Stochastic project: Diffusion Models

Wennan Wang Jingrong Guan Lecong Ding

Abstract

Diffusion models have recently emerged as a popular type of generative model.
This paper explores their principles, improvements, and applications. Firstly,
diffusion models are categorized into conditional and unconditional diffusion
models based on the task type. Next, a brief introduction to the basic principles of
diffusion models is provided. Following this, two commonly used unconditional
diffusion models, Denoising Diffusion Probability Model(DDPM) and Score-based
model, are introduced in sequence. Building on this foundation, we summarize two
improvement strategies, incorporating our insights and existing enhanced models.
Finally, we offer some observations on the applications and future development of
diffusion models.

1 Introduction

Diffusion models are a class of probability-based generative models. The concept of the models
first appeared in statistical physics, used to describe the process of particles moving. In 2015,
Sohl-Dickstein of Stanford introduced this concept to machine learning. He initially proposed
systematically and slowly destroying the structure in the data distribution through an iterative forward
diffusion process, and then learning an inverse diffusion process that restores the structure in the
data, resulting in a highly flexible and easy-to-handle generative model of the data. This became
one of the key breakthroughs in diffusion modelling. In 2020, Jonathan Ho of the University of
California, Berkeley, proposed the Denoising Diffusion Probabilistic Model(DDPM) based on
diffusion modelling. This technique led to a huge improvement in the quality of the generated images.
Since then, diffusion models have shown potential in more and more fields such as prediction and
generation, especially in the field of high-resolution image generation. Using Al to generate images
is a popular direction of research nowadays. In fact, many people have already used generative
models based on diffusion models such as DALL-E 3, Stable diffusion 3, Sora in their lives. And
diffusion models have replaced the original common generative models, such as GAN, VAE, etc.,
and become the first choice of Stability Al, OpenAl, Google Brain, etc. to build models.

Figure 1: Generated samples from Sable Diffusion 3

Therefore, in this paper, we will introduce in detail the mathematical principles behind several typical
diffusion models, such as denoising diffusion probabilistic models(DDPMs) and score-based

stochastic differential equations(Score SDEs), from a mathematical point of view. The aim is to
understand the application methods and explore the application areas of diffusion models based on
the stochastic process course of this semester. Finally, we conclude the paper with a summary of
what we have covered in the paper. And we have made an outlook on the direction of our further
work and the future progress of the model.

2 Overview of the model

Typically, we classify diffusion models into two main categories: unconditional and conditional
diffusion models.

The unconditional diffusion models work in an unsupervised manner. Generating data samples relies
on self-information without the need for supervised signals. Within this category, models can be
further classified into probability-based diffusion models and score-based diffusion models. Examples
include denoising diffusion probability models (DDPMs) and score-based stochastic differential
equations (Score SDEs).

The conditional model builds on the unconditional diffusion model by introducing additional in-
formation (e.g., category labels, conditional constraints, etc.) to train the network. This enhances
the performance of the model and makes the results more consistent with certain objective laws.
Empirical studies have shown that conditional generation models using data labels are easier to train
and perform better compared to unconditional models. These conditional mechanisms are more
conducive to the generation of application-speciffc ffelds by using the control of other information to
generate results.

- - =Y

Probability-based — popMs

]
1
Unconditional { | explotary
| Score-based — score SDEs :
!)
DIFFUSION MODELS labels
- | |
*_ . Probability-based |
Conditional —[] targeted

Score-based]
1

L —

Figure 2: Classification of diffusion models

Therefore, unconditional diffusion model generation is innovative and versatile, suitable for ex-
ploratory application scenarios. While conditional diffusion model can control the output more
specifically, and is the most commonly used means of generation nowadays.

We build a generative Markov chain which converts a simple known distribution (e.g. a Gaussian)
into a target (data) distribution using a diffusion process. Rather than use this Markov chain to ap-
proximately evaluate a model which has been otherwise defined, we explicitly define the probabilistic
model as the endpoint of the Markov chain.

The implementation of the diffusion model is specifically divided into two parts: the diffusion process
and the generation process. The first is the diffusion process (forward process). Gradually add some
kind of noise to the data, i.e., gradually impose the so-called diffusion kernel (Gaussian kernel or
binomial kernel) on the target distribution. We see the every image as a situation in this process. And
finally get the smooth distribution of this Markov process which is the known simple distribution.
The second is the generation process (backward process). Specifically, the neural network is trained
to trace the forward process and learn the diffusion kernel’s parameters. Then using the learned
parameters, starting from the known simple distribution and imposing the same form of diffusion as
the forward process. At last, the target distribution is generated after a parameterised Markov chain.

In the following two sections, we will specifically introduce two typical unconditional diffusion
models.

3 Denoising Diffusion Probability Model

A DDPM is formed by two parametrized Markov chains:

1. The forward chain is constructed as
Ty =1—= Bz 1+ P&, t=1,2,.. (3.1
It’s designed to add Gaussian white noise in each step in the Markov chain so that the transi-
tion probability is Gaussian q(z¢|zs—1) = N (245 /1 — Bywy_1, B I) for some parameters
{B:}22,, where x; represents an image. We can verify that as ¢ — oo, there exists limiting

distribution and moreover, the limit is standard Gaussian: g(z:|Xo) — N (0,1),t — oo
under the condition that 5; << 1.

