Latent Diffusion Model 17

Figure 18. An example of training a diffusion model for modeling a

2D swiss roll data. (Image source: Sohl-Dickstein et al., 2015[5])

It is noteworthy that the reverse conditional probability is tractable when condi-

tioned on x0 :

q (xt−1 | xt,x0) = N
(
xt−1; µ̃ (xt,x0) , β̃tI

)
Using Bayes’ rule, we have:

q (xt−1 | xt,x0)

=q (xt | xt−1,x0)
q (xt−1 | x0)

q (xt | x0)

∝ exp

(
−1

2

((
xt −

√
αtxt−1

)2
βt

+
(xt−1 −

√
ᾱt−1x0)

2

1− ᾱt−1

− (xt −
√
ᾱtx0)

2

1− ᾱt

))

=exp

(
−1

2

(
x2
t − 2

√
αtxtxt−1 + αtx

2
t−1

βt

+
x2
t−1 − 2

√
ᾱt−1x0xt−1 + ᾱt−1x

2
0

1− ᾱt−1

− (xt −
√
ᾱtx0)

2

1− ᾱt

))

=exp

(
−1

2

((
αt

βt

+
1

1− ᾱt−1

)
x2
t−1 −

(
2
√
αt

βt

xt +
2
√
ᾱt−1

1− ᾱt−1

x0

)
xt−1 + C (xt,x0)

))

Latent Diffusion Model 18

where C (xt,x0) is some function not involving xt−1 and details are omitted. Fol-

lowing the standard Gaussian density function, the mean and variance can be pa-

rameterized as follows (recall that αt = 1− βt and ᾱt =
∏T

i=1 αi):

β̃t = 1/

(
αt

βt

+
1

1− ᾱt−1

)
= 1/

(
αt − ᾱt + βt

βt (1− ᾱt−1)

)
=

1− ᾱt−1

1− ᾱt

· βt

µ̃t (xt,x0) =

(√
αt

βt

xt +

√
ᾱt−1

1− ᾱt−1

x0

)
/

(
αt

βt

+
1

1− ᾱt−1

)
=

(√
αt

βt

xt +

√
ᾱt−1

1− ᾱt−1

x0

)
1− ᾱt−1

1− ᾱt

· βt

=

√
αt (1− ᾱt−1)

1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt

x0

Thanks to the nice property, if we are given sample xt and ϵt, we can represent

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵt

)
and plug it into the above equation and obtain:

µ̃t =

√
αt(1− ᾱt−1)

1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtϵt)

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
That is, given sample xt.ϵ, we can recover such mean in the reverse diffusion

process.

3.2.3. Loss Function of Diffusion Model. Such a setup is very similar to VAE and

thus we can use the variational lower bound to optimize the negative log-likelihood.

− log pθ (x0) ≤ − log pθ (x0) +DKL (q (x1:T | x0) ∥pθ (x1:T | x0))

= − log pθ (x0) + Ex1:T∼q(x1:T |x0)

[
log

q (x1:T | x0)

pθ (x0:T) /pθ (x0)

]
= − log pθ (x0) + Eq

[
log

q (x1:T | x0)

pθ (x0:T)
+ log pθ (x0)

]
= Eq

[
log

q (x1:T | x0)

pθ (x0:T)

]
Let LVLB = Eq(x0:T)

[
log

q (x1:T | x0)

pθ (x0:T)

]
≥ −Eq(x0) log pθ (x0)

To convert each term in the equation to be analytically computable, the objective

can be further rewritten to be a combination of several KL-divergence and entropy

terms (See the detailed step-bystep process in Appendix B in Sohl-Dickstein et al.,

2015):

Latent Diffusion Model 19

LVLB = Eq(x0:T)

[
log

q(x1:T |x0)

pθ(x0:T)

]
= Eq

[
log

∏T
t=1 q(xt|xt−1)

pθ(xT)
∏T

t=1 pθ(xt−1|xt)

]
= Eq

[
− log pθ(xT) +

T∑
t=1

log
q(xt|xt−1)

pθ(xt−1|xt)

]
= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt|xt−1)

pθ(xt−1|xt)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
− log pθ(xT) +

T∑
t=2

log
(q(xt−1|xt,x0)

pθ(xt−1|xt)
· q(xt|x0)

q(xt−1|x0)

)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt)
+

T∑
t=2

log
q(xt|x0)

q(xt−1|x0)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt)
+ log

q(xT |x0)

q(x1|x0)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
log

q(xT |x0)

pθ(xT)
+

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt)
− log pθ(x0|x1)

]
= Eq[DKL(q(xT |x0) ∥ pθ(xT))︸ ︷︷ ︸

LT

+
T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

Let’s label each component in the variational lower bound loss separately:

LVLB = LT + LT−1 + · · ·+ L0

where LT = DKL (q (xT | x0) ∥pθ (xT))

Lt = DKL (q (xt | xt+1,x0) ∥pθ (xt | xt+1)) for 1 ≤ t ≤ T − 1

L0 = − log pθ (x0 | x1)

Every KL term in LVLB (except for L0) compares two Gaussian distributions

and therefore they can be computed in closed form. LT is constant and can be

ignored during training because q has no learnable parameters and xT is a Gaussian

noise. Ho et al. 2020[2] models L0 using a separate discrete decoder derived from

N (x0;µθ (x1, 1) ,Σθ (x1, 1)).

