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Chapter 1

Review of Probability Theory

Randomness should be taken into account in data, model, equations (PDEs), etc. This can be realized
by allowing the model to be probabilistic in nature, which is referred to as a probability model. The reference
book is [10].

1.1 Probability Space

A probability theory is made up of three part, (Q2, F, P).

1.1.1 Sample space
(2 is a sample space.
Example 1.1.1 Q = {H (ead), T (ail)} for a coin flipping.
Example 1.1.2 Q ={(H,H),(H,T),(T,H),(T,T)} for flipping two coins.
Example 1.1.3 Q = {1,2,...,6} for rolling of a die.

Example 1.1.4 Q = : : for rolling of two dice.

1.1.2 Events
Subset E of 2 is known as an event.
Example 1.1.5 F={H}
Example 1.1.6 E = {2,4,6}. Even number appears.

e union of events. Given E; = {1,3,5} and Fs = {1,2,3}, then E; U Ey = {1,2,3,5}.

e intersection of events. Given above, then F1 Ey := Ey N Ey = {1,3}.

e complement. Ef = {2,4,6}.

e mutually exclusive. F, F, G are called mutually exclusive if FF = @, FG = @, FG = @. For example,
E={1,2},F ={3,4},G = {5, 6} are mutually exclusive.



Definition 1.1.7 F is a family of subsets of Q satisfying:

(1) Qe F.

(2) E€ F=E°€F.

(3) E;e F= U E; € F.

Then F is a Uf;lzegm of Q. Q, F is called a measurable space.

1.1.3 Probability space

Definition 1.1.8 P is a function defined on satisfying:

(1) non-negative. 0 < P(FE) < 1,VE € F.

(2) completeness. P() = 1.

(8) For any countable mutually exclusive sets in F, P( G Ej) = ioj P(E;).
. =

Jj=1
Then P(E) is the prob. of E. (2, F, P) is the triple elements of a prob. space.

Example 1.1.9 P({H}) = P({T}) = 3.

Example 1.1.10 P({1}) =--- = P({6}) = .
P({1,3,5}) = P({1}) + P({3}) + P({5}) = 5.

Example 1.1.11 P(ElUEQUEg) = P(E1>+P(E2)+P(E3>—P(ElEg)—P(ElEg)—P(E2E3)+P(E1E2E3)

1.2 Conditional Prob.

Definition 1.2.1

P(EF)

P(BIF) = 5

Example 1.2.2 Choose one number from 1-10. The number is at least five, then what is the cond. prob.
that it is ten?
Sol: Let E = {10} and F = {> 5}. Then

P(EF)

P(EIF) = 5y = % =

Example 1.2.3 An urn contains 7 black balls and 5 white balls. Draw two balls without replacement. Fach
ball is equally drawn. What is prob. that both drawn balls are black?
Sol: F={first ball is black}, E={2nd ball is black}. Since P(E|F)= &, P(F) = %, then

7x6
P(EF)=P(F)P(E|F) = .
(EF) = P(F)P(BIF) = 1+
Another solution is given directly by
2
P(both black) = =7 — T*8_
C%, 1211



1.3 Independent events

E,F areindependent < P(EF)= P(E)P(F)
< P(E|F)=P(E)
& P(F|E)=P(F), P(E)#0

Example 1.3.1 Let a ball be drawn from an urn containing 4 balls {1,2,3,4}. Let E = {1,2}, F = {1, 3},
G ={1,4}. Then

P(EF) = P(E)P(F) = 1.
P(EG) = P(E)P(C) = 1,
P(FG) = P(F)P(G) = i
However,
i — P(EFG) # P(E)P(F)P(G) = é

E,F,G are not jointly independ.

1.4 Bayes’ formula

e sub-additive. - -
P <3P
j=1 j=1
e multiplicity formula.
P(B1By...B,) = P(By)P(B3|By) - P(B,|B1By...B,_1).

e formula of total probability. Suppose that Fi,..., F,, are mutually exclusive events such that U}, F; = Q

(sample space) or E C UP_, F;, then E = U], EF;. Noticing EF; are mutually exclusive, we obtain that

Jj=1

P(E)=)_ P(EF;) =Y _ P(E|F;)P(F}).
j=1
In particular, if n = 2, then £ = EF U EF° and
P(E)=P(EF)+ P(EF°) = P(E|F)P(F)+ P(E|F°)P(F°).

Another formula is: suppose that U, C; = Q (sample space) or B C U ;C}, then if P(A) > 0,

P(B|A) = iP(Cj|A)P(B|ACj).
j=1

Pf.
= "\ P(C;A) P(BAC; "\ P(BAC;
;P(Oj\A)P(BlACj) = ; ](D(A)) ;(ACJ)):j_l(P(A))
_ prA“)‘) — P(B|A)



e Bayes’ formula.
o PEF;)  P(E|F;)P(F))
P(F;|E) = PE)

n °

P(E|F;)P(F})
j=1
Example 1.4.1 a multiple-choice test. Let p be the prob. that the student knows the answer. Assume that
a student who guesses at the answer will be correct with prob. 1/m, where there are m choices. What is the
prob. that a student knew the answer given that she answered it correctly?

Sol: Let C and K be "correct” and "know", respectively.

_ P(KC) P(C|K)P(K)
PIKIC) = 5@y = BOIR)PE) 1 PICIK) P(E)
P

p+(1/m)(1—p)

Ifm=5andp= 1%, P(K|C)=5/6.

1.5 Discrete random variables

Definition 1.5.1 If X is discrete with prob. mass function p(x), then for any real-valued function g, the

expectation is defined as

Egx)= 3 g@pl).

z:p(z)>0

1.5.1 the Bernoulli random vari.

An experiment, whose outcome is either a success or a failure. X = 1 is a success and X = 0 is a failure.
Then X is denoted as X ~ B(1,p) and the pmf is

p(0) = P(X=0)=1-p,
p(l) = PX=1)=p
Its expect and var is
EX = 1-p+0-q=p,
Var(X) = EX?—(EX)*=12-p+0%-q¢—p*=p(1 —p).

1.5.2 the Binomial random vari.

Suppose there are n trials of Bernoulli experiments. That is, If X;,...,X,, are samples from B(1,p),
then
MY=X1+ -+ X, ~B(n,p).
(2) pdf is given by p(i) = Cipi(1 —p)"~ i=0,...,n.
(3) BY = 1 yip(i) = S0 iChp'q" ™ = S it T = np Y e " = .
Var(Y) = npq.



Example 1.5.2 Suppose each independent engine of an airplane will fail, when in flight, with prob. 1 — p.
Suppose that the airplane will make a successful flight if at least 50 percent of its engines remain operative.
For what values of p is a four-engine plane preferable to a two-engine plane?

Sol: A four-engine plane makes a successful flight with prob.
Cip*(1 —p)* + Cip°(1 = p)' + Cip* (1 - p)°
= 6p*(1—p)* +4p°(1 —p) +p".
The prob. for a two-engine plane is
Cap' (1 —p)' + C3p*(1 —p)° = 2p(1 - p) +p°.
Hence a four-engine plane is safer if

6p*(1 —p)* +4p°>(1 —p) +p*
6p® — 12p? + 6p + 4p* — 4p® + p?

> 2p(1—p)+p°

> 2-p
3p> =8 +Tp—2 > 0
(p—1°@Bp-2) > 0.
. 2
p = 3

1.5.3 the geometric random vari.

Suppose that independent trials, each having prob. p of being a success, are performed until a success

occurs. Let X be the number of trials required until the first success. The pmf is given by
p(n)=P(X =n)=(1-p)"'p, n=12...

To check it is a pmf
[e%s) e’} o »
p(n)=p l—p)tl=e——— =1
N

The expect. and var is

fe'e) o ) qu q / D 1
EX = g iq" lp:pg p( > = .
i=1 = da 1—¢ - p

l—p

Var(X) = .

(X) 7

1.5.4 the Poisson random vari.

X is said to be a Poisson random vari. with parameter A\, denoted by X ~ P(\),

)\z’
p(i) = P(X =i) =e 2,0 =0,1,

Check it is pmf

Zp(z) = o = e et =1
i=0 iz v



(1) EX =\, Var(X) = A.
(2) If X1,...,X, are indepen, X; ~ P()\;), then

X1+ + Xy, ~PA+--+ ).

Pf. By induction.
P(X14+ Xy = i)=)» P(X1=k)P(Xy=1i-k)
k=0

Ak PVt 1< il 4
= “M AL =X 2 o —(AitAg) T 7>\k/\z—k
e AR5 i!kzzok:!(i—k)! 172

%

1 .
= e—<*1+k2>5(A1 +X2)' ~ P(A1 4 o).

Example 1.5.3 Suppose that the number of typo errors on a single page of a book has a Poisson distr. with
parameter X = 1. Calculate the prob. that there is at least one error on this page.
Sol: P(X>1)=1-P(X=0)=1-e"1=0.633.

1.6 Cont. Random vari.

Definition 1.6.1 The cumulative distribution function (cdf) (or sometimes just distribution function) F(-)
is defined by, F(b) = P(X <b), satisfying (i) F(b) is a nondecreasing function of b, (i) limy_, o F(b) =
F(oo) =1, (iii) limp, oo F(b) = F(—00) = 0.

One can see obviously that
Pla< X <b)=F(b)— F(a), foralla<bd.

Definition 1.6.2 If there exists a nonnegative function f(x), defined for all real x € (—00,00), having the

property that for any set B,
P(X € B) :/ f(z)dz.
B

The function f(x) is called the prob. density function (pdf) of X.
The relation bw the cdf F' and the pdf f is
a
Fla)=P(X <a) = / f(z)dx,
—o0

and
dF(a)

da

= f(a).

Definition 1.6.3 If X is cont. random vari. with pdf f(x), then for any real-valued function g, its expecta-
tion is defined by

10



1.6.1 Uniform random variable

Definition 1.6.4 A random vari X is said to be uniformly distributed over (0, 1), if its pdf is given by

1, 0<z<1,

otherwise.

Denote by X ~U(0,1). Its expectation and variance are

x - | af{e)dn = £, Var(X) = BX* - (BX)? -
0

1.6.2 Exponential random variable

Definition 1.6.5 A cont. random vari. whose pdf is given, for some XA > 0, by

B e M ifx >0,
f(m){o, ifx < 0.

is said to be an exponential random variable with rate parameter . Denote by X ~ E(N).

The cdf can be calculated by

a

e Mdr=1— e_’\“, a > 0.

oo

e Mdr = 1.

=
8
I
o—

(1) EX = { and Var(X) = 3.
(2) P(X >t)=e Mt >0.
(3) Y is an exponential random vari. if and only if EY > 0 and for Vs,¢ > 0, such that

PY >s+tlY >s)=P(Y >1t),

where this condition is called memoryless. Denote F(t) = P(Y > t), then above Eq. is equivalent to

F(t+s)=F@)F(s).

Proof. One can easily check = by noticing that F(t) = e~ .

For the opposite direction, we want to
prove F(t) is an exponential function. We first prove if f(t + s) = f(¢) + f(s), then f is linear function.
For integers ¢t and s, we have f(n) = nf(1). For rational numbers ¢ and s, q¢f(p/q) = f(p) = pf(1), then
f(p/q) = p/qf(1). Since rational numbers are dense in real numbers, one can show f(x) = zf(1) for all z

real. Finally, F(t) = e/® = /() which is an expon. function. m

Example 1.6.6 Suppose a clock or a watch has a lifetime with exponential distribution with erpectation 1

year. If it already works for 2 months, what’s its remaining lifetime? (1 year since memoryless).

Example 1.6.7 Assume that the customer comes with interarrival time being exponential dist. If a cashier

wants to go washroom, he/she goes right now or later on? (Right now since memoryless).

11



1.6.3 Gamma ranodm variable

Definition 1.6.8 A cont. random vari. whose pdf is given, for some A > 0,a > 0, by

Ae A (Ag)> ! .
o= S ez
0, if x < 0.

is said to be a gamma random variable with rate parameters A and «. Denote by X ~ I'(a, A). A Gamma

function is defined by

F(oz):/ e Tx da.

0
The expectation and var of gamma vari is given by

« o
EX = X,Va/r(X) = F

1.6.4 Normal random variable

Definition 1.6.9 X is normal random vari. with parameters i and o? if the density of X is given by

1
f(z) = 5 e~ @m0 oo < g < 0.
uxea

The density is bell-shaped curve that is symmetric around (.

Definition 1.6.10 multivariate normal distribution. € = (¢1,...,em)’. If X = u+ Be, then
X ~ N, %),

where ¥ = BBT is the covariance matriz of X.

(1) X = (X1,..., Xn)" ~ N(p,%) if and only if Vay, ..., an, 37—,

(2) Let X ~ N(p, ¥). Then X, ..., X,, are independent if and only if they are uncorrelated, i.e., Cov(X;, X)
= 0 for i # j. The proof can be found following.

a;X; is normally distributed.

Many real-world quantities tend to be normally distributed—for instance, human heights and other body
measurements, cumulative hydrologic measures such as annual rainfall or monthly river discharge, errors in
astronomical or physical observations, and diffusion of a substance in a liquid or gas. Some things are products
of many independent variables (rather than sums), and in such cases the logarithm will be approximately
normal since it is a sum of many independent variables—this is often the case for economic quantities such

as stock market indices, due to the effect of compound interest.

1.6.5 Inverse Gamma Random Variable

If X is Gamma distributed then the distribution of 1/X is called the Inverse Gamma distribution. More
precisely, if X ~ Gamma(a,b) and Y = 1/X then Y ~ InvGamma(a,b), and the p.d.f. of Y is

a

my_a_l exp(—b/y).

InvGamma(y|a,b) =

So, putting a Gamma(a, b) prior on the precision A is equivalent to putting an InvGamma(a, b) prior on the
variance 02 = 1/\. The Inverse Gamma can be used to define a NormallnvGamma distribution for use as a

prior on (u,0?), which is sometimes more convenient than (but equivalent to) using a NormalGamma prior

on (i, A).

12



1.6.6 History of Normal distribution

3y

Carl Friedrich Gauss James Clerk Maxwell Adolphe Quetelet

Figure 1.1: History of the normal distribution.

In 1809, Carl Friedrich Gauss (1777-1855) proposed the normal distribution as a model for the errors
made in astronomical measurements, as a formal way of justifying the use of the sample mean, by showing
it to be the most likely estimate—that is, the maximum likelihood estimate—of the true value (and more
generally, to justify the method of least squares in linear regression). With astonishing speed, following
Gauss’ proposal, Laplace proved the central limit theorem in 1810. Laplace also calculated the normalization
constant of the normal distribution, which is not a trivial task. James Clerk Maxwell (1831-1879) showed
that the normal distribution arose naturally in physics, particularly in thermodynamics. Adolphe Quetelet

(1796-1874) pioneered the use of the normal distribution in the social sciences. (See Fig. 1.1.)

1.7 Jointly distributed random variables

1.7.1 independent random variables

Definition 1.7.1 The random variables X and Y are said to be independent if, for all a,b,
P(X <a,Y <b)=PX <a)P(Y <b).
In terms of the joint distribution function F', we have that
F(a,b) = Fx(a)Fy(b) for all a,b.
Corollary 1.7.2 When X and Y are discrete, the condition of indep. reduces to

p(z,y) = px (@)py (v).