The reason why the sum of the squares of the coefficients is 1:

Ty = arTy—1 + brey

(at...a1)xo + (ag...a2)brer + (ar ... az)baea + -+ + arbi_16:—1 + brey

The sum of Gaussian white noise is still a Gaussian white noise,so we have

2 = (ay...a1)To + \/(at coea2)?b? + (ap...a3)?b3 + -+ afb? | +ble, & ~N(0,I)
By adding the constraint that a? + b? = 1,we will have:

(ar...a1)* + (ag...a2)%b? + (ay...a3)*b3 + -+ a2b?_| +b?
=a? (a7_y (... (a3(a] +b]) +b3) +...) +b7 1) + b

=1
This gives us great convenience in the later derivation of the formula.

2. The backward(reverse) process is the "denoising" inference process of diffusion. The reverse
transition probability is given by Bayesian formula

q(ze|ze—1)q(Te—1|20)

q(zt|zo)
Actually g(z¢|zi—1) = q(x¢|xs—1,x0)in the above formula because of the property of a
Markov chain.
Unfortunately when we take our model into application, x is usually unknown. So we
have to build up a deep learning net to train pg(z;_1|x;),which is used to approximate
q(x¢—1|zt, o) when we just have x; and t.
A fact that g(x¢—1|¢, zo) is still Gaussian, given that ¢(x¢|z;—1) is Gaussian and ; << 1.
So we can model py as Gaussian, then our training goal is to approximate the parameter of
the Gaussian distribution: g and Sy

Q(l‘t—l |l”t, 330) =

po(xi—1]xt) = N (2415 po (e, t), Bo e, t)1)

3.1 Forward process

Proposition 3.1.1 (Convergence of forward process) Suppose the forward process is a Markov

chain that
Ty =/ 1-— 5753315,1 + \/Eﬁt, € ~~ N(O, I) iid.
i.e. the transition probability is Gaussian xy|x;_1 ~ N (/1 = Bywy_1, Bel). If foreacht = 1,2, ...,
0 < B¢ < 1 such that lim;_, o Hle(l — B¢) = 0, then the forward Markov chain possesses a
limiting distribution and
q(zt|xo) = N(0,1), ast — oo (3.2)
for any given xo € R™.

3.2 Backward process

There is an analytic formula for ¢(x;—_1|x¢, xo) if we know the final generated sample zo from
backward process!

Proposition 3.2.1 Denote A; = HZ:1 ay. For given generated sample x(, we have

q(ze—1|e, 70) = N (24— 15 fir (x4, 20), B)

where

1— A VA
firlr,a) = YL Z A | VAR, (33)
1—-A 1—-A,

=~ 1= A

3.3 Approximation

In general case, there is no explicit formula for ¢(z;_1|z;) when ¢ is unknown. However we konw

that
1

VA

where the Gaussian noise z; ~ N (0, I) . Take it into (3.3), we obtain that
~ 1 Bt
_ _ o 3.6
SERRVCR (mt VI—4, zt) GO

We can set zgp(z¢,t) to be approximator intended to predict z;,which is the Gaussian white noise
added into x to obtain x, using deep neural net.

(fEt — (1 — At)Zt), zZt ~ N(O, I) (35)

o =

Here we assume that og(zy, t) is the same as the variance in the forward process.

Hence the parameters for backward process model can be

1
o (xe,t) = \/707]& (mt - \/16_75714152’9(3%7150 3.7
~ 1—A,_
oo(@e,t) = B = T4~ (3.8)
po(@i—1]xe) = N (2415 po(xe,t), 0 (xe, t)1) (3.9)

where pg(2:—1|2:) is the modelled probability to approximate real q(x;—1|2+, o)

When training pg,we need to design the loss function and then minmize it.

3.4 Design of the loss function

Under the given data distribution zy ~ ¢(x¢),by the property of a Markov process py(xo.1) =

p(xr) Hthl po(xi—1|xt), it’s reasonable to maximize the log-likelyhood of pg(zo), i.e. to minimize
the cross entropy of pg () under g(xg):

0" = arg mein L(0,x9) = arg mgn Eq(z0)[— log pe(0)] (3.10)
But directly compute py (o) is intractable, so we have to use some tools to simplify the loss.

Lemma 3.4.1 By using Jensen inequality,the negative log-likelyhood can be bounded by the Varia-
tional Lower Bound: Ly;p , i.e.

Q(ﬂﬁl:T\xo) A
=K —1 <E log ——————2| & 11
L = Eqzo)[—1ogpo(z0)] < Eg(zp.r) [Og vo (o) } Lyiz (3.11)

4

Instead of directly minimizing £, we choose to optimize Ly g since it’s more computable by the
follwing Lemma.

Lemma 3.4.2 (Decomposition of Lyyp) Ly.p can be decomposed into a sum of several KL-
divergence:

Lyip=Lpr+Lyr_1+..4+ Ly (3.12)
L1 = Dk (q(zr|z0)||po(2T)) (3.13)
L; = Drr(q(x|zerr, wo)|lpo(we|2iy1)), 1<t <T -1 (3.14)
Lo = —logpe(xol|z1) (3.15)

Actually g(x) has no parameter, pg(xr) is pure noise, so L7 can be seen as constant to the model.
For the fact that g(x¢|x;41, xo is Gaussian distribution and we have supposed that py(z¢|z;y1)) is
Gaussian distribution, by solving the KL divergence of Gaussian distribution, we have that
1
Li=Eq |55 l0 - I3 +C, 1<t<T-1 3.16
=B s ltan) olan 1| £ €. 1502 o
Combining (3.5),(3.6),(3.7), we can further derive that

1 ~
Lt = By | 1o e) ~ e)

2||op (s,
Bt T T ol
:Ewo,zt —~2 ‘ Zt —Ze(Atl'()—f— 1—At2t7t)H
2@,5(1 — At)ﬂt
For simplicity we can ignore the coefficients in L;, then we have

' 2
Lilmple — Ewo,zt |:Hzt — ZO(\/A»tJ:O + MZt;t)H :|

In this picture of algorithm, € is 2; in our formula and €y is zy in our formula.