3.2.4. Parameterization of Lt for Training Loss. Recall that we need to learn a neu-

ral network to approximate the conditioned probability distributions in the reverse

diffusion process, pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)). We would like to

train µθ to predict µ̃t = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵt

)
. Because xt is available as input at

Latent Diffusion Model 20

training time, we can reparameterize the Gaussian noise term instead to make it

predict ϵt from the input xt at time step t :

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)

Thus xt−1 = N (xt−1;
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
,Σθ(xt, t))

And indeed, as our goal is to approximate q (xt | xt+1,x0) by pθ (xt−1), so in

partice, we can directly take

Σθ(xt, t) = β̃t

To visualize such reparameterize, we show the following sequence of figures:

Figure 19. Forward process

In the forward process, we generate xt by Gaussian noise ϵt−1 and xt−1.

Figure 20. Forward process

In the reverse process, we don’t know the Gaussian noise ϵt−1 for give xt.

Figure 21. Forward process

So the goal, under reparameterize, is transferred to estimate the Gaussian we

expected to add in the forward process.

Latent Diffusion Model 21

Figure 22. Effect of reparameterize

Here, to continue on mathematical derivation, we need to refer to a classical result

in Statistics[1]

Proposition 3.1. For two d-dimension Gaussian distributions N (x;µ1,Σ1) and

N (x;µ2,Σ2), we have:

DKL(N (x;µ1,Σ1)∥N (x;µ2,Σ2))

=
1

2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)
TΣ−1

2 (µ2 − µ1)− d+ log
detΣ2

detΣ1

)
.

Proof. KL divergence between two distributions P and Q of a continuous random

variable is given by:

DKL(p∥q) =
∫
x

p(x) log
p(x)

q(x)

And probabilty density function of multivariate Normal distribution is given by:

p(x) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Now, let our two Normal distributions be N (µ1,Σ1) and N (µ2,Σ2), both k

dimensional.

DKL(p∥q) = Ep[log(p)− log(q)]

=

∫ [
1

2
log

|Σ2|
|Σ2|

− 1

2
(x− µ1)

TΣ−1
2 (x− µ1) +

1

2
(x− µ2)

TΣ−1
2 (x− µ2)

]
× p(x)dx

=
1

2
log

|Σ2|
|Σ2|

− 1

2
tr
{
E[(x− µ1)(x− µ1)

T] Σ−1
2

}
+

1

2
E[(x− µ2)

TΣ−1
2 (x− µ2)]

=
1

2
log

|Σ2|
|Σ2|

− 1

2
tr {Id}+

1

2
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2) +

1

2
tr{Σ−1

2 Σ2}

=
1

2

[
log

|Σ2|
|Σ2|

− d+ tr{Σ−1
2 Σ2}+ (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
.

□

So by applying this proposition, we could have a close form of Lt as following(recall

that we have already taken Σθ(xt, t) = β̃t):

Lt = Ex0,ϵ

[
DKL (q (xt | xt+1,x0) ∥pθ (xt | xt+1))

]
=Ex0,ϵ

[1
2

(
tr(β̃−1

t Iβ̃tI) +
∥µθ (xt, t)− µ̃ (xt, t)∥22

β̃t

− d+ log(
det(β̃tI)

det(β̃tI)

)]
=Ex0,ϵ

[∥µθ (xt, t)− µ̃ (xt, t)∥22
2β̃t

]

Latent Diffusion Model 22

So the loss term Lt is parameterized to minimize the difference from µ̃ :

Lt = Ex0,ϵ

[
1

2 ∥Σθ (xt, t)∥22
∥µ̃t (xt,x0)− µθ (xt, t)∥2

]

= Ex0,ϵ

[
1

2 ∥Σθ∥22

∥∥∥∥ 1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
− 1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)∥∥∥∥2
]

= Ex0,ϵ

[
(1− αt)

2

2αt (1− ᾱt) ∥Σθ∥22
∥ϵt − ϵθ (xt, t)∥2

]

= Ex0,ϵ

[
(1− αt)

2

2αt (1− ᾱt) ∥Σθ∥22

∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵt, t

)∥∥2]
Empirically, Ho et al.2020[2] found that training the diffusion model works better

with a simplified objective that ignores the weighting term:

Lsimple
t = Et∼[1,T],x0,ϵt

[
∥ϵt − ϵθ (xt, t)∥2

]
= Et∼[1,T],x0,ϵt

[∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵt, t

)∥∥2]
The final simple objective is:

Lsimple = Lsimple
t + C

where C is a constant not depending on θ.