If X and Y are jointly continuous, independence reduces to

f(@,y) = [x (@) fy (y)-

13



Pf.

PX < aY <) =3 Y pay) =D px(@py()
y<bz<a y<bzx<a
= ZPY ZPX PY <b)P(X <a).
y<b z<a

If X and Y are independ., then for any h and g

Pf.

E[g(X)hY)] =) g(@)h(y)p(x Zzg (z)py (y) = Elg(X)]E[R(Y)].

Blg(X)h(Y)] = / / f (@, y)dady = / / Fx (@) v (v)dady

/_ o(@) fx (@)d / h(y) fy (v)dy = Elg(X)|ER(Y)].

Example 1.7.3 (Variance of a Binomial Random Variable) Compute the Variance of a Binomial

Random Variable. Sol. Binomial is the sum of n indep. Bernoulli.
Var(X) =Var(X1) + -+ Var(X,) = npg,

since Var(X;) = pq for each Bernoulli distribution.

1.7.2 Covariance and Variance of Sums of Random Variables
Definition 1.7.4 The covariance of any two random vari. is

Cov(X,Y) = E[(X — EX)(Y — EY)] = E[XY] - E[X]E[Y].
If X and Y are independent, then Cov(X,Y) = 0.

Corollary 1.7.5 Property of Covariance
(1) Cov(X,X) = Var(X),
(2) Cov(X,Y) = Cou(Y, X),
(3) Cov(cX +dZ,Y) =cCov(X,Y) +dCov(Z,Y).

A useful expression for the variance can be found as follows:

Var(ZXi) = CO’U(Z Z ZZCO’U X, X;)

1=1 j=1

> Cov(Xi, X;) +2)  Cov(X;, X;).
=1

i<j

Moreover, if X; are indep. random variables, then above equation reduces to

Var(z X)) = Z Var(X;)
i=1 i=1
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Definition 1.7.6 If X1,..., X, are i.i.d., then the random variable X = Z?:l X;/n is called the sample

mean.

Proposition 1.7.7 Suppose that X1, ..., X, are i.i.d. with mean p and variance o®. Then

(a) E[X] = p.
(b) Var(X) = o?/n.
(c) Cov(X,X; —X)=0,i=1,...,n.

Pf. Parts (a) and (b) are easy:

— 1
EX] = - EX; = p,
[X] n; 1
2 n 1 n 0_2
Var[X] = () Var(z Xi)=— ZVar(Xl) = —.
i=1 n i=1 n
To prove (c), we follow
_ _ _ | _
Coo(X,X; = X) = Cou(X,X;) - Cov(X,X)==Cov(X; + Y _ X;,X;) — Var[X]
" i
2 2
- Z_Z o
n n
Proposition 1.7.8 The sample variance is given by
[ i(xi -X)%
n—1 p
Then it is unbiased, that is,
ES? = o2,
Pf. Notice that
X=X = Y (Xi—p+p—X)
i=1 i=1
= S X - X024 20— X)) S (X )
i=1 i=1
= ) (Xi—p)?—n(p-X)*
1=1
Then we obtain
Eln-1)87 = SBE(X-X)2 =3 E(X; - p)? — nB(u - X)?
i=1 i=1
o 2
= no® —nVar[X]| =no* —n— = (n —1)o?

15



1.7.3 Sum of two independent variables

Let us derive the formula first. Suppose that X and Y are continuous and independent, X having pdf
f and Y having pdf g. Letting Fxyy (a) be the cdf of X + Y, we have

Friv@ = PX+Y<a= [f @ty

— /O:O (/Ooy f(x)dx) 9(y)dy = /O; Fx(a—=y)g(y)dy.

By differentiating above, we obtain the pdf fxy(a) of X +Y given by

ferv(@) =2 [ Fea—ygit= [ fla- )y

Thus fxyy is the convolution of functions f and g.
Example 1.7.9 Two uniform random vari. If X and Y are indepdt. both uniformly distributed on (0, 1),

then calculate the pdf of X +Y.

Sol. The pdf’s are
1, O0<a<l,

0, otherwise.

we obtain )
frov@ = [ fla- gt
0
For 0 <a <1, this yields
frovia) = [ dy=a
0
since0<a—y<land0<y<1=0<y<a. And for1l <a <2, this yields
1
fx+v(a) = / dy=2-a
a—1
since0<a—y<land0<y<1l=a—-1<y<1. Hence,

a, 0<a<l,
fx+y(a) = 2—a 1l<a<?2

0, otherwise.

1.8 Moment Generating Functions

Definition 1.8.1 The moment generating function (MGF') ¢(t) of random variables X is defined by

o(t) = EletX] = Zoff et®p(x), if X is discrete
ffoo e f(x)dx, if X is continuous
It is called MGF because all moments of X can be obtained by successively differentiating ¢(¢). For
example,
d d
¢'(t) [e"¥] = Bl e¥] = E[Xe'Y)]
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Hence ¢/(0) = EX. Similarly,

iE[XetX} = E[i

X7 _ 2 tX
p the | = E[X=eY],

¢"(t) =
so that ¢”(0) = FX?2. One can show that ¢(™(0) = E[X™] for n > 1.

Example 1.8.2 (Poisson Distribution with mean \).

X e 6_’\)\” s @V e t
¢(t) = E[e]= Z —_— Z =e e =exp[A(e’ —1)].
n=0 '
¢'(t) = Ae'exp[A(e’ —1)],
o'(t) = ()\et)2 exp[A(e’ — 1)] + Ae’ exp[A(ef — 1)],

Thus,

EX = ¢'(0)=)\EX?=¢"(0) =\ + )\,
Var(X) = A

Example 1.8.3 Ezxponential Distribution with parameter ).

o(t) = E[e]= / e e M dy = A fort <A
0 A—t
/ )\ 1 2)\
t) = —— t) = .
Hence, )
— 2 R—
EX = )\ ,EX /\2 Var(X) = ek

Example 1.8.4 Normal distribution with mean ;. and variance o?. Compute the MGF of a standard

normal random variable Z as follows.

Elet? e 2y = /2,
[ \/27r /
If X =0Z + p is normal, then
2t2
ot) = Ble™]=e"Ele'"?] = eXp{i + pt}.
, 2t2
¢'t) = (u+a%) eXp{f + pt}
2t2 o212
') = (u+o%t)? exp{— +uth+o exp{— + pt}

Hence EX = u,Var(X) = o2.
Theorem 1.8.5 A MGF uniquely determines a probability distribution.

Theorem 1.8.6 X,...,X,, are independent if and only if their MGFs satisfy

E;X ¢t1,..., H(bz % :ﬁEetiXi’.
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Theorem 1.8.7 X; are independent and have MGFs ¢;(t). ThenY = X; +--- + X,, has the MGF

Py (t) = H ¢i(t).

Example 1.8.8 Using the results from above the example to show that Cov(X;, X;) = 0 for multivariate
Gaussian distribution = they are independent.
Sol. Let X ~ N(u,%), where X = (X1,...,Xn) = i+ B€ and € = (ey,...,e,). (Think about why there is

such a linear transformation? since rank of X is n.) One has the pdf

10) = a2 en { Y-S e - |

Since we have computed that ¢z(t) = Ele"¥] = [, eti/2 = ett2 50 that

1=

¢*({) _ E[ef')?] — FelAt+tBE _ eFTﬁJr%tTBBTt _ eFTﬁJr%tTZt

Example 1.8.9 Let X ~ N(u1,0?) and Y ~ N(u2,03) and X and Y are independent. Then
dxiy(t) = ox(t)py (1) = ettt 3ol ptuat 3703 _ (mtna)t+3(oi+03)t”

so that X +Y ~ N(uy + pia, 0% + 03).

1.9 Limit Theorems

Proposition 1.9.1 (Markov’s Inequality) If X is a random variable that takes only nonnegative values,
then for any a >0

P{XZa}z%.

Pf. We give a proof for the case where X is continuous with denfity f,

EIX] /OOO o f (x)do = /O xf(x)dx+/oo of ()de

> /:O 2f(@)dz > a/aoo F(@)de = ZP{X > al.

2

)

Proposition 1.9.2 (Chebyshev’s Inequality) If X is a random variable with mean p and variance o

then, for any k > 0,
2

o
PUX — 2 k} < 75
Pf. We apply Markov’s inequality to the nonnegative (X — p)?,

E(X —pw)?)

P{X —p)* 2 K} < =5

Remark 1.9.3 The importance of Markov’s and Chebyshev’s inequalities is that they enable us to derive
bounds on probs. when only the mean, or both the mean and the variance, are known. Of course, if the true
distribution were known, then the desired probs. could be exactly computed, and we would not need to resort

to bounds.
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Theorem 1.9.4 (Strong Law of Large Numbers) Let X1, Xs,... be a sequence of independent random
variables have a commom distribution, and let E[X;] = p. Then, with probability 1, or almost surely,
X4+ X,
n
Definition 1.9.5 If P(lim, 00 X, = X) = 1, then we say X, — X, a.s. (almost surely) or X,, = X, w.p.1
(with probability 1).

— [ asn — oo.

Theorem 1.9.6 (Central Limit Theorem) Let X1, Xs,... be a sequence of independent, identically dis-
tributed (i.i.d.) random variables, each with mean p and variance o. Then the distribution of

X1+ + X, —np
ovn

goes to the standard normal as n — oco. That is,

P e g e

as n — o0

Pf. Note that the theorem holds for any distribution of the X;s; herein lies its power.
We now present a heuristic proof the CLT. Suppose first that the X; have mena 0 and variance 1, and
then the MGF can be computed,

X1+ + X . .
E [exp {tﬁfr}] = BletX/Vr . etXn/VR] — (BetXi/V)™ by independence.
n
For large n, we obtain by Taylor expansion,

tX;  (tX;)?
etXi/\/ﬁ =14+ 77; + % —|—O(n73/2)’

that is the reason for the central word. Taking expectations shows that when n is large,

2
Ele!Xi/Vr] =1 + o T O(n=3/?), since EX =0 and EX? = 1.
n

X+ + X t2\" >
E T (14— ) et /2
o (£

Thus, the MGF of X1+7\/H+X” converges to the moment generating function of a standard normal random
variable with mean 0 and variance 1. Notice that for X ~ N(0,1), its MGF ¢(t) = e*"/2. Hence, it can

be proven that the distribution function of % converges to the distribution function of a standard

Therefore, we obtain

normal ®. When X; have mean p and variance o2, the random variables 10 £ have mean 0 and variance 1.

Done.

Proposition 1.9.7 The convergence has the following relations:

conv. in moments or LP converges

= conv. in prob. = conv. in distribution.
a.s. or w.p.1

Lemma 1.9.8 (Levy-Crammer) {F,} is a set of distributions. If F, — o(t) conv. pointwisely, then F, —

F converges weakly, where ¢ is the character function of F and F), is the character function of F,,.
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Theorem 1.9.9 (Linderberg-Levy CLT) check https://zhuanlan.zhibhu.com/p/69862244. character func-

tion and Lindberg-Levy central limit theorem.

Example 1.9.10 If X is binomially distributed with parameters n and p, then X is the sum of n independent

Bernoulli random variables, each with parmeter p. Hence, the distribution of

X — E[X] _ X —nu _ X —np
Var(X) Vno np(1 = p)

approaches the standard normal distribution as n approaches co. The normal approrimation will be quite
good for np(1 — p) > 10 or \/Var(X) > v/10.

Example 1.9.11 (Normal approximation to the Binomial) Let X be the number of times that a fair
coin, flipped 40 times, lands heads. Find the prob. that X = 20.
Sol.

P{X =20} = P{195< X <205}
{19.5—20 _X -2 20.5—20}
V10 V10 V10

X —20
= P {0.16 < < 0.16} = ®(0.16) — ¢(—0.16)
V10
= 0.1272.
The exact result is
1\20 71\ 20
P{X =20} = C% <2> (2) = 0.1268.

Example 1.9.12 The lifetime of a battery is a random variable with mean 40 hours and standard deviation
20 hours. Assume a stockpile of 25 such batteries, approximate the probability that over 1100 hours of use

can be obtained.

Sol.

X1 4o+ Xos — 25 x 40 1100 — 25 x 40
P{Xi+ + Xo5 > 1100}:13{ 1t A T 2o X . }

>
201/25 20v/25
= P{N(0,1) > 1} =1 — &(1) = 0.1587.
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Chapter 2

Conditional Probability

2.1 The Discrete Case

It is natural to define the conditional prob. mass function of X given that Y =y, by

_ pl=,y)
pxy (zly) = ()

for all values of y such that P{Y =y} > 0. The conditional expectation of X given that Y = y is defined by
EBX|Y =y] = prxw (zly).
Example 2.1.1 Suppose that the joint prob. mass function of X andY is given by
p(1,1) =0.5,p(1,2) = 0.1,p(2,1) = 0.1,p(2,2) = 0.3.

Calculate the conditional prob. mass function of X given thatY = 1.

Sol. We first compute
me p(1,1) 4+ p(2,1) = 0.6.

Hence

Example 2.1.2 If X; and X5 are independent binomial random variables with respective parameters (ni,p)
and (ng,p), calculate the conditional prob. mass function of X7 given that X; + Xo = m
Sol. We first compute

P{X, =k Xy =m—k}
P{X, 4+ Xy =m}
Crlil k nlfkcngkpmfkqngferk
Cm-&-nz
Oy Ot
com

ni+nz

P{X1 = k|X1+X2:m}:

P qn1+n27m

where we used X1 + Xo is a binomial with parameters (ny + na,p).
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Example 2.1.3 Three possible outcomes with prob. p; satisfying p1+p2—+ps = 1. Suppose that n independent
replications are performed, and let X; be the number of times outcome i occurs. Determine the conditional
expectation of X1 given that Xo = m.

Sol. For k <n—m,

P{X: =k X5 = m}
P{X; =m}

P{X) =k Xo=m,X3=n—m—k}
P{Xy=m, X1+ X3 =n—m}

P{Xl = k|X2:m}:

n! k,m, n—m—k
k!m!(n—m—k)!plp? b3

m'(:lm)'p?(l - p2)nim

- k!<’(ln_mmz!k)! (1 f1172)16 <1 33p2>nmk’

which is a Binomial with parameters n —m and £ ;2. Thus, the conditional expectation is

EXi|Xa=m]=(n— m)l plp
— D2

2.2 The Continuous Case

If X and Y have a joint density function f(z,y), then the conditional prob. density function of X given
that Y =y, is defined by
f(z,y)
fy(y)’

for all values of y such that fy(y) > 0. The conditional expectation of X given that Y = y is defined by

Ixy(zly) =

<MXW=w%=/wm&w@www

—0o0
Example 2.2.1 Suppose that the joint density of X andY is given by
dy(z —y)e~ @Y 0 <z <o00,0<y<u,
flz,y) = :
0, otherwise.