Algorithm 1 Training Algorithm 2 Sampling

1 repeat I: x7 ~ N(0,T)

Z xo ~ q(xo) 2 fori=T,...,1do

i- t~ [{?(130?;1({1*- =T} 3 z~N(0,I)ift > 1L elsez=0

e~ NI(U, 1 1—c¢
5. Take gradient descent step on 4 X1 = Jor (xf - ﬁea(xt, t)) + otz
Vo ”E*EH(‘/&cXO+‘/1*&c6,t)”2 5: end for
6: until converged 6: return xo

4 Score-based model

In order to build such a generative model, we first need a way to represent a probability distribution.
One such way, as in likelihood-based models, is to directly model the probability density function
(p.d.f.) or probability mass function (p.m.f.). Let fy(z) be a real-valued function parameterized by a
learnable parameter . We can define a p.d.f. via
e—Jo(x)

Zy

where Zy > 0 is a normalizing constant dependent on 6, such that [py(z)dz = 1. Here the function
is often called an unnormalized probabilistic model, or energy-based model.

po(x) =

We can train pg(z) by maximizing the log-likelihood of the data
N

max ; log pe ()

This is undesirable because in order to compute pg (), we must evaluate the normalizing constant
Zy, a typically intractable quantity for any general fy(x). Thus to make maximum likelihood training
feasible, likelihood-based models must either restrict their model architectures.

By modeling the score function instead of the density function, we can sidestep the difficulty of
intractable normalizing constants.

4.1 Score function

Definition 4.1.1 The score function of a distribution p(x) is defined as

V log p(z)
and a model for the score function is called a score-based model, which we denote as s¢(x), for some
normalized probability model
pe(x)
Zg

po(x) =

Example 4.1.2 we can easily parameterize a score-based model with the energy-based model via
sgp(x) = Vo z) = —Vfolx) —V,.Zyg = -V, folx
o(z) g po(T) fo(z) 0 fo()
=0

Note that the score-based model is independent of the normalizing constant Zy! This significantly
expands the family of models that we can tractably use, since we don’t need any special architectures
to make the normalizing constant tractable

4.2 Langevin dynamics

Langevin dynamics provides an MCMC procedure to sample from data distribution pgqa¢. () using
only its score function. Specifically, it initializes the chain from an arbitrary prior distribution
xo ~ m(x), and then iterates the following

Tiy1 = o5 4 0V, 108 paata () + V20e;, i=0,1,..,T (4.1)

where ¢; ~ N(0,1). When § — 0 and T — oo, zr obtained from the procedure converges to a
sample from p(z) under some regularity conditions. The continuous form of (2.5) is an SDE:

dz, = 6V, log p(x)dt + v20dW, (4.2)

Unfortunately we don’t know the actual distribution pg.:q (), we can only only sampled from
modeled probability pg(z) using Langevin dynamics

Zip1 = T; + 6V, logpg(x) + V26¢; 4.3)
= z; + 0sp(x) + V20¢; 4.4

And the core of score-matching lies in that using a best estimator(e.g. nerual network) s () to replace
unknown V, 10g pgarq (), while the "prediction error" ||sp(z) — V, 10g Paata ()| is minimized.

4.3 Scored-based modeling with forward and reverse SDE

When the number of noise scales approaches infinity, we essentially perturb the data distribution with
continuously growing levels of noise. In this case, the noise perturbation procedure is a continuous-
time stochastic process. Usually presented as an SDE(diffusion process):

dzy = f(z, t)dt + g(a, t)dW; 4.5)
where f(-,t) : RT — R g(-, 1) : R — RI*4,

DDPM can be seen as a discretised version of a special SDE, since the forward process of

oy — -1 = (V1= By — D)xy1 + / Pre

When ¢ is continuous variable, the equation becomes

dzy = (V1 — By — Day 4+ +/BrdW; (4.6)

In empirical practice, the hyper-parameters {3, };>1 is very small that 5, € (0.01,0.1), so by Taylor
expansion /1 — By — 1 & —f3;/2, so the corresponding SDE can be simplified as:

d.’L't = —%l‘tdt + vV Btth (47)
Tt —T—1 = _%xtfl + / Be (4.8)

4.4 Reverse SDE and probability flow ODE of diffusion process

Recall that with a finite number of noise scales, we can generate samples by reversing the perturbation
process with Langevin dynamics For infinite noise scales, we can analogously reverse the perturbation
process for sample generation by using the reverse SDE.

Theorem 4.4.1 For diffusion process defined by equation (2.25), if it is invertible, then the reverse
process is characterised by reverse SDE:

dze = [f(21,t) = Vo - 99" (20,1) — 997 (20,0) Vi logpe(x)] dt + glar,)W, (4.9)
where the divergence of the matrix is
V(99"
V.gg' =
V- (997)a
pi() is the density of forward process. Wy is reverse Wiener process(Brownian motion).