Figure 23. The training and sampling algorithms in DDPM (Image

source: Ho et al. 2020[2])

4. Latent Diffusion Model

Diffusion models are known for their powerful generative capabilities, producing

high-quality and diverse outputs. However, they require significant computational

resources and are challenging to train due to their high-dimensional pixel space

operations. To address these challenges, we introduce the Latent Diffusion Model

(LDM).

Latent Diffusion Model (LDM) is a powerful generative framework that combines

the strengths of Variational Autoencoders (VAEs) and Diffusion Models. LDMs

operate by first mapping data to a lower-dimensional latent space via a VAE, and

Latent Diffusion Model 23

then employing a diffusion process within this latent space to generate high-quality,

diverse outputs.

By transforming the training process from the pixel space to a lower-dimensional

latent space, LDMs reduce computational demands and significantly shorten train-

ing time, while maintaining the generative strength of diffusion models.

In a word, LDM has the following advantages:

(1) Training in the latent space, which has a lower dimension than the pixel

space, reduces the requirement of computation resources and saves training

time.

(2) Our dataset could contain more pictures, greatly enhancing the output’s

quality.

The following pictures demonstrate the structure of the latent diffusion model.

Figure 24. Latent diffusion model(Image source: Verma 2023[6])

5. Implementation and Results

5.1. Coding part 1: VAE Implementation. We build a VAE step by step (Sto-

chastic Process Project VAE.ipynb). It is responsible to generate the latent repre-

sentation in latent space for the diffusion model to be trained with.

The following are examples in our dataset:

https://colab.research.google.com/drive/1pDvMUFAnu-qh7c3vKqWwDcUYFAoaav2q
https://colab.research.google.com/drive/1pDvMUFAnu-qh7c3vKqWwDcUYFAoaav2q

Latent Diffusion Model 24

Figure 26. Dataset used in VAE

The following the is the training process, You can find that the model behaves

better along with epoch grows:

Figure 29. Training process in VAE

We are also interested in what latent space looks like exactly.

The following shows pictures from the latent spaces:

Latent Diffusion Model 25

Figure 30. The visualization of the samples in the latent space

5.2. Coding part 2: Diffusion Model Demo. In the coding part, we first pro-

vide a complete version of diffusion model which is trained to generate car im-

ages(Stochastic Process Project DM.ipynb). This notebook has a complete imple-

mentation of diffusion model pipeline. We visualized the forward process of diffusion

and trained the U-Net architecture to predict noise in the backward diffusion pro-

cess. We trained the model for 2500 epochs and demonstrated the intermediate

performance of the model to generate cars from random noise every 100 epochs.

After about 700 epochs of training, the generated car is already of nice looking.

And here is the final performance of our model after 2500 epochs of training, which

took approximately 40 min:

100 epoch

200 epoch

300 epoch

400 epoch

500 epoch

600 epoch

https://colab.research.google.com/drive/1HPCgzSOi-SbfYZr3S8AevMonu4YEqJyx

Latent Diffusion Model 26

700 epoch

800 epoch

900 epoch

1000 epoch

1100 epoch

1200 epoch

1300 epoch

1400 epoch

1500 epoch

1600 epoch

1700 epoch

1800 epoch

1900 epoch

Latent Diffusion Model 27

2000 epoch

2100 epoch

2200 epoch

2300 epoch

2400 epoch

2500 epoch

5.3. Coding part 3: LDM Implementation. The third notebook is about LDM

with pre-trained VAE(Stochastic Process Project LDM.ipynb), which appears not

difficult at all as it is just a combination of the VAE and the diffusion model we

have became familiar with in the first two notebooks. We first load the pretrained

VAE model to generate a latent representation dataset of MNIST. Then we walked

through the implemention of the diffusion process in this latent space, including the

forward diffusion process, the U-Net for backward process and the loss function.

We first train our model using the whole MNIST dataset. But considering the 0

to 9 digits are different in shape, for better performance, we then make our LDM

only learn to generate images of ”4”, which comes out better as we expected. As in

diffusion model notebook, we show our intermediate performance of our LDM model

every 50 epochs during training. It is worth noting that, there is an interesting

modification on the U-Net architecture in this LDM part compared to the U-Net

we use in the ordinary diffusion part. There is a discussion about the necessity of

this in our notebook. The reason in short is that we are applying diffusion model in

the latent space where our images are compressed. So we can not downsample our

latents as many times as we do in ordinary diffusion.