Compute E[X|Y = y].
Sol. The conditional density of X, given that Y =y, is given by

f(@y) dy(x —y)e” ")
fX\Y(£E|y) fy(y) fy 4y(:£ — y)e—(z+y)dx >y
R
fyoo(x —yerde [T wem Wt dw’
- e

where we used that w ~ E(1) and fooo we~Ydw is the expected value of an exponential random variable with
mean 1. Thus, using EW =1, Var(W) =1,

EX|lY = y]:/ x(m—y)e_(x_y)dx:/ (w+ y)we™“dw

= E[W?+yEW]=Var(W)+ (EW)*>+y=2+uy.
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Example 2.2.2 The joint density of X and Y is

) lye™™, 0<x<o00,0<y<2,
T,y) =
0, otherwise.
What is E[eX/?2|Y = 1]?
Sol. The conditional density of X, given that Y = 1, is given by

flz,1) 3¢ " .
= = e .
(1) T [ levds

Ixpy(z[l) =

Hence o oo
By =1] = / "2 fxpy (z[1)dz = / e 2 dx = 2.
0 0

2.3 Computing Expectatoins by Conditioning
Double expectation formula is very important:
E[X] = E[E[X]Y],
The conditional expectation’s expectation is unconditional expectation. If Y is discrete, then

=Y BIX[Y =y]P(Y =y).

If Y is continuous with density fy (y), then

=/ EIX|Y =yl fy(y)dy
Proof for both discrete X and Y.

Y EIX]Y = ylP(Y =y)=) aP[X|Y =y|P(Y =y)

z,y

= ZxP =z|Y =y|P ZxP =]
= Z P[X = E[X].
Proof for both continuous X and Y.

[y = = [ e [ et i@

= /O;dx/o;xf(x,y)dy—/(:fo(x)df_E[X]'

Example 2.3.1 Sam will choose either prob. book or history book with equal probability. If the number of
misprints in prob. book is Poisson distributed with mean 2 and if the number of misprints in history book is
Poisson distributed with mean 5. What is the expected number of misprints that Sam will com across?

Sol. Let X be the number of misprints and

v — 1, history book
B 2, prob. book
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then

EX

E[X|Y =1]P{Y =1} + E[X|Y = 2]P{Y = 2}

(1) (2) e

Example 2.3.2 (The Ezxpectation of the Sum of a Random Number of Random Variables) Sup-

pose that an industrial plant has the expected number of four accidents. Also suppose that the number of

workers injured in each accident are independent random variables with a common mean 2. What is the
expected number of injuries during a week?
Sol. Let N be the number of accidents and X; be the number injured in the ith accident. Then the total

number of injuries is Y ;X

N N
E|Y Xi|=E|E ZXZ-|NH.
i=1 i=1
The enclosed quantity can be computed by
N n N
E|d XiN=n|=E|) X, =nEX;=E ZXi|N] = NE[X,].
i=1 i=1 i=1
Thus
N

E ZXZ-

i=1

= E[NE[X;]] = E[N]E[X;] =4x2=8.

Definition 2.3.3 The random number N is independent of i.i.d. random variables X;, then Zf;l X; 1s said

to be a compound random wvariable.

Example 2.3.4 (The Mean of a Geometric Distribution) A coin, having prob. p of coming up heads, is to
be successively flipped until the first head appears. What is the expected number of flips required?
Sol. Let N be the number of flips required, and let

1, if the first flip in a head,
0, if the first flip in a tasl.

Now,

=
=
Il

E[N|Y =1]P{Y =1} + E[N|Y = 0]P{Y = 0}
pEIN|Y = 1]+ (1 — p)E[N|Y = 0].

Notice that
E[N|Y =1]=1,E[N|Y =0] = E[N] + 1.

Then
E[N]=p+ (1-p)(E[N]+1)= E[N]=1/p,

which is the same with the mean of a geometric distribution.

Example 2.3.5 A miner is trapped in a mine containing three doors and only one door is out. The 1st door
takes him to safety after 2 hours of travel. The 2nd door returns him to the mine after 3 hours of travel.

The 3rd door returns him to the mine after 5 hours. Assume that the miner is at all times equally likely to
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choose one of the doors, what is the expected length of time until the miner reaches safety?

Sol. Let X denote the time until the miner reaches safety, and let Y denote the door he intially chooses.

EX

E[X|Y =1]P{Y =1} + E[X|Y = 2]P{Y =2} + E[X|Y = 3]P{Y =3}

— LBy = 1)+ BIX|Y =2 + EIX]Y = 3)).

Since EIX|Y =1]=2,E[X|Y =2] =3+ EX,E[X|Y =3] =5+ EX, hence
EX = %(10 +2EX) = E[X] = 10.

Example 2.3.6 Indepedent trials, each success with prob. p, are performed until there k consecutive suc-
cesses. What is the mean number of necessary trials?
Sol. Let N, denote the number necessary trials to obtain k consecutive successes, and let My = ENj. Then

compute by conditioning on Ni_1,
My, = E[Ny] = E[E[Ng|Ng-1]].
Notice that
E[Ng|Ny-1] = Ng—1 +{p-1+ (1 = p)(1 + E[Ni])}.

Taking expectations at both sides,

1 My
M= My—y + 14 (1 =p)My = My = - + ;1.

Since Ny is geometric with parameter 1, then My = %, and recursively

In general,

Another way to use conditioning is to obtain the variance of a random variable by applying the conditional

variance formula. The conditional variance is defined by

Var(X|Y = y)=E[(X - E[X|Y =y)*Y =y
= E[X?|Y =y — (B[X]Y =y])*.

Proposition 2.3.7 (The Conditional Variance Formula)

Var(X) = E[Var(X|Y)]+ Var(E[X|Y)).

Pf.
ElVar(X|Y)] = B{EX?]Y] - (E[X|Y])’} = E{E[X*|Y]} - E{(E[X|Y])*}
— B[X?) - B{(EIX|Y])?}.
Var(E[X|Y]) = E{(E[X|Y])?} — (E{E[X|Y]})? = E{(E[X|Y])?} — (E[X))*.
Thus

E[Var(X|Y)]+ Var(E[X|Y]) = E[X?] — (E[X])* = Var(X).
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Example 2.3.8 (The Variance of a Compound Random Variable) Let X1, Xs,... be i.i.d. random
variables with mean p and variance 0. Assume they are independent of the nonnegative random integer N.
The random variable S = Zivzl X, is a compound random variable. Find its variance.

Sol. Let us use the conditional variance formula. Compute

N n
Var(S|IN =n) = Var(z X;|N=n)= Var(z X;) = no’.
i=1 i=1

n

N
E(S|N =n) = E(Z Xi|N=n)=E(_Xi)=np.

=1
Therefore,
Var(S|N) = No?, E(S|N)= Nup.

Using conditional variance formula,

Var(S)

E[Var(S|N)] 4+ Var[E(S|N)] = E[N]o? + Var(Npu)
= o?E[N] + p*Var(N).

Another way is to compute the variance directly.

Var(S) = ES?—(ES)?,

ES = E[E[S|N]] = nE[N],
ES* = E[E[S?|N]] = E[N*1* + No?] = i*E[N?] + ¢®E[N],
where
N N
E[S*IN] = E[Q_X)1=E[_X7+2) X.Xj]
i=1 i=1 1<j
= NEX?+ (N? - N)EX,EX; = N(ti® + 0?) + (N? — N)u?
= .N?4% + No2.
Therefore,
Var(S) = ES?—(ES)? = u?E[N? + ¢*E[N] — (LE[N])?

= 1*Var(N) + oc?E[N].

Example 2.3.9 If N is a Poisson random variable, then S = Zfil X; is called a compound Poisson
random variable. Since
E[N]=Var(N) =\,

then
Var(S) = p*Var(N) 4+ 0?E[N] = p* X + 0?X = AE[X?].

We should point out that the following derivation is wrong:

N
Var(S) = Var(} | X;) = E[N|Var(X;) = \War(X).
i=1
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2.4 Computing Probabilities by Conditioning

We may also use conditioning approach to compute probabilities. Let E denote an arbitrary event and

define the indicator random variable X by

) 1, if E occurs,
B 0, if F does not occur.

It follows from the definition of X that

E[X] = 1-P(E)+0-P(E°) =P(E),
E[X]Y y=1-P(E]Y =y)+0- P(E]Y =y) = P(E]Y =y),

for any random variable Y. Then from double expectation formula,

S P(E|Y =y)P(Y =y), ifY is discrete,
P(EY= v
7 P(E|Y =y)fy(y)dy, ifY is continuous.

Example 2.4.1 Suppose X and Y are independent continuous random variables having densities fx and
fy. Compute P{X <Y}.
Sol. Conditioning on the value of Y yields

Px < )= T P(X < YIY = ) fy (n)dy

— 00

= [T P <onta= [ Exwm o

— 00

- /_0; W /_: fx (@) fy (y)da.

Example 2.4.2 An insurance company supposes that (1) each policyholder has number of accidents with

Poisson distributed, with the random mean. (2) The mean of Poisson has a gamma distribution with density
gN) =Xe ™, A>0.

What is the prob. that a randomly chosen policyholder has exactly n accidents next year?
Sol. Let X denote the number of accidents that a randomly chosen policyholder has next year. Let Y be the

Poisson mean number of accidents for this policyholder. Then, conditioning on Y yields
PX = n} :/ PLX = n|V = A}g(A)dA
0

o \n © 1
/ e M e M :/ AL eT2A g,
0 0

n! n!

By induction,

P{X

0}:/ —'Ale_Q’\d)\:—f/ Ade™2*
o O 2 Jo

1 o 1 [
= —= (Ae”g’ —/ e”dA> = f/ e 2N\
2 0 2 0

1 1

4 4

e =
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P{X = 1}:/ /\Qe’”d/\:—%/ MNde™ 2

0 0

1 > > 12
= —— (N - 2/ e PN ) = / Ae™PAdA =~ ==,
2 0 0 4 8

1 [ 1 [
P{X = 2}=— / Me 22\ = —— / ANde 2
2 0 4 0
1 o0 oo
= — [ Me P 73/ Me 22\ ) = §/ Ne gy = 2
P{X = 3}= 1/0o Me2gy = — L [T yage
6 Jo 12 /o
1 o 1 [ 13 1 4
= —— (XMePMF -4 [ Ne A :f/ MeTMdd= o= = - = —.
12<e o . € 3/, *° 38 8 32
By induction, we can show that P{X =n} = 2"%12 That is,
1 * n+1l_—2X\ 1 > n+1 —2X
P{X = n}=—+ AV e TN N = —— A" de
n! Jo 2n! Jo

1 > 1> 1
= —— (AP FE - (n+ 1)/ My ) = L / Aem P dA
2n! 0 n Jo (n—=1)

n+1l n n+1

2n 2l gnd2’

Another way is to notice that
2e 22 (2)\)HL

(n+1)!
is the density function of a gamma (n + 2,2) random variable, its integral is 1. Therefore,

[o'e) 9 —2\ 22 n+1 2n+2 [e’¢)
1= / 20 T = / — AL PAGA

h(\) =

Thus
1

—AeT ), = ntl

2n+2 :

P{X:n}z/

0
Example 2.4.3 Suppose that the number of people who visit a yoga studio each day is a Poisson random
variable with mean A. Suppose further that each persion is independently femail with prob. p or mail with
prob. 1 — p. Find the joint prob. that exactly n women and m men visit the academy today.

Sol. Let Ny denote the number of women and Ny the number of men, so that N = Ny + Ny is the total

number of people. Conditioning on N gives

P{N; = n,Ny=m}=> P{N; =n,Ny=m|N =i}P{N =i}
i=0
= P{Ny=n,No=m|N=n+m}P{N =n+m}
)\n+m
= P{Ni=n,Ny=m|N=n+ m}e*)‘m, Poisson
/\n+m
= Cp.p"(1— p)me Binomial

(n+m)l’

7)\pM67>\(17p) ()‘(1 — p))m )

= e
n! m!
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Since

)

o0 A n
P{N; = n}=)Y P{Ny=nNy=m}= e*AP(nL')
m=0 ’

0 v (A1 = p))™
P{N, = m}zgp{m:nwz:m}:e M )%

so that P{Ny = n, Ny = m} = P{N; = n}P{Ny = m} and we can conclude that N1 and Ny are independent

Poisson random variables with means A\p and A(1 — p). Poisson diversion and confluence.

Example 2.4.4 (The Ballot Problem) (% Z &) In an election, candidate A receives m votes, and
candidate B receives m votes where n > m. Assuming that all orderings are equally likely, show that the prob.
that A is always ahead in the count of votes is (n —m)/(n + m).

Sol. Let P, ,, denote the desired prob. By conditioning on which candidate receives the last vote, we have

P,.. = P{A always ahead|A receives last vote} n

n—+m

+P{A always ahead|B receives last vote} o
n+m

Notice that

P{A always ahead| A receives last vote} = Pp_1m,

P{A always ahead|B receives last vote} = Py 1.

Then one obtains the recursive formula,

n m
Pn,m:Pnfl,mn_F +Pn,m71n+m7 asn—12>m.
Notice that
Pl,O = 17P2,0:1a"'7PYL,0:1?
P171 = 0,P272:0,...,Pn7n:0.
We now can prove the result by induction
n—1—-m n n—-—m+1 m

n—1l+4mn+m n+m-—-1n+m

n®>—n—mn+mn—m?>+m _(n—m)(n+m—1)

(n—14+m)(n+m)  (n—14+m)(n+m)
T ontm

2.5 Computing Conditional Expectation and Conditional Proba-
bility by Conditioning

The analog of
E[X] = ZO%E[XD/ =y|P(Y =y), ifY is discrete,
Jo EIX|Y =9fy(y)dy, ifY is continuous.
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BIX|Y = ] = Yo EIX|Y =y, W =w|P(W =w|Y =y), if W is discrete,
[ EX|Y =y, W = w] fw)y (w]y)dw, if W is continuous.
That is, in another form,

BX[Y] = E[B[X[Y, W])Y].

Here is a proof for the above formula. For discrete W,

S EX)Y = yW=uP(W=uwlY =y)= ZZ:EP =2y =y, W =w]P(W = w|Y =y)

2P X =2,V =y, W —w]P( =w,Y =y)
22 T Py—ywew Py

_ ZxP[);(—IY—y pr =z|Y =y = E[X|Y =y)].

x

For continuous W

/ EIX)Y = 5. W = wlfuy (wly)dw = / / = Fxtyaw (2l w) fovy (w]y)duwdz

x

_ / fo,Y,W(x,y,w) fyw(y,w
wle  frw(y,w) fy(y)

/ /fo,W|Y(vaw\y)dU7dx = /fo\Y($|y)d35 = B[X|Y =y].

) dwdx

Example 2.5.1 (1) An insurance company classifies each policyholder as being one of k types. (2) Type i
has the number of accidents with Poisson distribution with mean \;. (3) A newly policyholder is type i with
prob. p;, Zle p; = 1. (4) Given that a policyholder had n accidents in her first year, the question is [1] what
is the expected number that she has in her second year? [2] What is the conditional prob. that she has m
accidents in her second year?