Also, the SDE of form (2.25) can be converted into an ordinary differential equation (ODE) without
changing its marginal distributions {p;(z)}7_,. Thus by solving this ODE, we can sample from the
same distributions as the reverse SDE. The corresponding ODE of an SDE is named probability flow
ODE.

Lemma 4.4.2 SDE in form of (2.25) have one-to-one correspondence to a probability flow ODE:

1 1
dzy = | f(ae,t) — §V 99" (w4, 1) — 599T($t7t)vz log p; ()| dt (4.10)

The proof of Lemma 2.5.2 and Theorem 2.5.1 are based on the Fokker-Plank equation(Kolmogorov
forward equation), details are provided in Appendix.

Data Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw —)@— dr = [f(z,t) — g (t)V. logp, (z)] dt + g(t)dw

Figure 3: Comparison of SDE and probability flow ODE

When the score function is approximated via a time-dependent scored-based model, especially being
a neural network, using this probability flow ODE allows faster sampling xg ~ py = Pdatq Under the
terminal condition x7 ~ pr, which is almost a white noise. Typical solving method of this ODE
relies on the discretization strategy.

4.5 Continuous DDPM

As for the continuous DDPM (2.27), there is an analytic solution for x; that

t
;= woe~ Io Fds +/ VBae~ IS Faraw, (4.11)
0

Then the distribution of x; is

t
g(@ilwo) = N | 2y zoe o T, (/ Bee™ ﬁr‘“ds) Iy 4.12)
%/_/ O

Kt

ot

where pu; — 0,¢t — 00, o, = O(1) Hence we can directly compute the reverse(backward) SDE of
continuous DDPM:

da, = —%xt + ,tht;/ﬂ dt + /B, AW, (4.13)
t

4.6 Numerical method of forward SDE and probability low ODE
The forward SDE (4.5) can be discretized as
Tig1 = X; + f(l‘i, ti)At + g(.]?i, ti)AWi 4.14)

where AW; = W,
scheme.

— Wy, = e;VAt with ¢, ~ N(0,1) i.i.d. It’s a simple Euler-Maruyama

it+1

Similarly, suppose we use a time-dependent neural network sq(xz,t) to estimate V., log p;(x).
After training to obtain an optimal approximator sg= (x¢,t) = V., logp:(x:), the probability flow
(4.10) for the reverse process is discretized as

1 1
Ti= X4l — (f(xi+17ti+1) — =V 99" (Tig1,tis1) — 599T(30i+1,fi+1)59* (xi+17ti+1)) At

2
(4.15)
If for reducing complexity of computation, we can model g(z, t) = g(t) to be z-independent, then
the numerical discretization can be simplified as

1
Ty = Tijy1 — (f($i+1,ti+1) — 299T($i+1,ti+1)80*($i+1,ti+1)> At (4.16)

This scheme enables us to generate samples xo = xt, from z;,, = z1 ~ N (0,).

4.7 Construction of Loss by Score-matching

The core idea of score matching is to match the score function (gradient of the log PDF) of a model to
that of the true data distribution, rather than directly modeling the PDF itself. In our case, we plan to
use a neural network sg(x¢,t) to estimate V, log p;(x+) through minimizing the Fisher divergence.
By doing so, score matching can ignore the need for explicitly calculating the normalization constant
of the PDF.

4.7.1 Time-independent Loss function

To approximate the score function, We use a neural network sy (z) = V, log pg(x) with parameter 6.

Similar to likelihood-based models, we can train score-based models by minimizing the Fisher
divergence 2 between the model and the data distributions, defined as

1
Epdn,f,a,(lf) va 1ngdata (l‘) — S0 (l‘)”; 4.17)

L) =5

intuitively, the Fisher divergence compares the squared /2 distance between the ground-truth data
score and the score-based model. Directly computing this divergence, however, is infeasible because
it requires access to the unknown data score V,pgatq ().

Fortunately, there exists a family of methods called score matching that minimize the Fisher diver-
gence without knowledge of the ground-truth data score. Score matching objectives can directly be
estimated on a dataset and optimized with stochastic gradient descent, analogous to the log-likelihood
objective for training likelihood-based models

Theorem 4.7.1 Assume that the model score function sg(x) is differentiable, as well as some weak
regularity conditions. Then, the objective function L(6) can be expressed as L(0) = J(0) + C, where

1
J(0) = Epporata) |t (Vaso(@)) + 5 lso(@)]3 (4.18)

C'is a constant that does not depend on 0, and
Vasg(x) = V3 log py(z) (4.19)
is the Hessian of the log-density function.

The proof is simply the integration by parts, provided in Appendix.

Remark 4.7.2 The constant can be ignored and the following unbiased estimator of the remaining
terms is used to train pg(x):

N

~ 1) 1
T0) = 5 3 |t (Tusatah)) + sl @20
=1

where a collection of N data points {z}, ..., z{’ } are collected samples from pgaia(zo).

4.7.2 Time-dependent Loss function

By build up a time-dependent neural network sq(z¢,t) = V., log pg(z:) to estimate V, log ps(x+)
from the forward SDE, the loss function is designed as

0* = argr%inIEt {/\(t)Eonmtm [||39(a:t,t) —Va, logpt(a:t|a:0)||§]} 4.21)
A®) o }
R~ argngnEt {N ;Ewt\xé (IIso(z¢,t) — Va, log pe(ze|zh)||3] } (4.22)

where) : [0, 7] — Ry is a positive weighting function, ¢ is uniformly sampled from ¢/[0, T]. The
idea of this design aims to minimize the average ¢? distance between sg(z¢,t) and V., log p;(z),
under uniformly sampled time variable ¢ and some given weight A(t).