Here we generate our training dataset using forward diffusion process:

https://colab.research.google.com/drive/1N07RlMNcWok5kZuVL1YipFZOytuthyLE

Latent Diffusion Model 28

Figure 31. Forward diffusion process of LDM in latent space

When we are training our LDM model, first we train it without specifying the

exact number to generate, so it turns our that we fail to generate meaningful pictures!

200 epoch

250 epoch

300 epoch

350 epoch

400 epoch

450 epoch

500 epoch

550 epoch

600 epoch

650 epoch

Latent Diffusion Model 29

Then we tried to train with datasets that only contained 4 and generated only 4,

and we succeeded. It somehow tells us that if we want to generate all numbers, text

code will be needed.

Here we generate our training dataset for ‘4’ using forward diffusion process:

Figure 32. Forward diffusion process of LDM in latent space for

only 4

Then we successfully trained our model which could generate ‘4’ and it behaved

better along with the epoch growth.

200 epoch

250 epoch

300 epoch

350 epoch

400 epoch

450 epoch

500 epoch

550 epoch

600 epoch

Latent Diffusion Model 30

650 epoch

700 epoch

750 epoch

800 epoch

850 epoch

900 epoch

950 epoch

1000 epoch

6. Conclusions and Discussion

In this project, we conducted an in-depth investigation of three generative models:

Variational Autoencoder (VAE), Diffusion Model (DM), and Latent Diffusion Model

(LDM). These models are intrinsically linked to key concepts in stochastic processes,

such as sampling, Markov Chains, and Gaussian Processes.

For each model, we first derived the underlying mathematics to grasp the intuition

behind their respective mathematical formulations. Subsequently, we implemented

and trained the VAE and diffusion model independently, providing visualizations to

demonstrate their performance.

To enhance both training and generation speed, we integrated the VAE with the

diffusion model, enabling the diffusion process to occur in the latent space created

by the VAE. This latent space has a lower dimensionality compared to the original

pixel space, leading to significant computational efficiency.

Latent Diffusion Model 31

Performance visualizations for the combined model highlight the improvements in

efficiency and effectiveness, showcasing the advantages of operating within a reduced

dimensional latent space.

Overall, our investigation and implementation underscore the potential of com-

bining generative models to leverage their individual strengths, offering valuable

insights for future research and applications in this domain.

7. Contribution

The contributions of each group member to this project are detailed below:

Kaitian Chao: Mathematical derivations; programming and coding implemen-

tation; presentation delivery; report writing.

Bangjie Wang: Mathematical derivations; presentation delivery; creation of

presentation slides; report writing.

Guanqiu Wu: Mathematical derivations; creation of presentation slides; report

writing.

References

1. Christopher M Bishop and Nasser M Nasrabadi, Pattern recognition and machine learning,

vol. 4, Springer, 2006.

2. Jonathan Ho, Ajay Jain, and Pieter Abbeel, Denoising diffusion probabilistic models, Advances

in neural information processing systems 33 (2020), 6840–6851.

3. Diederik P Kingma and Max Welling, Auto-encoding variational bayes, 2022.

4. Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer, High-

resolution image synthesis with latent diffusion models, Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, 2022, pp. 10684–10695.

5. Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli, Deep unsu-

pervised learning using nonequilibrium thermodynamics, International conference on machine

learning, PMLR, 2015, pp. 2256–2265.

6. Nikhil Verma, Diffusion idea exploration for art generation, arXiv preprint arXiv:2307.04978

(2023).

7. Lilian Weng, From autoencoder to beta-vae, lilianweng.github.io (2018).

School of Information Science and Technology, ShanghaiTech University

Email address: chaokt@shanghaitech.edu.cn

Institute of Mathematical Sciences, ShanghaiTech University

Email address: wangbj@shanghaitech.edu.cn

Institute of Mathematical Sciences, ShanghaiTech University

Email address: wugq@shanghaitech.edu.cn

	1. Introduction
	1.1. Summary of Our Work
	1.2. Introduction to VAE
	1.3. Introduction to Diffusion Model

	2. VAE
	2.1. Motivation of VAE
	2.2. Mathematical Derivation of VAE

	3. Diffusion Model
	3.1. Motivation of Diffusion Model
	3.2. Mathematical Derivation of Diffusion Model

	4. Latent Diffusion Model
	5. Implementation and Results
	5.1. Coding part 1: VAE Implementation
	5.2. Coding part 2: Diffusion Model Demo
	5.3. Coding part 3: LDM Implementation

	6. Conclusions and Discussion
	7. Contribution
	References