Sol. Let N; denote the number of accidents the policyholder has in ith (i = 1,2) year. Conditioning on her
risk type T gives

k

E[NoINy = n] =Y E[No|T = j, Ny = n]P{T = j|Ny = n}
j=1
k k
= Y E[N|T =jIP{T = jIN; =n} = > NP{T = j|N, = n},
j=1 j=1
where the last follows the Poission mean \;. Using Bayes’ formula
. P{T' =4j,Ni=n P{N, =n|T =j}P{T =5
{N1 =n} S5 P{Ny =n|T = j}P{T = j}

e N A% /nlp;
Z?Zl e=Ni /\;‘/n!pj7

one arrives at

k k =X \n
e M\ /nlp;
E[Ny|Ny = n]=> NP{T=jINy=n}=) NG
j=1 T Xjoe A} /nlp;
Zle e /\?Jrlpj

k “Xi\n :
Zj:le JAjpj
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The conditional prob. can also be obtained by conditioning on her type:

k
P{N; = m|Ny=n}=Y P[Ny=m|T =j Ny =n]P{T = j|N, =n}
j=1
_ zk: e~ N )\m e )\n/n[pJ _ Z?:l e~ 2N /\;n—i-npj
2 S e nlp, | ml Y, e A,

The second approach is to calculate the prob. P{Ny = m|Ny = n} first,
P{N2 = m,N1 = ’I’L}

N = mili =n) P{N, = n}
k . E e NAT e Jxl
_ > j—1 P{N2 =m, Ny = n|T = j}p; _ 21 Dj
B k . B e ian
Zj:l P{N1 =n|T = j}p; Z§:1 %pj

k —2); ym+
1LY ey,
] E .
m! E:jzle )\])\;ij

Then conditional expectation can be calculated by

E{Ns|N; = n}= S PNy = m|Ny =) =S m S e NN
- Zj 1)‘31 7>\J}‘n _ Z?:l ei/\j)‘;‘wlpj
N 25:16 )\])‘jpj - Z?:lef)\j)‘?pj '
where made use of > o, meiz;\;n =Aj.
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Chapter 3

Markov Chain

3.1 Introduction

e Stochastic Process {X (¢t),t € T} is a collection of random variables, where T is a subset of (—o0, c0). For
each t € T, X (t) is a random variable.
e There exists aw € Q, s.t. z; = Xy (w) = X (t,w), t € T. Then, {z,|t € T} is an observation or a realization
of Xyt € T.
e ¢ is the time, either discrete or continuous.
e X (t) is the state at time ¢. For example, (1) number of custumers in a supermarket (2) number of accidents
on a highway.
e T is the index set of the process.

(1) T is finite or countable — discrete-time process or stochastic sequence.

(2) T is an interval of a real line — continuous-time process.
o {X,,n=0,1,2,---} is a discrete-time SP (Stochastic Process). {X(t),t > 0} is a continuous-time SP.
e State space of a SP is the set of all possible values that X (¢) can take, either subset of R™ or discrete
spaces like Z™.

continuous
temperature every day

the time spent for study
discrete
number of custumers in a supermarket

machine/engine works or not, 0 or 1.
e State space. I ={0,1,2,...} finite or countable

X,, =1, in state ¢ at time n.

o {X,,}5°, is a time-dependent process. X,+1 may depend on X,, and even earlier.

Example 3.1.1 The followings are Stochastic Processes. (1) Brownian Motion, pollen () , Jean
Perrin. (2) Poisson Process which is a counting process. (3) The meters one walked every day. (4) number

of students in the classroom.
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Definition 3.1.2 The following stochastic process is known as a homogeneous Markov Chain:

PXpy1 = jlXn=4,Xn1 =in-1,..., X0 =10) = P(Xpy1 = j|Xn =1)
P(Xlzj‘X():Z):plja iajeja

where the time-independent p;; is the one-step transition probability (— ¥ % HBE) | and P =
(pij)ijer is the one-step transition prob. matriz (% HMELEE) . Obviously, one has p;; > 0 and

by mutually exclusive property,
oo oo (oo}
> pii =Y P(Xi=j|Xo=1i) = P(|J{X1 = j}IXo =) =1
§=0 §=0 j=0

The row sum of a stochastic matriz  (FEHLAE[E)  is 1:

Poo Po1  Po2

Pio P11 P12
P =

P20 P21 P22

Definition 3.1.3 The nonhomogeneous Markov Chain (JEitFF)  still has the Markovian property.
In non homogeneous chains, transition probabilities can vary across time. That is to say, the Markov property

18 retained but the transition probabilities may depend on time.
P(Xn1 = j| Xy = i) # P(X1 = j|Xo = 19),
or p;j(n) depends on time n or p;;(t) depends on time t.
Example 3.1.4 X,, depends on X,,_1,X,_2,...,Xn_p. Markov Process, AR(1) model,
X, =a1 X,,—1 +e.
AR(p) model (p > 2). time series. non-Markov process.
Xn=a1Xp 1+ - +apXy_p+e.

Example 3.1.5 (Forecasting the weather) Suppose that if it rains today, then it will rain tomorrow with

prob. «; and if it does not rain today, then it will rain tomorrow with prob. B. Find the transition prob.

matriz.
Sol. Let
state 1, rain,
state 2, not rain.
Then

a 11—«
P= .
g 1-p
Example 3.1.6 (Transform a non-Markov process to a Markov Chain) Suppose that whether it rains today

depends on the last two days. Suppose that it has rained for the past two days, then it will rain tomorrow

with prob. 0.7; if it rained today but not yesterday, then it will rain tomorrow with prob. 0.5; if it rained
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yesterday but not today, then it will rain tomorrow with prob. 0.4; if it has not rained in the past two days,
then it will rain tomorrow with prob. 0.2. Give the transition prob. matrix.

Sol. The condition is

yesterday today tomorrow
v v v =0.7,x=03
X v v =05,x=0.5.
v X v =04,x=0.6
X X v =0.2,x=0.8

Let
state 0, (rain,rain)

state 1,  (not,rain)
state 2, (rain,not)
state 3,  (not,not)

The four-state Markov Chain has a transition prob. matriz,

07 0 03 O
05 0 05 O
0 04 0 06
0 02 0 08

P =

Example 3.1.7 (A random walk model) (FA#L#EAER) A Markov chain whose state space is given
by the integers i = 0, +1,£2,... is said to be a random walk if, for some 0 < p < 1,

Pii+1 =D, Dii—1=1-—p, 1=0,£1,£2,...
Note that this is an infinite-state chain.

Example 3.1.8 (A Gambling model) Consider a gambler who, at each play, either wins 1 dollar with
prob p or loses 1 dollar with prob. 1 — p. Suppose that the gambler quits playing either when he goes broke

or he attains a fortune of N dollars. Then the Markov chain has the transition prob.

Pii+1 = D, pi,iflz]-_p7 7;:1727"°7N_]-7

Poo = pNN =1

State 0 and N are called absorbing states (RULZS, HUEE)  since once entered they are never left. Note

that this is a finite-state chain with absorbing barriers.

Proposition 3.1.9 I is the state space of the homogeneous Markov Chain {X,}. A, A; C 1.

(1) When X,, =1 is given, the future {X,, : m > n+ 1} is independent of the past {X; : j <n —1}.
(2) P(Xnyr = j|Xn = i) = P(Xp = j|Xo =1).

(8) P(Xpir =4l Xn=1,Xn-1€ An_1,...,X0 € Ao) = P(Xy = j| X0 = 19).

(4) P(Xpyr € Al Xp =4, Xp 1 € Apq,...,Xo € Ag) = P(X}, € Al Xy =1).
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3.2 Chapman-Kolmogorov Equations

(RRFEHKRITET)
We now define the n-step transition prob. pgl) to be the prob. that a process in state i will be in

state j after n additional transitions. That is
Obviously, pl(-Jl-) = p;;. In particular,

1, i=j

O — p{Xo = j|Xo =i} =
pi; = P{Xo = j|Xo =i} 0, itj

or say P(Y) = P, and P9 =T (identity matrix).

Theorem 3.2.1 (Chapman-Kolmogorov Equation) For any m,n > 0,

(n+m) (n)
Dij = szk Pk; ’
kel
P(n+m) — Pn+’rn.
Pf.
pﬁf“”) = P{Xpym = j|Xo =1}
= > P{Xpim =jl1Xn =k, Xo = i} P{X,, = k| X, = i}
kel
= szk pk; :
kel

Corollary 3.2.2 (1) p("+m) > pin)p(;n),
n+k+m n k m
(2) pii )>p§])p§l)p§1 )
k
Pf.

pgwrm) Zpgz/)pl(:;) > pfln)]?(]m)
kel
Example 3.2.3 Consider Example 3.1.5. If a« = 0.7 and = 0.4, then calculate the prob. that it will rain
in four days given that it is raining today.

Sol. The one-step transition prob. matriz is given by
1 07 03
04 06 |
2
p? 0.7 0.3 _ 0.61 0.39
04 06 0.52 048 |’

0.5749 0.4251
(P2)2 —
0.5668 0.4332

Hence,

P4

(4

so that the desired prob. py, ) = 0.5749. (notice that row sum is always 1.)
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Example 3.2.4 Consider Example 3.1.6. Given that it rained on Monday and Tuesday, what is the prob.
that it will rain on Thursday?

Sol. The two-step transition matriz is given by

2
07 0 03 O 0.49 0.12 0.21 0.18

pe _p2_ |05 0 05 0 | _|035 020 015 030
0 04 0 06 0.20 0.12 020 0.48
0 02 0 08 0.10 0.6 0.10 0.64

The desired prob. is pé%) +p621) = 0.49 + 0.12 = 0.61. (Notice that row sum is always 1.)

3.3 Unconditional Distribution of the State

So far, all prob. are conditional prob. If the unconditional distribution of the state at time n is desired,

it is necessary to specify the prob. distribution of the initial state.
Definition 3.3.1 X has the prob. distribution
7D =P(Xo=4), jel={12..}
; , 2, ..}

The initial distribution of {X,} is denoted by

W(O) - (7T§0)7 7T£0)v T )

Moreover, let the distribution at time n be

n" = P(X.=j), jel,

ﬂ—(n) = (W§n)a ﬂén)7 T )

In fact, 7™ can be uniquely determined by the initial distribution 79 and the transition matriz P.

Theorem 3.3.2 Assume Markov chain {X,} has initial dist. ©(©) and trans. prob. matriz P. Then
Forany 0 <ng<ny <--- < Ny,

P(Xno = 1g, Xn1 =y, - aXnm = im) = ﬂ(n(})pz(':illin[))pz('?izginl) cop{m )

20 T —1%m

(2) For any Vn > 1,

7t = 2P where 7™ is a row vector,
7 =7 OP" o say 1 = 3,0 m "l
7'((") _ 7_l,(lc)]_)nfk7 0<k<n.

Proof. (1) Using the product formula,

P(B\Bs...By,) = P(B1)P(Bs|By) -+ P(Bn|B1Bs. .. Bu_1),

one has
P(X,, = i0,Xn, =t1, ", Xn,, =im)
= P(Xp,, =i0)P(Xn, = 01| Xn, =40) - P(Xn,, =im|Xn,,_, =im—1)
= 71—1(:’0)pz('gill_m))pz('?fg_nl) " ‘Pﬁﬁfiﬁ"‘“)
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r = PN =) = ) P(Xai = j|Xa = ))P(X, = i)
el
= ZW§")pij,
iel

that is #(**) = 7P, =

Example 3.3.3 An urn always contains 2 balls possibly with red and blue colors. (1) At each stage a ball is
randomly chosen. (2) Then the chosen ball is replaced by the same color with prob. 0.8 and opposite color
with prob. 0.2. If initially both balls are red, find the prob. that the third ball selected is red.

Sol. Define X,, to be the number of red balls in the urn after the nth section. Then the transition matrix is

08 02 O
P=|01 08 0.1
0 02 08

Then
0.66 0.32 0.02

P2=| 0.16 068 0.16 |,
0.02 0.32 0.66

and the desired prob. is

P{3rd section is red| Xy = 2} = ZP{Srd section is red| Xo = i, Xog = 2} P{ X3 = i| Xy = 2}

= (0)p%) + (0.5)p2 + (1)pS2) = (0.5)(0.32) + (1)(0.66)
= 0.16 +0.66 = 0.82.

3.4 Classification of States

See more references in [1, 12].

WA il 4 jAEKERE FHEK T

Definition 3.4.1 I is the state space of Markov chain {X,}.

(a) If p;; = 1, then i is called an absorbing state.

(b) If In > 0, s.t. pl(;b) > 0, then i is said to be accessible to state j. (denoted by i — j)

(c) If i — j and j — i, then they are said to communicate (i <> j).

(d) Two states that communicate are said to be in the same class.

(e) The Markov chain is said to be irreducible if there is one class in the chain, that is, all states communicate

with each other.

Remark 3.4.2 Ifi not accessible to j, then

P(ever enter jlstart ini) = P( U {X, =j}HXo =1)

n=0

oo (oo}
S PX,=jlXe=1i)=> p}) =0.
n=0 n=0

IN
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Proposition 3.4.3 The relation of communication satisfies the following three properties:
(i) State i communicates with state i, all i > 0.
(i) If state i communicates with state j, then state j communicates with state i.

(#53) If i communicates with j, j communicates with k, then state i communicates with state k.

Proof. (i)
P = P(Xy=i[Xo=1i)=1.

(iii) We prove that if i — j,j — k, then ¢ — k. There exist n and m s.t. p S 0, p( m s 0, then
i = pr? oz o w0,
]

Example 3.4.4 S ={1,2,3}, where 1 is good, 2 is normal, and 3 is wrong.

17/20 2/20 1/20
P=| 0 9/10 1/10
0 0 1

One can see that 3 is different from 1 and 2. FEach state is a class.

Example 3.4.5 How many classes?
(1) S ={1,2,3}.
1/2 1/4 1/4
P=|1/4 0 3/4
0 2/3 1/3

(2) S = {1,2,3,4,5).

(06 01 0 03 ]

02 05 0.1 02
P=1|02 02 04 01 0.1
0
L 0 1 _

(3) S =1{1,2,3,4,5).

[ 12 172 0 ]

1/4 3/4 0

P=| 0 0 1
0 0 1/2 0 1/2
0 0 0 1 0 |

Sol. (1) irreducible chain. One class.
(2) {1,2,3} {4} {5}
(3) {1,2} {3,4,5}.
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3.4.1 recurrent and transient states and classes

HREEHER

e For state ¢, f;; denotes the prob. that, starting in state i, the process will ever re-enter state .

e Def. State i is recurrent if f;; = 1.

State ¢ is transient if f;; < 1.

e Recurrent means that with prob. 1, the process will re-enter state i. By Markov chain, the process
will start over again. (B FF B k)

e If i is recurrent, then the process will re-enter state i again and again and again. Infinitely many
times !!!

e Transient: With prob. f;;, the process will re-enter state i, and with prob. 1 — f;;, it will never again
enter state 1.

e The prob. that the process in state i for exactly n times equals {;_1(1 — fu),n>1.

e If 7 is transient, the number of time periods that the process will be in state ¢ has a geometric

distribution with a finite mean ﬁ

Example 3.4.6 All states 1,2,3 are recurrent.

Example 3.4.7 States 1 and 3 are recurrent, and state 2 is transient.




Definition 3.4.8 The first passage time probability (EIABEZE) is defined as

1 . .
1P = P =jlXo =),
= P(Xa=jXe#4,1<k<n—1Xo=1i),n>1.

Definition 3.4.9 f;; = > f-(-n) represents the prob. that one starts from i and first-time arrives at j

n=1x* Jij
after fnite-time steps. In fact, let Ay = {X1 = j},An = {Xn = 5, Xk # 5,1 < k < n—1} be mutually

exclusive events. |J, ., A, means that one ever enters j. Then

:foj):z P(An|Xo =) = UA|X0—Z)

n=1x% n=1% n=1

satisfies the property of probability.
Definition 3.4.10 State i is recurrent if f;; = 1, and state i is transient if fi; < 1.