When \(t) = g°(t), where g(t) is diffusion coefficient independent about z;, we have an important
connection between our weighted combination of Fisher divergences and the KL divergence from
Po = Pdata 10 Py under some regularity conditions:

T
Drr(po(2)llpe(2)) = 5 EEs, [A(®)lIso(we.t) — Vi, log p(wi|zo)lI5] + D (prilT) (4.23)

After optimization 6* = argmaxg J(6), sg«(z) has best learned the main characters of input
data(such as image and video data) in the sense of Fisher divergence. While it certainly differs
from the real gradient of logarithm probability V,pg-(z), which means the generated samples
from pg+ (z)(e.g. from Langevin dynamics),is not identically the real distribution pyq¢q (). So the
generated images may seem unreasonable or not possible to happen in real life.

5 Improvements

5.1 Sampling acceleration method

For an image generation model, there are three considerations: 1) high quality samples, 2) generating
diversity, 3) efficient and fast sampling. However, it is often difficult to trade-off between these three.
Compared with traditional models for image generation (e.g. GAN,VAE), Diffusion models generate
results of higher quality or even can exceed GAN, and the results have good diversity. However,
Diffusion requires hundreds or even thousands of sampling steps, which leads to very slow training
and inference. The data shows that the diffusion model may take nearly 1000 hours to sample 50,000
256*256 images on the same GPU. Therefore, most of the current optimisations of diffusion models
focus on reducing the number of sampling steps, or increasing the sampling speed.

Generative
Adversarial "\
Networks /

High
Quality };\ Denoising
Y]I Diffusion

Samples Z ", Models

Fast N
Sampling | /'

!

= -

Variational Autoencoders,
Normalizing Flows

Figure 4: Generative learning trilemma

5.1.1 '"Skipping steps"

In the discrete case, we consider that the parameter 3, is very small and therefore the noise removed in
each generation step is weak. This results in an image that does not change much in successive steps,
so we would like to eliminate some computations by ‘skipping steps’ while maintaining performance.
In practice, this is not feasible in the denoising diffusion model. Because DDPM is based on a very
important assumption, Markov property, we have to do the noise reduction step by step. Even if we
predict the noise, we can’t get z directly from x;. So if we make the process not depend on Markov
property anymore, then it seems that we have a chance to implement the idea of skipping steps. After
searching for information, we found that Denoising Diffusion Implicit Model(DDIM) implements
this idea of ours.

Actually, DDIM is only a sampling model. Different from DDPM, we are not assuming that
the forward process is a Markov chain in DDIM. Thereby ¢(2¢|z:—1, o) can not be replaced by
q(z¢|z¢—1) in the backward process. Since the forward process in DDPM only uses that

I'T:\/ATLL'()—F\/l—ATE,ENN(O,I) 6.1

This allows us to set any probability distribution that satisfies the equation.We can therefore adopt a
form similar to the DDPM, and thus use the method of undetermined coefficients, assuming that
q(zy_1|ze, 20) ~ N (kzo + may, o) (5.2)

Then we have z;_1 = kxg + ma; + oe. Since we still have x; = \/A;xo + /1 — As€’, where € and
€' are both follows a standard normal distribution, we have

21 = kwo +m(v/ Aszo + /1 — Ase') + oe
=(k+ m\/th)xo + (my/1 — Ay)e + oe
= (k+mv/A)xo + V/m2(1 — Ay) + o2¢

10

Bringing back to the condition, we will get

k+myA = /A, (5.3)

m3(1—A)+o2=1—-A; 4 (5.4)
- 70-2
And by elementary arithmetic, we can easily conclude that m = 7”1\/% and k= /A1 —

J1—A, 1 — 02 \/\1/‘_4;21. Finally we get the new distribution of g(x;_1|x¢, zg),

v V1— A —o?
\/%:roJr ﬁ 7 zy,0%I) (5.5)
— At — Ay

Since we no longer need to obey the Markov property, we obey the following form when sampling:

q(xe—1|xe, 20) ~ N(\/At—l —V1-A4A, -2

T — 1 — Ageg(x
2y = /A, (=& t€of t))+ 1— A, — 02eg(xp) + o€ (5.6)
VA
Here, s should strictly satisfies s < k. Thus, we can then take a random ascending subsequence of
length 1 from the time series {0, - -- ,T'}. Sampling through the above equation iteratively [times

finally gives us the xg we want. Then there is still a question about ¢. In Denoising Diffusion Implicit
Models(DDIM) [Song et al., 2022], the author have proved that whatever the o is, it will not influence

forward process condition holds. So we can pick an arbitrary value, such as o0 = 74/ 1;4;1 Bt

n € [0,1] (1;4;1 B is the variance in DDPM). When 1 = 1, it is DDPM. When i = 0, it is DDIM.

5.1.2 Integration with other generative models

In the field of image generation, we often compensate for each other’s shortcomings by combining
models. For example, combining Generative Adversarial Networks(GAN) with Diffusion Mod-
els(DM) can compensate for the low diversity of GAN generated samples and the slow generation of
DM samples. However, since GAN approximates the generated samples to the real samples through
the confrontation between the generator and the discriminator, it also often faces pattern collapse.
And combining with DM does not improve this. Therefore the more common approach nowadays is
to combine Variational Autoencoders(VAE) with DM.