Remark 3.4.11 ¥ f; = 18, BRAEAME X UME IR, BHEA, BEE, SAEELFRK. Yfiy <
18, FEMHZXUEMEL - f A B E2, wREZ, WHRMAEZUEREL - f; FFEZlG, BT
HEf. <1, FEFEEiESXE, HNREAEFi,

Example 3.4.12 S = {1,2,3}, where 1 is good, 2 is normal, and 3 is wrong.

17/20 2/20 1/20

P= 0 9/10 1/10
0 0 1
One can show that
0 0 1
lim P =0 0 1],
n—oo
0 0 1
by seeting that P = VDV ™!, where
1 0.89 0.58 08 0 0
V=]0 045 058 |,D= 0 09 0
0 0 0.58 0 0 1
The absorbing state i satisfying f3z = féé) =1 is recurrent. State 1 with f11 = (1) +0+- == and state
2 with foo = ) +0+---= % are transient.

Theorem 3.4.13 ForVi,j € I,n>1,
k k
ny = Z 157w " (3.1)

Proof. Let A, = {X,, = j, X} # j,1 <k < n—1} be mutually exclusive events. Since {X,, =j} C U, —, A
then

P = P(X, = j|Xo =) = > P(Xy = jl Ak, Xo = i) P(A| Xo = i) = ij 0.
k=1
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Theorem 3.4.14 Markov chain {X,}, then
(1)

E: p” 1"ﬂz

n=0x

(n) _

(2) i is recurrent < Y0~ p;’ = oc. i is transient < Y- (n) =

n=0Pii

1
=7, < 00.

(8) If i is recurrent and i — j, then i <> j, and j is also recurrent. Recurrence is a class property.
Proof. (1) Take j =i in Eq. (3.1), one has

() 0§ ) e (k) ek
pip Z o py;

where p € (0,1),1 <k <n,1 <n < oo. By summing over n, we obtain

G(p) =§:p§?)p"=1+ip§?)p —HZZ £ prpl = ok

n=1k=1
— 1+ZZ (k)pkpgz k) PR =14 (Z fi(ik)pk> ( pg?k)pn—k>
k=1n=k k=1 n—k=0
— 1+ F(p)Gp),
where F(p) = > po, f, (k)pk. Then ,
G(p) =
W) =T=Fp)

Let p — 1, done.
(2) Direct corollary.

(3) i — jRHANE M ERES, BARANIEREE), BTi¥E, FURR— 2B, FHitj#i,

H i <+ j. Since i communicates with j, there exist integers k and m such that pgj) >0 pgm) > 0. Notice

that for any integer n,
+n+k k
Py = pl e

Summing over all n,
(m+n+k) ) (k)
E p]m > plpl E pu

from which we can conclude that j is recurrent. m

Remark 3.4.15 > 7 Opgz) is the expected number of times that one starts from i and re-enter i (or say the

expected number of time periods that the process is in state i). To see this, let

A B
0, X,+#i
o2 o In represents the nubmer of times that the process in state i.

o0

B L|Xo=il =Y E[l|Xe=i] =Y P[X, = i|Xo = i] Zp““”’.
n=0

n=0 n=0
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Remark 3.4.16
(1) recurrent < i can be visited infinitely many times.

(2) transient < i can be visited finite times.

Remark 3.4.17 For finite-state MC, not all states can be transient, so that at least one of the states must
be recurrent. Assume that all M states are transient, then say after T, state 1 will never be visited. So for
each state i. Then, after T = max{Ty,...,Ta}, no state will be visited. However, the process must be in

some state after T. Contradiction!

Remark 3.4.18 Transience is a class property. If state i is transient and communicates with state j, then

state j must also be transient. This is a corollary of the conclusion that recurrence is a class property.

Remark 3.4.19 The result that not all states in a finite MC can be transient leads to the conclusion that

all states of a finite irreducible Markov chain are recurrent.

Example 3.4.20 Let the Markov chain consisting of the states, 0,1,2,3 have the transition matriz

o O = O
= o= O O
oS O O v
oS O O v

Determine which states are transient and which are recurrent.

Sol. All states communicate, and hence since this is a finite chain, all states must be recurrent.

Example 3.4.21 Consider the Markov chain with states 0,1,2,8,4 and

1o
2 2
11
2 2
— 1 1
P= 3 3 )
1 1
3 2
11 1
| 1 1 2 ]

then the chain has three classes {0,1}, {2,3}, and {4}. The first two classes are recurrent and the third

transient. For state 1, fi1 = Y ;5 fl(? =D i1 (%)Z = 1 since a particle once leaves state 1 and then can

stay at state 2 for any times. For state 5, fiq = ﬁ) = %

Example 3.4.22 In the chain with {0,1,...,n} with two-sided absorbing boundaries. {1,2,...,n — 1} is
in the transient class, and {0} and {n} are in the recurrent class. For transient class, one can see that if

particle starts from state 1 and then never comes back to 1 with prob. 1 — f1; > P{X; =0|Xg =1} =¢> 0.

Example 3.4.23 For the chain with {0,1,... n} with two-sided reflection boundaries. Since all state com-

municate, they are in the same class. Moreover, due to finite number of states, thus all states are recurrent.

Example 3.4.24 (A Random Walk) Consider a Markov chain with infinite length i = 0,+1,42,...and
has transition prob. by

Diit1=p=1—pii1, for all i.
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One colorful interpretation of thsi process is that it represents the wanderings of a drunken man as he
walks along a straight line. Since all states communicate, they are all either recurrent or transient. Let us
consider state 0 and determine if Y., pég) 1s finite or infinite. It is obvious for odd steps that p(()%nfl) =0
for all n. For even steps,

P = Cgp"(1—p)".
Using the Stirling formula

n! ~ 126 /o
we obtain

pem W= )"

T

Hence, > 7, pég) will converge if and only if
f: (4p(1 —p))"
— D

does. Using Abel-Dirichlet determinant method, one can see that > -

n=1

pgg) = oo if and only if p = 1/2

(recurrent). We call it a symmetric random walk. When p # 1/2, the chain is transient.

Example 3.4.25 For 2D symmetric random walk, the transition prob is given by

1

Pup = Pdown = Pleft = Pright = Z

The chain is irreducible. All states will be recurrent if state (0,0) is recurrent. Then

oy & (2n)! "
Poo = ;im(n—z‘)!(n—i)! (4>

"< (2n)! nl n!
- (4> ; nin! il(n — i)l il(n —i)!

1\%" (2n)!
= () Gk
4 nln! <"

Now o
an ~ T
/TN
so that
NCONS 1
00 o

The series is divergent, and thus all states are recurrent.

Example 3.4.26 For dimension greater than or equal to 3 symmetric random walk, all states are transient.
Take K, = {j,k|j,k >0, + k < n}, then

(2n) (Qn)! 1 n
Poo Z (lk!(n —j — k)1)? (6)

J.keK,

1 n!n!
w2 GG R

IN
(=)
[
3
N
:3
—

3
S~—
—

33
S~—| "™
—

3
S~—

<
o
~
S
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<
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Using Stirling,

[BHCIEI <[<n/37>l::+/12/2ein/313) —¢ <3;/) ’

on 1 47 3n+3/2 . B
b = (62"\/5 3" ) =0(n*?),

eventually gives a convergent series. The symmetric random walk is transient. In general, for d > 3,

then

Yon n=%2 is convergent, which gives transient results. However, intuitively, it is hard to think about why the

behavior is quite different between d < 2 and d > 3. This result is known as Polya theorem.

3.4.2 Periodicity

Definition 3.4.27 For Markov chain {X,}, define the periodicity:

(a) If -, pz(-?) = 0, then the particle can never re-enter i once leaving ¢ and i is said to have oo period.
(b) State i is said to have period d if pl(-?) = 0 whenever n is not divisible by d (d 1 n), and d is the largest
integer with this property. For instance, starting in i, it may be possible for the process to enter state i only
at times 2,4,6,8,. .., in which case state © has period 2.

(c) A state with period 1 is said to be aperiodic.

A A

Remark 3.4.28 Let d be the period of state i. If pl(-?) > 0, then d|n and d must be the largest integer with

this property. Moreover, when state i has period d < oo, then p(u"d)

i > 0 is satisfied only for some n, instead

for all n.

Remark 3.4.29 Let d < oo be the period of the state i. Then d is the maximum common divisor of the set
D= {n\pl(f) >0,n>1}.

SUNEAE 4

Example 3.4.30 On a line, if a particle moves forward I1-step with prob. 1/3, backward I1-step with prob.

1/3, moves forward 2-step with prob. 1/3. Then all states are aperiodic. The reason is
2
pl(-l-) > Diit1Pit1,: > 0,

@

Dis Di,i—2Pi—2,i—1Pi—1,: > 0,

so that 2 =nd,3=md = d=1.

Example 3.4.31 On a line, if a particle moves either forward 1-step with prob. p or backward 5-step with

prob. 1—p. Then the period is 6 for each state. pr(-n)

i > 0, then assume move forward k times and backward

m times resulting in k = 5m so that n = k +m = 6m. Since pgf) > p®q > 0, s0 6 = md and thus d < 6. The

period of state i is d = 6.

Theorem 3.4.32 Periodicity is a class property. That is, if state i has period d, and state i and j commu-

nicate, then state j also has period d.
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Proof. There exist » and s such that pz)

respect. Then dn = mt, s.t. pgl) > (0. Then

(s)

> 0 and p;;” > 0. Let d and ¢ be the periods of states ¢ and j,

(shnbr) 5 () ) ()

Pi; ij Pyj Py’ > 0-
Thus
dls+n+r.
Also
pEiHS) > pl(;)pgz) >0=d|s+r.
Therefore,
dln = d|mt.

e If m =1, then d|t.

o If there exist (m1, mg) = 1 among all m; and mq, then d|mt d|lmsot = d|t.

e If (my,mg) > 1 for all m; and ma, then state j has period (mi, m2)t, contradiction.
Similarly, t|d. Thus,t=d. =

3.4.3 positive and null recurrent states and classes
EHBEMEER

Definition 3.4.33 State i is said to be positive recurrent, if, starting in i, expected time until the process

returns to state i is finite.
Definition 3.4.34 T; = n represents that one arrives at state i at nth step for the first time, that is,

(o)
T min{n|X, =i,n > 1}, if U {X,. =1} occurs,
T = n=1

0, else.
Then,
) = P(Ty =n|Xo =i) = P(X, =i, Xp #i,1 <k <n—1|Xo =1).
F 34 [E] 5 B 8]

Definition 3.4.35 Let f;; =1 and Xo = i. Denote u; the expected time until the process return to state i or

say the first return time. Then the mean recurrence time or mean first-passage time is

pi = B[T|Xo =i =Y nP(T, =n|Xo =) = > nf".
n=1 n=1

State i is said to be positive recurrent if p; < oo; State i is said to be null recurrent if p; = oo.

Lemma 3.4.36 Let state i have period d and mean recurrence time p; = E(T;|Xo = ). Then

lim pgzld) = i

Proof is hard.
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Theorem 3.4.37 Let state i be recurrent.

(1) i is null recurrent < lim,_, p( ™ — .

(n) _ 1

(2) i is positive recurrent and aperiodic (ergodic) < lim, .o p;; o> 0.

Proof. (1) "=" Since i is recurrent, then there exists some n < oo such that pgf)

> 0. Thus, we have
d<n<oo.

¢ is null recurrent = by lemma lim,, p("d) = 0. That is,

e when djm = nd = lim, p(m) =0

(m)

(x3

= 0 based on the definition of the period. Thus one always has lim,_, p(") =0.

(nd) _

e when d{m = p;;
"«<" Assume that ¢ is positive recurrent, then lim,,_, p;; > 0. Contradiction!

(2) "=" ergodic so that d = 1. By lemma, done.

"<" Since lim,,_, oo p(")

d=1 =

= —i > 0, i is positive recurrent. Compare condition with lemma, then we see that

Theorem 3.4.38 Let state i be recurrent.
(1) If i is null recurrent, and i — j, then j is null recurrent. That is, the null recurrence is a class property.
(2) If i is positive recurrent, and i — j, then j is positive recurrent. That is, the positive recurrence is a class

property.

Proof. (1) First, since i recurrent and ¢ — j so that ¢ <> j. There exist integers m and n such that p(»T»”) >0

ij
and p( ™ 50, Using the fact that p("+k+m > p™p*plm) and limn_mopgl) =0, we have that

ij pJJ p]7'
k) < 1 (ntk+m)
pj] = "(n) (m)p” — 0, as k — oo.

ij Fji

(2) Disproof. Assume j is null recurrent, then ¢ is also null recurrent. However, i is positive recurrent.

Contradiction! m

3.4.4 ergodicity

Definition 3.4.39 Positive recurrent, aperiodic states are called ergodic.

Example 3.4.40 Consider the Markov chain. See Fig. 3.1. Then, states 3 and 4 are transient. States 1

SREIR S G S0 “va"" s
&kﬂ'f‘tﬂ"l &f‘“zﬂ}l f« Tokn," =0 gl I
SAPEREE ¢ l.f"" -ﬂ,FahfssT.—‘ql, tl sng
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A TR G ;.-.1}.1.,,(‘)1\ -
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e

Figure 3.1: Example for classification of transient and ergodic classes.

and 2 are positive recurrent, in addition, they are aperiodic, and thus they are ergodic.
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Here is the summary of this subsection (see Fig. 3.2).
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Figure 3.2: Summary of classification.

3.4.5 Classification

Definition 3.4.41 I is state space of Markov chain {X,} and B C I. If any state b € B is not accessible to
B¢ =1— B, then B is said to be a closed set.

Theorem 3.4.42 For Markov chain,

(1) There is no intersection between two different classes.

(2) Each state belongs to one of the following class, transient, null recurrent, or positive recurrent. Moreover,
all states in one class have the same properties.

(8) Recurrent class is a closed set: all particles in the recurrent class cannot leave it.

(4) Null recurrent class has infinitely many states.

5) If transient class is closed, then it contains infinitely many states. (see. e.g., non-symmetric random
s Y Yy g5 Yy

walk with drift.)
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Lemma 3.4.43 If j is transient or null recurrent, then for any i € I,

lim p( - (3.2)

n—oo

(n)

Proof. Proof for the Lemma. If j is null recurrent, then lim,, ., pgj) = 0. If j is transient, then Y~ 0Pj;

n) _

oo gives also limy, o0 pg-j = 0. For any i € I,

b =SSO S ’“)<Z S

k=1 k=m+1 k=m+1

(n—k)

Let n — oo, then the first term on RHS ;" 1pj; = 0. Thus,

)~ NS )
7}520% < Z fi;7 <1, (bounded)
k=m+1
Let m — oo, then

lim p( ") — .

nesoot 1
|

Proof. We only prove for (4) and (5) in Theorem 3.4.42. Let C be a class of either null recurrent or closed
transient states. Based on (3), null recurrent is closed. Thus, C' is always closed, that is, if 4, j € C, then i, j

can never leave the closed C. Notice that for any i € C,

Zp(n) Zp(n) =1, for any n.

jec jel

)

We now use the result lim,,_, pgl = 0 for transient or null recurrent j from above Lemma. If C' contains

L= 3 =D tm ol =3 0=0

jec jecC jecC

only finite states, then

Contradiction! We conclude that C' contains infinitely many states. m

Theorem 3.4.44 State space I can be decomposed as

I:UCj—l—T, m < 00
j=1

where C; is recurrent class and T is transient class.

Remark 3.4.45 For a transient class T,

(1) A particles can be in T forever, or can move from T to some C; and then stay in C; forever.

(2) If T' has finite states, then the particle will always leave T, enter some closed C; and stay in C; forever.
On the other hand, for a recurrent class Cj,

(1) C; has finite states = all states are positive recurrent.

(2) C; is null recurrent = C; contains infinitely many states.

Remark 3.4.46 For Markov chain,
(1) For finite-state Markov chain, either positive recurrent or transient, impossible to be null recurrent. (e.g.,

random walk model with absorbing boundaries)

48



(2) In a finite-state Markov chain, all recurrent states are positive recurrent.
(8) For irreducible finite-state Markov chain, all states are positive recurrent. (e.g., random walk model with
reflection)

(4) For infinite-length irreducible Markov chain, all states can be

transient, random walk p # %,
null recurrent, random walk p = %,
positive recurrent, e.g., see following example.
(5) Each absorbing state is positive recurrent since ji; = » .- | n fl(zn J=1. fi(il) =1 < co. Infinite-length can

have positive recurrent states. (e.g., each state is an absorbing state)

Example 3.4.47 Consider the Markov chain with infinitely many states (see Fig. 3.3). Then, all states are

Figure 3.3: All states are ergodic (positive recurrent and aperiodic) for a Markov chain with infinitely many

states.

ergodic.

3.5 Stationary Distributions, Limiting Probabilities, Limiting Dis-
tributions

For the two-state Markov chain with the transition matrix
0.7 0.3

P = .
04 0.6

49



It turns out to be

4 0.5749 0.4251 0.572 0.428
P& — P® — )
0.5668 0.4332 0.570 0.430

They are almost identical. In fact it seems that p(-?)

;i converges to some value as n — oo. In other words,

there seems to exist a limiting prob. that the process will be in state j after a large number of transitions,
and this value is independent of the initial state.
The question is:

(a) If stationary distribution exists and if it is unique? What is the value of the stationary distribution?

)

(b) If limiting probability lim,, pz(? exists? If exists, what is its value?

(n)

(c) For each ¢, if lim,, oo m; ~ exists? If lim, 00 7™ exists, where (") = (7T§n), wén), ...)? What is its value?

3.5.1 Stationary Distributions

Definition 3.5.1 If a probability distribution m = (w1, ma,...) satisfies
Z m; = 1,7 =7P,
jel

or equivalently

ZWJ' =17 :Zﬁkpkj >0,5€l,

Jjel kel

then m; is called stationary probability and m is called the stationary prob. distribution. Obviously,
ﬂ':ﬂ'P:...:TrPn.
See reference in [2].

Lemma 3.5.2 If j is ergodic and i < j, then

Proof. Based on the previous result, we have that

1
lim p = —,

where the period d = 1 is used. For any i < j,
() _ N~ p0), (k) | N~ pB) (n—h)
Pij qu Pjj + Z fiJ Pjj )
k=1 k=m-+1

Fix m and let n — oo,

[ W W

k=1 I k=mt1
Notice that -
Z fz (n k) < Z fi(f) <1,
k=m+1 k=m+1
so that
Z fzk) "=k 0, asm — oo.

k=m+1
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Also notice that for recurrent j and i <> j,
> -

Thus, let m — oo, we have

R WIS o A

Hi k=m+1 J

Theorem 3.5.3 Let C contain all positive recurrent states of the Markov chain {X,} and i € CT.
Part (1) If C* has only one ergodic class, then the stationary prob. m; satisfies

(n) _

mj = lim p;;° = —, jel,
1$ the unique stationary distribution.
Proof. Define
00, 7 is null recurrent or transient,
Hj = . . .. .
! some positive finite number, j is positive recurrent.

ergodic = d = 1. Based on the result in some example (think about why for i and j, the following holds

true?),

lim Dij
Mi, j€Ct,iec Ct, Ct has only one class, that is, 7 < j.
J

) _ {0, j¢Ct Viel,

Define as above for the corresponding ¢ and j relation,

— (n)
T = nh_)rrolopu ,

we would like to show that ; is a stationary probability, that is, m; satisfies the equations in Definition 3.5.1.

Existence of stationary distribution. A particle starting from ¢ € I must enter some state j € I, and thus
S =1. (3.4)
jeI

Let n — oo in Eq. (3.4), one has for any i € CT,

L ; (n) _ (n) _
>om= 3 Jim pl) = lim S pl =1
Jjel jel Jjel

(think about why can be interchanged? Dominated Convergence Theorem) Using Chapman-Kolmogorov

equation, for a particle starting from i € C¥,

. li — (n 1) li (n— 1)
m; = lim p im D im p;, pr;
n— o0 n—oo n— oo
k:EI kel
= E lim pl~ E TkDkj = E TkDkj
n— o0
keCt keC+ kel

where made use of Dominated Convergence Theorem. Thus, 7; is a stationary distribution.

Uniqueness. Suppose that {v;} is another stationary distribution.
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If j ¢ C, using the property of stationary distribution v=vP™ and assume that n — co and > ke can be

interchanged, we obtain:

v = hm kap(") Z lim vkpk *():>v] 7077;1520291 ™) =y,
kel kel

where made use of the fact that for any j ¢ CT, one has lim,, ;. pl(.;b) =0 for any 4 € I (see equation (3.2)).
ItjecCt,

n n
= kap;(cj) = Z vkpij) - ( Z 'Uk> Ty = <ka> Mj = Tj, aS N — 00,
kel keC+ keC+ kel

where the second equality holds true since vy = 0 if k ¢ CT, and the last equality holds true since there is
only one C*. Therefore, v; = m;.
Notice that when computing lim,,_, pz(-;l) for j € CT, the assumption ¢ € CT is important. Otherwise we

will obtain a wrong proof:

_ (n) _ (n) _ _
v = nl;n;Okapk Z lim 0 VkPy; = (Z > Tj = Tj, as N — 00.

kel kel kel
This proof results in that two classes of Ct would also have a unique stationary distribution, which is a

wrong statement. m

Theorem 3.5.4 Part (2) If CT is a class with period d, then

d
1 n . 1 n S
7j = — lim pﬁjd): lim p E pEJdJr) lim — E p” ,JEL

d n—oo n—00 f n—o00 N
s=

is the unique stationary distribution. Moreover, m; = ui
J

Theorem 3.5.5 Part (3) {X,,} has a unique stationary distribution. < C* is an equivalent class. < there

exists a unique class of positive recurrent states.
Theorem 3.5.6 Part (4) Stationary distribution exists for {X,} < CT # @.

Theorem 3.5.7 Part (5) Corollary of (4): A Markov chain with finite states has at least one stationary

distribution.

Proof. Ct # @ since at least one state is recurrent and further positive recurrent (null recurrence has

infinitely many states). m

Theorem 3.5.8 Part (6) Corollary of (1): An irreducible and aperiodic MC with finite states has a unique

stationary distribution.

Proof. finite states + irreducible =positive recurrent. positive recurrent-taperiodic=-ergodic. Thus,

dlstationary distribution. =
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Theorem 3.5.9 Part (7) Structure of P. The transition matriz is

¢, Cy - C, T
P, 0 .- .. 0 ] c,
0o Py . . Cy
o --- 0 P, O Cnm
| R, R, -+ R, Qrp | T

Since each C; is a closed set, row sum of each P; is 1. That is to say each Cj is a irreducible MC, particle

starting from C; or move from T to C; will always stay in C;. One also has

¢, Cy - Cp T
[ pr 0 . ... 0 | c,
0o Py . . | G
P — :
0 o0 P00 Cm
R RP RE Qp] T

after n-step transition. Row sum of each P}‘ is 1. Moreover, lim,_,o QT = limnﬂoo(qg;l))i,jeT =0, any

transient state can not be stayed for long time.
EA—NEEFESTTAY

Theorem 3.5.10 Part (8) Corollary of (3) and (4). If C* has at least two positive recurrent classes, Cy

and Cq, then there are infinitely many stationary distribution.

Proof. Assume that C and C5 correspond to transition matrices Py and Ps. Then there are stationary
distributions, 7 and 7o, s.t.

m = m Py, m = mPs.

For any r =1 — s € [0, 1], define

7w = [rm, $m2,0,- -+, 0].
Then,
P, 0 .- . 0 ]
0 P,
7P = [rm,sme,0,--- 0]
0 - 0 P 0
L Rl R2 Rm QT i
= [Tﬂ-lPlaSﬂ-QPQaO,"' 70]
= [rm,sm,0,---,0] = 7.
n

53



3.5.2 The limiting behavior of transtion probability matrix

Here we restate the results for lim,, o pE;l).

Theorem 3.5.11 If j is transient or null recurrent, then for any i € I,

lim p{™ = 0.

n—oo=

Corollary 3.5.12
(1) Finite-state Markov chain has not null recurrent states.
(2) All states of a finite-state irreducible Markov chain are positive recurrent.

(8) If a Markov chain has a null recurrent state, then it has infinitely many null recurrent states.

Remark 3.5.13 If j is positive recurrent, then lim, oo pgb) may not exist. Fven it exists, it may be related

to state 1.

Theorem 3.5.14 If j is ergodic, then for any i € I,

lim pgﬂ) = &
n—oo W 1

Corollary 3.5.15 For a irreducible ergodic chain, for any i,7 € 1,

lim p(T-L)

nyoo. ¥ 1

3.5.3 limiting probabilities and limiting distributions

Definition 3.5.16 Iflim, o 7" = i (j € I) emists, then 7* = (71, 73,...) is called the limiting distribu-

J
tion of the Markov chain.

Theorem 3.5.17 For an aperiodic irreducible Markov chain, all states are positive recurrent if and only if

the chain has a stationary distribution. Moreover, the stationary distribution is the limiting distribution.

Proof. < Let the stationary distribution be 7 = (71, 72, ...), so that # = 7P = - .. =xP", that is,
T = Zﬂ'lpgy)
i€l

Using Dominated Convergence Theorem, one can interchange the limitation and the summation for each

jel,
i ) T (n) _ 0=
m = Mim 3 mp? =) m lim pi =3 mi-0=0,
iel i€l icl

if we assume that all states are either null recurrent or transient. However, since jer ™ = 1, at least one
m; > 0 is strictly positive. Contradiction! Thus, at least one state is positive recurrent. Since the Markov
chain is irreducible, all states are positive recurrent.

= Proved in Theorem 3.5.3.

Moreover, the conclusion that the stationary distribution is the limiting distribution is also proved in Theorem
3.5.3.
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3.5.4 Examples for stationary distributions and limiting probabilities

Example 3.5.18 Let the state space of a Markov chain be I = {1,2} and the transition prob. matric

p_ [ 3/4 1/4 ] .
5/8 3/8

(1) Compute the stationary distribution m and the limiting lim,,_, - P™;

Sol. Since m = 7P, compute the eigenvector of PT corresponding to eigenvalue 1:

. 1 —5/2
(P —I)—><O 0 )
5/2\ ([ 5/7
U ) T e )
hm Pn— 1 9 - 5/7 2/7
nooot \ o om )\ 57 27 )

(2) Compute the mean recurrence time py and pio.
Sol. Based on the formula, m; = 1/p;, so that p1 = 7/5 and pe = 7/2.

Thus

and

Example 3.5.19 Ehrenfest model. Suppose that 2a molecules are distributed among two urns; and each
time point one of the molecules is chosen at random, removed from its urn, and placed in the other one.
Let X,, be the number of molecules in urn 1. The number of molecules in urn 1 is the Markov chain having

transition prob.
Za—i 0<i<2a—1,j=i+1.

2a
Dij = i, 1<i<2a,5=1—-1.
0, else.

Compute the stationary distribution m.
Sol. This is a positive recurrent Markov chain with period 2, and thus there erists a unique stationary

distribution. Define m_1 = maqy+1 = 0. Based on m = 7P,

T = Mi—1Pi—1,i + Ti+1Pi+1,i,0 < ¢ < 2a.

Then
s B Ve B
[ e —
Dit1,i
Based on computation recursively
o
T = — =2amy = C%awo,
P1o
T = (7T1 — 7T0)2CL/2 = (20, - ].)a’]T() = 022(17('0,
2
T2q — ngﬂ'().
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By induction,

2a—(i—1)

i i—1
T — Ti—1Di—1,4 Csamo — O, To—

7T7;+1 = = )
Pit1,i %

7 i _ i1y T (2a) - (2a)!  (2a)!- (2a+1—1)
- z'+01 (2005, — (20 —i+1)C5, ") = z’+01 <i!(2a—i)! N (i—l)!(2a+1—i)!)

_ T (2a)! 20\ __ m@oN20-d) g
- Z’+1(i1)!(2az‘)l<z‘ 1>_(i+1)(i1)!(2ai)!i_02;rl 0

Using o + - - - + Maq = 22%my = 1, we obtain

) 1 i 1 2a—1
Wi:C%a (2> <2> ,OSZSQG

This is a Binomial with B(2a,1/2) since X1 + -+ 4+ Xaq ~ B(2a,1/2).
Example 3.5.20 5. Example 4.21 ignored. too simple.

Example 3.5.21 6. The Hardy-Weinberg Law and a Markov chain in Genetics. Consider a large
population of individuals, where each individual gene is either type A or type a. Assume that the proportions
of individuals whose gene pairs are AA, aa, or Aa are pg,qo,To (Po+ qo + 70 = 1). When two individuals
mate, each contributes one of his or her genes, chosen at random, to the offspring.

By conditioning on the gene pair of the parent, we see that for the first generation, a randomly chosen gene

will be type A with prob.

P{A} = P{AJAA}P{AA}+ P{Alaa}P{aa} + P{A|Aa}P{Ad}

1
= po+ 570

Similarly, it will be type a with prob.
1
Pla} =qo + 570

Thus, under random mating a randomly chosen member of the next generation will be type AA with prob.,

where

p= P{A}YP{A} = (po + ;7‘0)2 .

The prob. for aa is

0= PlayP(at = (+ ;) |

The prob. for Aa is
1 1
r=2P{A}P{a} =2 (]90 + 27‘@) (qo + 2r0> ,

where we notice that p+q+1r = 1.

We notice that the proportion of A will be unchanged from the previous generation:

1 1 \? 1 1
ey = el o) (e 1) o)

1
po+5ro = P{A°dy,
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Similarly,

1 1
P{anew} =q+ 57» =qo+ 57“0 = P{aold}.

From this it follows that, under random mating, in all successive generations after the initial one,
the percentages of the population having gene pairs AA,aa, and Aa will remain fixzed at the
values p,q, and r. This is known as the Hardy- Weinberg law.