Smile: 0.23

Skin tone: 0.02

/\ Beard: 0.71 decoder i
ne: <+ P S]
/\ Glasses: -0.19
Gender - o - Hair color: 0.33 i
encoder /\
Beard: + CANN Smile: 0.17

Skin tone: 0.28
Gender:-0.11 decoder
Beard: 0.66

Glasses: -0.14

We expect an accurate

reconstruction for any

sample from the latent
state distributions

Hair color: 0.26

Latent distributions Sampled latent attributes

Figure 5: The process of VAE

In brief, Variational Autoencoder is a variant of Autoencoder. It maps the input image first into a
probability distribution in the hidden space (one can assume that the prior distribution is a Gaussian
distribution). A probabilistic decoder is then trained to achieve the mapping from the hidden space
distribution to the real data distribution. Since the information in the hidden layer space is much
smaller than the original image, the significant disadvantage of the VAE model is that the generated
image is blurrier. In combination with the diffusion model, not only can the number of steps required

11

for the convergence of the diffusion model be accelerated by appropriately reducing the dimensionality
of the training data, which in turn speeds up the speed when sampling. It is also possible to make the
image have higher clarity than VAE by training the diffusion model with multiple steps.

o EEI

| Y=

p(zi ‘Th

I

Stage-1 VAE Training Stage-2 DDPM Training

Figure 6: The training process of DiffusionVAE

5.2 Outlook and future opportunities

In this subsection, we point out some future research directions of diffusion models that are worthy
of further investigation.

5.2.1 Efficiency Issues

Efficiency remains an issue that needs to be further improved in diffusion models, and future research
could continue to explore lighter and faster diffusion models that maintain good performance while
significantly reducing computational requirements. In addition to this, network lightweighting can be
attempted. Make the network structure simple and improve the training efficiency.

5.2.2 Robustness and Generalization

On the one hand, real-world images may inherently have a wide variety of situations such as noise
or missing data, so it is essential to study and enhance the diffusion model so that it can cope with
complex image information. On the other hand, a superior generalisation capability can also increase
the scalability of the model, for example by allowing the application of the model to be upgraded
from 2D to 3D, which at the same time relies on more efficient sampling.

5.2.3 Integration of LLMs and Diffusion Models

Current large language models are capable of generating high-quality text, but for practical use it is
necessary to have the model generate text that meets our desired requirements. Existing methods
are either unable to incorporate multiple requirements or have strong limitations. The combination
of a continuous diffusion model with a non-autoregressive language model can perform complex
control tasks in a simpler way. And it has been experimentally demonstrated that the model achieves
excellent results on tasks such as text length and fill-in-the-blank tasks.

6 Application

6.1 Generation

The most important application of diffusion models is still in the generative domain. As mentioned
in the introduction section, popular generative models such as DALL-E 3, Stable diffusion 3, Sora,
etc. all coincidentally use diffusion models to generate creative, high-quality images or videos. The
transformation of text and images is achieved. In addition, the diffusion model can also be used for
image restoration and enhancement. It is a major breakthrough in the field of computer vision.

6.2 Forecasting

Spatio-temporal data analyses rely fundamentally on a deep understanding of their intrinsic temporal
dynamics. At the core of these forecasting is the generation of temporal data samples for specific
purposes in a conditional or unconditional manner. In this regard, diffusion model serves as a powerful
generative framework that effectively fills the gap in spatio-temporal data generation by training

12

on large-scale temporal data. A wide variety of predictive models based on diffusion models are
available for a wide range of domains such as healthcare, climate and weather, energy and power,
etc.. And it exhibits signiffcant potential in solving the puzzle of next-generation, LLM-empowered
temporal data-centric agents.

7 Conclusion

In this research, we present diffusion models that are widely used today for generative and predictive
tasks. Firstly we classify diffusion models into conditional and unconditional diffusion models
according to the type of task. Secondly a brief overview of the basic principles of diffusion models is
given. Then we introduce two commonly used unconditional diffusion models in turn.In DDPM, we
use Bayesian formula to calculate ¢(x:—1|2+, o) and model pg(x+—1|x;) as Gaussian to approximate
it, which equals to approximating the mean.We decompose VLB to minimize loss function and at last
our target is to predict the noise generated from the last step. In Scored-based model, we use a neural
network sg (¢, t) to estimate the score funtion V, log p;(z;), which avoid the direct computation
of intractable normalizer, and enables us to approximately sample from real data distribution via
Langevin dynamics. Apart from that score-based model can be combined with SDE and probability
flow ODE, that can generate new images/video data through solving reverse SDE/ODE from pure
white noises. Based on this, we summarise two improved scenarios by combining our reflections and
some existing improved models. Finally, we offer some observations on the application and future
development of diffusion models.

8 Contribution

In this project, all three of us worked on the presentation and this research. The specific contribution
in terms of content is as follows:

e Wennan Wang is responsible for the details of score-based diffusion modelling and DDPM.
e Jingrong Guan is responsible for the background and improvements(DDIM and VAE).

e Lecong Ding is responsible for the details in denoising diffusion probability model.

13

References

[1] William K. Bertram, Analytic solutions for optimal statistical arbitrage trading, Physica A: Statisti-
cal Mechanics and its Applications, Volume 389, Issue 11, 2010, Pages 2234-2243, ISSN 0378-4371,
https://doi.org/10.1016/j.physa.2010.01.045.