For instance, see the following example:

1st generation 2nd generation

To = 0.8 r = 0.5 To = 0.5

Let us now see the problem from another point of view. For a given individual, let X,, denote the genetic

state of her descendant in the nth generation. The transition prob. matriz of the Markov chain is

AA aa Aa
AA p+r/2 0 q+r/2
aa 0 q+r/2 p+r/2 )

Aa p/24+r/4 q/2+71/4 p/2+q/2+71/2

where AA — AA since AA must contribute one A and another A comes from P{A} = p+r/2, and Aa — AA
since %P{A} =p/2+r/4. Let us verify that the stationary limiting prob. of this Markov chain is p,q,r. It
suffices to show that

— T P r_ V2 702
po= potg)+rGH)=0+5)"=m+5)%
— T a.r_ "2 T0y2
¢ = qatg)+r(G+)=0+5)"=(w+5)

1.

prqg+r
Example 3.5.22 7. 4.5.1 The gambler’s ruin problem ignored. Introduced in the following.

Example 3.5.23 8. 4.5.2 ignored since too hard.

3.6 Mean Time Spent in Transient States

See reference in [7].

P transition prob. matrix for MC {X,,} and Q is submatrix of P which includes only transient states.

Py 0 . pre
S Q

P 0
S. Q" |
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Example 3.6.1 5 states with two absorbing boundaries. S = {0,4,1,2,3}.

0 41 2 3
0of[10/0 0 o]
4 10 10 0 0

— 1

P = 1|3 o0fl0 % o0
2 10 0% 0 %
310 3]0 5 0]

12 3

110 4 0

Q= 2303
3103 0

Q is called a substochastic matrix, i.e., a mtrix with nonnegative entries whose row sums are less than
or equal to 1.

Q is transient = Q" = 0 as n — oo. =All eigenvalues of Q have absolutely values strictly less than 1.
= I — Q is an invertible matrix. = S := (I — Q)~! is well-defined.

Let j be a T state and consider Y; the total number of visits to j,
Y; = Z KX, =j}
n=0

i T 4 ¥ LAAE 2 Since j is T, Y < oo with prob. 1. Suppose X, = 4, where is i another 7. Then

sij = B(Yj|Xo=1i)=EBE(_ {X,=j}Xo=1)
n=0
= Y P(X,=jlXo=1i)=>_p{’, 0included.
n=0 n=0

That is, E(Y;|Xo = 9) is the (i, 7) entry of matrix
I+P+P*+ .-,
which is the same as the (7, ) entry of matrix
I+Q+ Q%+ - (because Block property).
However, a simple calculation shows that
I+Q+Q*+ - =(I-Q)'=s

Theorem 3.6.2 Leti,5 be T. Then
(1) sij = [Slij = [T — Q)~Y;; is the expected number of visits to j starting at i.
(2) The expected number of steps until the chain enters a recurrent class can be computed by summing s;;

over all transient j in one T class.
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Example 3.6.3 cont.

3/2 1 1/2
S=1I-Q)'=| 1 2 1
1/2 1 3/2

The expected number of visits from 1 to 3 is 1/2. The expected number of visits from 1 until absorption is
S+1+31=3.

Another derivation of the above result. For 7,5 € T, let s;; be the expected number of visits that the

MC is in j, starting from 7. Let

0ij =1, i=73
0ij =0, i#]
Then
sij = B(Yj|Xo=1i)=0;+ Y E(Y;|X)=k Xo=14)P(X; =k|Xo =)
kel
= i + ZpikSkj =0;; + ZpikSkj (since if k - j €T, then ke T).
kel keT

In matrix form,

S =(I-Q) . (notice that 555 > 1).

In the following, we derive another useful formula. For 7, j € T, the quantity f;;, equal to the prob. that
the MC ever makes a transition into state j given that it starts in state ¢. Derive an expression for s;; by

conditioning on whether state j is ever entered,

Ay = {ever transit to j}, Ay = {never transit to j}.

sij = F(times in j|start in ¢, ever transit to j)f;;
+E(times in j|start in 4, never transit to j)(1 — fi;)
= (05 + s55) fij + 015 (1 = fij)
= Oij + fijsjj-

Thus

Example 3.6.4 (Gambler Ruin Problem) Consider a gambler who at each play has prob. p of winning
one unit and prob. ¢ =1 — p of losing one unit. Assuming that successive plays are independent. Now given
p=0.4 and N = 7. Starting with 3 units, what is the prob. that the gambler ever has a fortune of 19

Sol. We have a 6 X 6 matriz
0.4

0.6 0.4
0.6 0.4
0.6 0.4
0.6 0.4
0.6
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then one obtains S =(I — Q)~!, and hence s3 1 = 1.4206 and s1,1 = 1.6149. Then

fa1= 23—1 — 0.8797.

)

Another way s, it is the prob. that the gambler’s fortune will go down 2 before going up 4, which is the prob.
that a gambler starting with 2 will go broke before reaching 6. Therefore,

1—(0.6/0.4)
—1- T (.8797.
Jsa 1—(0.6/0.4)6
. 1— (0.4/0.6)*
= T — (.8797.
Jsa =9z (0.4/0.6)6

Example 3.6.5 (Gambler Ruin Problem) Consider a gambler who at each play has prob. p of winning
one unit and prob. ¢ =1 — p of losing one unit. Assuming that successive plays are independent, what is the
prob. that, starting with © units, the gambler’s fortune will reach N before reaching 07

Sol. Let X,, denote the fortune at time n, then {X,} is the MC process with transition prob.

poo = pNN =1,

Diit1 = p=1-—p;;-1,i=1,2,...,N —1.
Let . o
V=)A= |J{Xu=NXp1,.... Xo # N}
n=0 n=0

Since {1,2,...,N — 1} is transient and {0}, {N} are recurrent, the gambler will either attain goal N or
go broke. Let P; denote the prob. that, starting in i, the gambler’s fortune will eventually reach N. By

conditioning on the outcome of the initial play of the game we obtain

P(Y|Xy=i) = P(Y|Xo=i,X;=i+1)P(X; =i+ 1]|X,=1)
+ PY|Xo=i,X1=i—1)P(X; =i—1|Xy=1).

That is
P = pPi+1+qu‘717 7’:17277N_1
P—-P = Yp-p_y), i=12..N-1
p
Hence, since Py = 0, we obtain
P-P = g(Pl—Po)Z gPh
p p
q q N—1
Py—Py.1 = —(Pnv-1—Pn_2)= () Py
p p
Adding together yields
2 i—1
Pi—P =P (q)+<q> +-'-+<q) ‘|
p p p
o (a/p)’
1— i
Pi: 1_(({1/1;) Pla Q/p#L
iPy, q/p=1.
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Using the fact that Py =1,
1—(q/p)
P = { G/ UPFL
/N,  q/p=1
and hence _
1—(q/p)’
pi_{ v UPFL
i/N, q/p=1
Note that as N — o0,
1-— Lop>1/2,
P (a/p)', p>1/
0, p<1/2.
Example 3.6.6 Determine the expected number of steps that an irreducible Markov chain takes to go from
one state i to another state j. We change j to the first site
i) R
p_ | PUI)
S Q

p[;g].

Let T; be the number of steps needed to reach state j. In other words, T; is the smallest time n such that

We then change j to an absorbing state,

X, = j. For any other state k, let T, ; be the number of visits to k before reaching j (if we start at state k,

we include this as one visit to k).

B(Ty|Xo = i) = EQY_ Tij|Xo =) = Y sun-
kg k#j

S1 gives a vector whose ith component is the number of steps starting at i until reaching j.

Example 3.6.7 A random walk with reflecting boundary, {0,1,2,3,4}.

0 1 2 3 4
oo 1lo 0 o]
12 0/3 00
P = 21010 1 o0
3/1]00(%2 0 1%
41000 1 0
If set finally at j =0, then
1 2 3 4
1o 12 o000
2 |1 o Lo
Q = O
310410 13
410 0 1 0
2 2 21
2 4 4 2
S=I-Q)!'=
T-Q 2 4 6 3
2 4 6 4
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Then

S1 =

Hence, the expected number of steps to get from 4 to 0 is 16.

3.7 Time Reversible Markov Chains

Consider a stationary ergodic Markov chain (that is, the chain has run for a long time) having transition
prob. p;; and stationary prob. m;. Suppose that starting at some time n, we trace the states going backward

in time. It turns out that the sequence of states is itself a Markov chain with transition prob. g¢;; defined by

P{Xm =7, Xm+1 = Z}

qJ { -]‘ +1 Z} P{Xerl _ Z}
_ P{Xn =3 P{Xm1 = i[ X =5} mpj
P{Xpi1 =i} T

To see the reversed process is Markov, we must verify that
P{Xm = j|Xm+1 =14 Xnt2, Xmi3, - - .} = P{Xm = j| X1 = i}
The reason is
P{Xmi2, Ximssy - [ Xina1, Xy - -} = P{X a2, Xonas, - | X1} = Xonak (Xina1), k > 2,

thus
P{Xm = j|Xm+1 = i7Xm+2(Xm+1>7X7R+3(Xm+1)a .- } = P{Xm = lem+1 = Z}
Therefore, the reversed process is a Markov chain with transition prob. given by g¢;;.
Definition 3.7.1 If q;; = pi; for alli, j, then the Markov chain is said to be time reversible. The condition
for time reversibility can also be expressed as a detailed balance condition,
Tipij = T;Pji, for all i, j. (3.5)
The above condition can also be stated that, for alli,j, the rate at which the process goes from i to j (numely,

mipi;) is equal to the rate at which it goes from j to i (numely, m;pj;).

Proposition 3.7.2 If equation (3.5) has solution, then the solution is the limiting stationary prob. ;.

However, it is possible that (3.5) has no solution. This is so since if

TiPij = TjPji, fOT all Za];zwl = 17

3

then summing over i yields
Zl’z'pz‘j =Tj iji = Zj,
i i

and, becuase the limiting stationary prob. w; is the unique solution of the preceding, it follows that x; = ;

for all i.
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Example 3.7.3 Consider a random walk with states 0,1, ..., M and transition prob.

Piji+1

Po1

Py,

aizl_pi,i—la izl)"'aM_la
ag=1—po,0,

ay =1—pya-1-

By observation, the MC' is time reversible. This follows by noting that the number of transitions form i to

1+ 1 must at all times be within 1 of the number from i+1 to i. This is so because between any two transitions

from i to i+ 1 there must be one from i+ 1 to i. It follows that the rate of transitions from i to i + 1 equals

the rate from ¢ + 1 to i. Thus

ToCo

T

T Qg

Solve to get

T, =

, M
Since Y~ m =1,

Qi—1 - O

7T2(1 — 042)7

(l—ai)~-~(1—a1)

T, i=1,...,M.

-1
aj—l RN T}

M
= 1+;(1—0‘j)"'(1—a1)

Example 3.7.4 One special case of above example is the Ehrenfest model. Suppose that M molecules are

distributed among two urns; and each time point one of the molecules is chosen at random, removed from its

urn, and placed in the other one. The number of molecules in urn 1 is a special case of the Markov chain

having

Hence

o =

and then

= jG—-1---1
M -t 1\ M
Mol =)
7=0

Example 3.7.5 Consider an undirected graph having a weight w;; associated with (i,j) for each arc. If at

any time the particle resides at node i, then it will next move to node j with prob. where

Py = wij
1] — )
E jwij




and where w;; is 0 if (i,7) is not an arc. For instance, in Fig. 3.4, p1o = 3/(3+1+2) = 1/2. The time

reversibility equation or the detailed balance condition reduces to

- wij — wji
7 - J .
> Wij > Wy

Since wi; = wjj,

LT BE—
Do Wi 2l Wi
Since 1 =3, m,
o XWi
' Zz Zj wij'
For the graph in Fig. 3.4, we have that
6 3 6 5 12
Mg Ty gy T ™ T g

Figure 4.1 A connected graph with arc weights.

Figure 3.4: A connected graph with arc weights.

More about detailed balance condition. If we try to solve detailed balance condition for an arbitrary

Markov chain with states 0, ..., M, it will usually turn out that no solution exists. For example,
TiPij =  ZjPji,
TkPkj = TjDPjk,

implies that
Zi _ PjiPkj
Ty PPk’

which in general not equal to pg;/pix. Thus, we see that a necessary condition for time reversibility is that
DikPkjPji = PijDjkPki, for all 4,7, k.
See counterexample in Fig. 3.5.

Theorem 3.7.6 An ergodic Markov chain for which p;; = 0 whenever pj; = 0 is time reversible if and only

if starting in state i, any path back to i has the same prob. as the reversed path. That is, if

Piyiy Pivio-Pig,i = PiigPigyin—1 " " Piy,is

for all states i,i4,...,10.
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Figure 3.5: Detailed balance condition has no solution.

Proof. We have already proven necessity. To prove sufficiency, fix states ¢ and j and rewrite above equation
as

Diiy Divig---Piy,jPji = PijPj,ixPik,ir—1 = " Dii-
Summing the preceding over all states i1, ..., yields

k41 k41
P,(j )sz‘ = pz‘jpgi ),
Letting & — oo yields
TiPji = PijTi,

which proves the theorem. m

Example 3.7.7 (PageRank) With the development of Internet, many companies are seeking the method-
ology of judging the popularity of all websites. This is called PageRank, which is proposed by Page and his
colleagues in 1998. They first labelled all the websites to obtain the state space I = {1,2,...,n}. When ith

website has link to the other m(i) number of websites, then we define the transition prob. from i to j as

ﬁ, when i is accessible to j,

0, else.

Obviously,
Zpij =1
jel
Since MC' has finite states, then all states are positive recurrent when all states communicate. Assume
aperiodic. Thus ergodic finite-state Markov chain gives a unique stationary distribution.
For the stationary distribution m = {m;}, m; reflects the visiting prob. for the website j. When j th website

becomes more popular, it will be visited more times, and thus m; reflects the popularity of the website j. One
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can rank the website based on the each ;.

Not all websites communicate or some garbage websites construct many links to themselves via virus, and
thus the model needs to be improved. For example, the garbage website usually is visited for a short period,
so that one can design a more reasonable prob. model. Also for example, for those websites having no links

to others, one can modify the transition prob. matriz to be a weighted one, P=aP+ :l_T"‘E

3.8 Hidden Markov Model

3.8.1 Introduction to HMM

e Let {X,,,n = 1,2,...} be a Markov chain with transition prob. p;; and initial state prob. 71'50) =

P(Xg=14)i>0.
e A signal from & is emitted each time the MC enters a state. See Fig. 3.6.

Figure 3.6: Hidden Markov Model.

o We have

P(S1 = s|Xi=j)=q(sl), Y alsli)=1,
sed
P(Sn = 3|X17517~-Xn—175n—17Xn :]) = P(Sn = 3|Xn :J) = Q(slj)

e 51,95,... are observed while X7, Xo,... are not.
This is called a Hidden Markov Model.

Example 3.8.1 A machine has 1 good state and 2 poor state. The transition prob. is

12
1109 01
P =
2 [ 0 1 ]

Each item produced is of acceptable quality with prob. 0.99 when the process is in state 1.
Each item produced is of acceptable quality with prob. 0.96 when the process is in state 2.