[2] Santos, Javier E. and Yen Ting Lin. “Using Ornstein-Uhlenbeck Process to understand Denoising Diffusion
Probabilistic Model and its Noise Schedules.” ArXiv abs/2311.17673 (2023): n. pag.

[3] Song, Yang, Conor Durkan, lain Murray and Stefano Ermon. “Maximum Likelihood Training of Score-Based
Diffusion Models.” Neural Information Processing Systems (2021).

[4] Turner, Richard E., Cristiana-Diana Diaconu, Stratis Markou, Aliaksandra Shysheya, Andrew Y. K. Foong
and Bruno Mlodozeniec. “Denoising Diffusion Probabilistic Models in Six Simple Steps.” ArXiv abs/2402.04384
(2024): n. pag.

[5] Ho, Jonathan, Ajay Jain and P. Abbeel. “Denoising Diffusion Probabilistic Models.” ArXiv abs/2006.11239
(2020): n. pag.

[6] Yang, Yiyuan, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Cheng-Ming Liu,
Bin Yang, Zenglin Xu, Jiang Bian, Shirui Pan and Qingsong Wen. “A Survey on Diffusion Models for Time
Series and Spatio-Temporal Data.” (2024).

[7]Nichol, Alex and Prafulla Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” ArXiv
abs/2102.09672 (2021): n. pag.

[8] Sohl-Dickstein, Jascha Narain, Eric A. Weiss, Niru Maheswaranathan and Surya Ganguli. “Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics.” ArXiv abs/1503.03585 (2015): n. pag.

[9] Xiao, Zhisheng, Karsten Kreis and Arash Vahdat. “Tackling the Generative Learning Trilemma with
Denoising Diffusion GANs.” ArXiv abs/2112.07804 (2021): n. pag.

[10] Dhariwal, Prafulla and Alex Nichol. ‘“Diffusion Models Beat GANs on Image Synthesis.” ArXiv
abs/2105.05233 (2021): n. pag.

14

Appendix: Detailed proofs about theorems and properties

A Convergence of forward process in DDPM
Proof 1 (Proof of Proposition (3.1.1)) Denote o, =1 — 8, € (0, 1), then we have

Ty = Jouxi—1 + \/ P
= Var(\/ar—1xi—2 + /Bio1€-1) + \/Etﬁt
= o 1x 2 + (\/ a(l—ap1)e1+vV1— Oltet)

~N(0,(ae(1—ai—1)+(1—0u)))=N(0,(1—czo¢—1)1)

= Jogoyu_ 1T + /1 — a1 - 22, 29 ~ N(0,1)
= Jarou_1(\ou—ati—3+ /1 — o €_2) + /1 —arou_1 - €&
= /ooy 10¢—2T¢—3 + (\/Oétoét—l(l —y9) - €—g + /1 — oy 'Et—l)

~N(0,(1—arar—1ar—2)I)

= ooy 10 _2%i-3 + /1 — apap_1ou_s - 23, 23 ~ N(0,1)

Following this, we can use induction to derive that marginal distribution of x; that

t t
[Tew-zo+@=]Jee) -z, z~N(©OT) (A1)

i=1

B Backward process of DDPM

Proof 2 (Proof of Proposition (3.2.1))

q(mt\xt—h IO)Q(%A |$o)

(J(xt—1|$t7l‘0) =

q(w¢|wo)
¢ exp __1 ((xt — Jawi_1)? n (we—1 — VAimp)? _ (x¢ — \/Atﬂfo)2)]
72 B, 1— Ay 1- A,
1 (677 1 2 Qg At
(e oV v _
o exp 5 <5t+l—At1)xt_1 <Bt $t+1_At711‘0 Tt—1
zl/Bt: variance of T+_1 =:u(x¢,x0)
[futz0))’
X exp | ———= (.’L’t,1 — Pru(T¢, T) :|
L 206

15

Hence we have

- 1 O 1-A,
R e T E
1A
=14, Bt
~ 1= A NG VA
(xe, x0) = 1- 4, Be (3, Ty + l—At_1x0

Jar(l— A) VA8
= Ty + Zo
1- A4, 1— A,

C Design of Loss function via Variational Lower Bound in DDPM

Proof 3 (Proof of Lemma (3.4.1))

L= Eq(mo)[i logPO(mO)} = 7]Eq(zo) [log (Epg(xlzT)[pO(IO:T)])}
= —Eqy(z0) {log (/ m%%mxo)dmmﬂ

Jensen p@(xO:T)
< —-E log ————— . dxy.
q(zo) {/ 0g (z1, |m0)Q($1.T|$o) T1.T

XT1- X
= /q(xo)dxo/log wf}(l‘l:ﬂxo)dxlf
po(zo.1)

T1.7|%

_ / log LELTIT0) o Vdwour
p@(xO:T)

Q($1:T|330)

=L
po(zo.T)] e

= EQ(IU:T) |:

16

Proof 4 (Proof of Lemma (3:4.2))

Lyip=E log C](xlT|l'0):| —E log Hf:l q(ze|rs—1)
Q(IO:T) i Do (x():T) Q(EO:T) Do (SL'T) Hthl o (mtil |wt>
_ L aledeo)
= Eq (0. —lo xT) + lo A\tlmt—1)
q(zo:T) i gp@(T) tz:; gpe(ajt_”;];t)
_ T gwdeey) | gl
=E,(z0.0) | —lo)+ 1o te-1) 1lzo
a(zo.T) i g po () ; gpe(mt_ﬂxt) Do (@olzr)
[T
q(wi_1]ze,m0) qlai|zo) > q(21|z0)
=K zo: —lo T + lo (. + log TLO)
Q(O,T) I gpg(T) tz2 g p@(xt71|l't) q(xt71|$0 gp9($0|$1)
_ a(zesor, o) gwdeo) . alalw)
= Eoa, ~lo o)+ log + log +1lo
a(zo:.1) i gpo(T) ; po(zi_ 1|=Tt Z gz 1‘1,0) gp9($0|$1)
=E —log py(xr +Zlo d@ialznzo) o alerleo) D)
q(xo.T) I ot p@(.’bt 1|{L't) (](ZL'1|{E0) pe(ifo|$1)

$T|5E0 q(w¢1]2¢,70)
=F log lo 7710gp9 Tolx
atwo) po(xr) Z po(xe—1lzy) \—,—«(olas)
L Lr Ly fo
T
= Eqy(zo) | Drr(q(zr|20)|lPo(2T)) + Z Drcr(q(we—1]ze, zo)||po(ze—1|2t)) —log pe(zolz1)
=2
Lt Li Lo

D Reverse SDE of diffusion process

We first verify the correspondence between SDE and probability flow ODE.

Proof 5 (Proof of Lemma (.4.2)) Recall that the forward density p:(x) satisfies Fokker-Planck
equation:
Ipi(x)

) — Ve (e @) + Ve (Vi (997 ()

using some simple calculas we have

PAE) — | Oi(o) = 5 (06") i) = 00 (0001 (2)
=9 [t = V00" 100) = 00" 1) Vi)))
=-V,- :(f(xt,t) - %Vm 99" (x4,1) — %gyT(art,t)Vz logpt($)> pt(x)}

(1>

—V - (f(ae, pe(@))
Compare the result with above Fokker-Planck equation, the same stochastic process is equivalent to
the following probability flow ODE:
~ 1
dxt = f(’rtat)dt = <f(xt7) - 7v1 99 (Ifa) - iggT(xht)vac lngt(.I)> de (Dl)

or 92 — f(xt,t).

17

Proof 6 (Proof of Theorem @.4.1)) The benefit to reduce SDE into ODE is that the reverse proba-
bility flow ODE is very simple to express: LetI" be the time terminal, and T =T — t the reverse time,

then the reverse ODE is d
.’L‘ o~
= . T—
i flzr)

Denote p,(x) = pr—-(x), T = xp_, the density and state of reverse process, the Fokker-Planck
equation for the reverse process is given by

B@) 9, (G 7))
= Vs o) (<1 E T =) 5 (Ve 07 @ T = 1) 4007 (s T =)V, b))
= =Vo [pr(@) (=f(@. T =7) + (Vo 99" (@, T = 7) + 99" (-, T = 7) V2 log - ())]
5V [5r(@) (Vo 09 Gr. T = 7) 4 99" (3, T = 1)V, log ,(2))]

=V, |pr(z) (ff(f.,-,T —7)+ (Vz ’ ggT(fﬂT —7) +99T(5‘raT —T)Vs IOgﬁ‘r(x)))

2.3, T—7)

+ %V (V- (99" (@, T = 7)pr(2)))

= V(@ T = 7)) + 5V (V- (967 e, T = 1) (1))
Hence we have the first version of reverse SDE:
dz, = f.(Z., T — 7)dr + g(Z,, T — 7)dW, (D.2)
If changing the time variable from T to t, we finally obtain that
dzy = — fr(ze, 1)dt + g(z, 1)dW,
= [f(we,t) = Vo - 99" (21,1) — 99" (2, 1) Vi log pr(w)] dt + dW,

Proof 7 (Proof of Theorem (.7.1))

1

L) =5

]Epdn,f,a,(l’) |:Hv$ logpdata(x) - 59(-’17)”;

1 1
= [| 519 logpasta@3 + 5 l50(@)] = 55 ()92 log (o) | pla)de

= constant w.r.t. 0

B / (;”89(:8)”3 - SaT(x)MM(x)> Ddata(r)dx + C

Pdata (LU)

r d
1 %
= Bpnto) | ls0@E] — [3 st umnin(e)is + €
- 1=1

- d
1 i
~Bpto) [5I0@E] + X [pasa i) + €
- i=1

=E

1
piate) 310 + (V)| + €

£ JO)+C

18

	Introduction
	Overview of the model
	Denoising Diffusion Probability Model
	Forward process
	Backward process
	Approximation
	Design of the loss function

	Score-based model
	Score function
	Langevin dynamics
	Scored-based modeling with forward and reverse SDE
	Reverse SDE and probability flow ODE of diffusion process
	Continuous DDPM
	Numerical method of forward SDE and probability flow ODE
	Construction of Loss by Score-matching
	Time-independent Loss function
	Time-dependent Loss function

	Improvements
	Sampling acceleration method
	"Skipping steps"
	Integration with other generative models

	Outlook and future opportunities
	Efficiency Issues
	Robustness and Generalization
	Integration of LLMs and Diffusion Models

	Application
	Generation
	Forecasting

	Conclusion
	Contribution
	Convergence of forward process in DDPM
	Backward process of DDPM
	Design of Loss function via Variational Lower Bound in DDPM
	Reverse SDE of diffusion process