If item accepted or not can be observed, while the state of the machine cannot be observed (HMM).

q(a|ll) = 0.99, g¢(ull)=0.01,
q(al2) = 096, ¢(ul2)=0.04.
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e {S,,n > 1} is not MC.

o " = (S1,...,5,) is a random variable.
S = (s1,...,8k) is one observation.
Define F,(j) = P(S" = 5,, X,, = j), then

P(X, =jlS"=3,) = _ -

Now,

Fn(J) = P(S’nil:gn—lasnzsnaXn:j)
Zp(gn71 =81, Xn-1=1,5, = sp, X = .7)

ZP(gn_l = §n717Xn71 = 'L)P(Sn = Sn;Xn = j|§n_1 = §’I’L717X7’L71 = Z)

i

I
g
-

1) P(Sp = $ny X = §| Xp_1 = ).
Notice that
P(Sn = 5n7Xn :j|Xn—1 = Z) = P<Xn = j|Xn—1 = Z)P(Sn = 3n|Xn = ijn—l = 7/)
= pija(snlj)-

Then
F.(j) = Zanl(i)piJQ(3n|j) = Q(an) Z anl(i)pij'

Starting with

Fi (i) P(S; =51, X1 =1i) = P(S' = 51| X1 = i) P(X1 = 9)

" g(s1]i).
We can use Eq. (3.6) to recursively determine F(i), F3(%),... up to F,(i).

Example 3.8.2 (Cont.) P(X;) =0.8. The first 3 items are a,u,a.

(1) What is the prob. that the process was in good state when the 3rd item was produced?
(2) What is the prob. that X4 is 17

(8) What is the prob. that the next item produced is accepted?
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Sol. §5 ={a,u,a}. We have

F(i = 1)=7%q(ali =1) = (0.8)(0.99) = 0.792.

F(i = 2)=7%q(ali =2)=(0.2)(0.96) = 0.192.

Fy(i = 1) =q(u)[F1(1)p11 + F1(2)p21] = (0.01)[(0.792)(0.9) + (0.192)(0)]
= 0.007128

B = 2)=qul2)[Fi(1)pi2 + Fi(2)pa] = (0.04)[(0.792)(0.1) 4 (0.192)(1)]
= 0.010848.

F(i = 1) =q(a|))[Fa(1)p11 + F2(2)pa1] = (0.99)[(0.007128)(0.9) + (0.010848)(0)]
= 0.006351.

F(i = 2)=q(a]2)[Fa(1)pra + F2(2)pa2) = (0.96)[(0.007128)(0.1) + (0.010848)(0)]
= 0.011098.

(a) We have
P = 18 P(Xs=1,5%) _  F(1) 0.006351

TS P(Xs=1i,|55)  Fs(1)+ F5(2)  0.006351 + 0.011098
= 0.364.

(b) Conditioning on X5, we have

P(X, = 1]5)=P(Xy=1|X3=1,5)P(Xs = 1|33) + P(X4 = 1| X35 = 2, 5) P(X3 = 2|55)
= (p11)(0-364) + (p21)(1 — 0.364) = 0.3276.

(¢) Conditioning on X4,

P(S4 = a|§3) = P(S4 = a|X4 =1, §3)P(X4 = 1|§3) + P(S4 = a\X4 =2, §3)P(X4 e 2‘§3)
= P(S4 = a|X4 = 1)(0.3276) + P(S4 = a|X4 = 2)(1 — 0.3276)
= (0.99) (0.3276) + (0.96)(1 — 0.3276) = 0.9698.

See reference in [9].

3.8.2 Key ingredients to HMM

(1) transition prob. matrix p;; = P(Xp41 = j| X, = 1).

(2) observation prob. distribution. ¢(s|j) = P(S, = s|X, = j).
(3) initial state distribution. 7'('1-(0) = P(Xo =1).

Compact notation: A = (p,q, ).

3.8.3 Three Basic Problems for HMMs

Compared to the traditional Hidden Markov Model (HMM), the RNN, LSTM become more popular
nowadays and receive more attentions. In order for HMM model useful in real-world application [9], we

present 3 basis problems:
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(1) (probability computation problem) Given observation 3§, = (s1,...,5,) and a model A = (p,q,7),

how to efficiently compute P(5,|\), the prob. of the observation sequence given the model?

(2) (decoding problem) Given observation §, = (s1,...,5,) and a model A = (p,q, 7), how to choose a
state sequence X = (Xi,...,X,) which is optimal in some meaningful sense?
(3) (learning problem or inverse problem) Given observation &, = (si,...,8,), how do we adjust or

estimate the model parameter A\ = (p, ¢, ) to maximize the likelihood P(5,|\)?

3.8.4 Forward and Backward Approaches for Problem 1

Forward approach

—

Compute P(S™ = 5,) by = >, F;,(i) for i = 1,..., N and recursive formula,

Ful) = a(suli) 3 Fuea(i)pis.

Notice that Fy(i = 1),...,Fi(i = N) is O(N), Fy3(i = 1),...,F2(i = N) is O(N), gives total complexity is
O(nN?).
Direct computation

by conditioning on the first n states of the Markov chain.

P(S" = 5)= )Y P(S" =5, X1 =i1,..., Xp = in)P(X1 = i1,..., Xp = ip)
) ) 0
= > alsili) - alsnlin) Tl pisis Doy
where made use of

P(X1,...,Xn) = P(Xp|Xp_1)P(Xn-1|Xn_2) - P(Xa|X1)P(X1),
P(Su|S1 ... Sp_1A)P(Sp_1|S1 ... Sn_2A) - P(S;]|A).

o]
N
s
=
S
S
I

The complexity is O(N™).

Backward approach

Define the quantity
Bi(i) = P(Sk41 = Sk41. -+, Sn = sn| Xi = 1).

A recursive formula for By(i) can be obtained by conditioning on X1,

By(i) = ZP(Sk+1 = Sp41, O = sn| X = 0, Xpy1 = J) P(Xpq1 = Jj| Xp = 1)
J

ZP(Sk+1 =8kt1, 0 S0 = 50| Xpp1 = j)pij
J

D P(Ski1 = skl Xisr = §)P(Skaz = k12,7, Sn = 5al k1 = ska1, X1 = 5)piy
j

> a(sk411)P(Ski2 = Skr2,++  Sn = $nl Xir1 = )i
i

Z q(8k+117)Br+1(5)pij-
J
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The initial condition is

Bn—l(i) = P(Sn = 5n|X7L—1 = Z) = ZP(S'IL = Sn‘Xn—l =1, X, = j)P(Xn = j|Xn—1 = Z)
J
= ZpijQ(Sn‘j)'
J
Determine the funtions B,,_2(%), B,—3(), . .. subsequently. Finally,

PS" = 5)=> PE" =5|X =i)r”

ZP(Sl:81|X1:i)P(SQZSQ,...,S —Sn‘Sl—Sl,Xl—Z) (0)
= Z (s1]i)P(Ss = $2,...,Sp = sn| X1 = )"

qul\ )3, (1))

Both Forward and Backward approaches
Suppose that we have computed Fj(j) and By (j) for some k,

P(g" = §n7Xk:J):P(§k:§’k7Xk :j)P(SkJFl’7Sn|§k:§k7Xk:j)
= P(S* =54, X = )P(Sks1,- - Snl Xk = 7)
= F.(j)Bk(j)
Thus,
=5 ZP " =5, Xk =) :ZFk(j)Bk(j), for any k.

One can first parallel compute Fy, (j) and By (j), recursively.
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Chapter 4

Markov Chain Monte Carlo (MCMC)

Key concepts include:

e important sampling,

e Metropolis-Hasting (MH) sampling,

e Hamilton MH sampling

e 1D data sampling

e Monte Carlo sum, see [13| # &% 47

e The algorithm and realization of MH sampling (discrete and continuous, Metroplis algorithm, ¢ is
symmetric)

e Gibbs sampling, see chapter 6 of [5],

e MCMC, advantage and disadvantage, see chapter 6 of [5],

e other notification, including burn-in. see Handbook [3],

e Hamiltonian Monte Carlo (HMC), see chapter 5 of Handbook [3],

e Vanilla MCMC, see zhihu PR II

e Choice of transition ¢, paper in John Harlim’s book see [4].

4.1 Monte Carlo Methods

4.1.1 deterministic vs. stochastic

(1) deterministic is preferred for low dimension problems, numerical differentiation or integral for ODE
and PDE problems.

(2) stochastic is preferred for high dimensional problems.

4.1.2 background

Monte Carlo77 # & X 17 F| Fl AL 407 7| R B ALAE L 9 X KRB 7 E AN, ZRFTENER R
BMAZA, EEREFNSMAHNAFERKAINATELETNEANKET EZ—®

Monte CarloA & E 4 & (Monaco) I3 4 W3, % Z kK F KB #N. MetropolisfE Z #4711+ X # B
HEBERHERHAENEE ZFHENZA, TRERHE 4 RMENREAEDE ER LK,
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4.1.3 difference bw some terminology

Markov chain is a concept for the property of a time series or a continuous-time stochastic process.

Monte Carlo is terminology for all stochastic simulation, in particular, referred to the summation of an
integral using stochastic approaches.

P TR AL B LB SR AR

MCMC is a sampling approach.

4.1.4 statistical mechanics

Stochastic Monte Carlo approach is different from the deterministic numerical discretizaiton approach
since the latter one is often used for ODEs and PDEs to describe the physics or mathematical systems.
Monte Carlo studies the system from microscopic point of view based on the concept of pdf for many
particles. In around 1950, people use pdf of many particles to calculate various macroscopic quantities,
including temperature and heat capacity, which are usually high dimensional problems. Since too many
particles or say the dimension of phase space is very high, the computation of expectations or numerical

integrals for high dimensional space becomes extremely important.

4.1.5 applications

statistical mechanics, then quantum chemistry, material science, biological mathematics, financial math-

ematics, deep learning.

Example 4.1.1 (Deterministic) Consider the integral,

1(f) = / f(x)d.

For equi-distance partition (see Fig. 4.1), that is, 0,1/N,..., (N —1)/N,1, one can apply the Simpson method

1 s 1
I(f) = (if(ffo) + Z flxi) + if(ifN))fh
i=1

which is of order h? = O(N~2). One can also apply the Darbouz sum

N—-1 N
I(f)= Y flwh, orI(f)=)_ f(zih,
1=0 =1

which is of order h = O(N~1).
(A& i)

Example 4.1.2 (Stochastic) I(f) = Ef(x) when X ~ U(0,1). Law of large number. We have the Monte

Carlo method for numerical integration:
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Figure 4.1: Equi-distance partition of the interval [0, 1].

where X; (i=1,2,...,N) are i.i.d. uniformly distributed ~ U(0,1). Obviously, In(f) is unbiased and weakly
consistent (converges in prob.)
Pf. First show that In(f) is unbiased,

Eln(f)=E

Denote

as a random variable with Eenx = 0. Then

Elex? = B(n(f) - I(H) = Bl 32 () ~ (D)

1 Nl: 9
= W2 Z:: a; —i—;QEalaJ _NEal
1
= LB~ () = Var(f) 0.

Therefore, by Chebyshev inequality, one can obtain the weak consistency:

Var(en) Elex|?
g2 B

— 0.
62

P(Inf—1f|>¢)<

By Schwartz inequality,

Blexl < VBT =y L5 ~ 2

If Var(f) < oo, then the convergence rate for Monte Carlo is 1/2.

Example 4.1.3 (Project 1) Consider the integral

/2
/ sin(x)dx = 1.
0

The Monte Carlo approximation is



where x; is i.i.d. ~U(0,1). Then fix m = 100 independent trials. Take many different N = 10,20, 40, 80, .. .,
640, 1280, 2560, 5120, 10240. Let e?v be the error for the jth trial under a given N. Define

m
= l ej
N m E N
Jj=1

Then plot logen vs. log N (similar to the follows in Fig. 4.2).

Figure 4.2: Error ey as a function of the number of particles N.

f) = /0 J(@)p(a)de

where p(x) is a pdf s.t. fo x)dx = 1,p(x) > 0. Then

Example 4.1.4 For general integral,

N
Z (x;), with x; i.i.d. with pdf p(x).
Example 4.1.5 For I(f fo x)dz, then
N
1 fs)
In(f) = ~ ,
N(f) N; (@)

Usually, p(x) can be approzimated by kernel density estimation or histogram.

i i.i.d. with pdf p(x).

Example 4.1.6 Multivariate case. Consider the hyper-cubic Q = [0,1]? in R? and the integral

:/.../Qf(a‘c’)p(f)df, #=(1,...,2q),

where p(Z) is a pdf s.t. fo Z)dZ = 1,p(Z) > 0. For determinisitc approach, assume that [0,1] is equi-distance
partitioned into n intervals for each dimension (see Fig. 4.3). Then the accuracy is still O(n~2) = O(N~1).
However, the complexity requires O(N = n?) amounts of computation.

On the other hand, for Monte Carlo, {x;}}, i.i.d. pdf is p(x). Let

I (f): Mwaz = 1(f),
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with the convergence rate of M~'/? and the complexity of O(M). If we let the same accuracy M~'/? =
O(n=2) = O(N~2/4), then we obtain that M = O(N*/9). Thus when d > 4, we have M < N, which means
that the complexity of Monte Carlo is smaller than the Simposon method.

Figure 4.3: Equi-distance partition of a rectangular domain.

Example 4.1.7 In Statistical Mechanics,

(A)y=— [ A@e Mg,
Z Jpon

where B = (kgT) ™ is the inverse temperature, kg is the Boltzman constant, T temperature, d¢ = d& - - - dZy

dpy - - -dpn, N is number of particles, and

Z = / e PI@ g,
R6N ’

is the partition function. 4 RAE F EBAE 10004 F, W Monte CarloFr #1001z 5 & (% B A w7 £ R
M FENTEE )R NBEREEARA L FER ARMI0OOKEH A TN, GHENEEESHW
BARKKNTENTE L REKERWN, T, R Monte CarloT WMkt REFHENER, (2
REABEHREWEANRE/LFR2E -k, BAXMHF LTS EEHNHNTEA LT LI E
BT E K

4.2 Generation of Random Numbers
random numbers usually are not i.i.d. in computer, but called "pseudo random".

4.2.1 generation of random numbers from U(0,1)

1. Midsquare method
CFHEFED
In the early development of computers, Von Neumann and others generated pseudo random numbers

using midsquare method. For example, first take a 4-digit number 3333 and square it to obtain 11108889.
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Take the mid 4 digits 1088 and square it to obtain 1183744, and so forth. Every number 3333, 1088, 1837,
divided by 10? to obtain a pseudo random number between [0, 1] with uniform distribution. However, the
maximum cycle length of the approach is less than 10, and its statistics is not very good while this algorithm

was early used in the computation of nuclear reaction.

R A E EFRKE

2. Linear congruential algorithm

(RERE &)
In the random number generator of U(0,1), one early popular method is called linear congruential

algorithm. The algorithm is as follows:
Xpt1 = aX, + b(mod m),

where a, b, m are given integers. One important criterion for judging a random number generator is the called
maximum cycle length. In the same period, the longer the maximum cycle length, the better the performance
of the generator. For example,

m=2F a=4c+1, bisodd.

3. Magic "16807"

(42 B9 " 16807")
19694, Lewis, GoodmanfiMiller#® H 7 40 T & 4 &

Xpt1 = aX, (mod m),

H HEBla =75 = 16807, m = 231 — 1 = 2147483647. Shrage %4 T — /M EH L H 2z LR F = F 20
Bk, IHEBINHENE L EBRABEARKETAE21 x 10°. BALABEFER T Yt ey g Eib R,
AR A T /N K 25 (Minimal standard generator) (B35 iy X £ B W R EW HEX, EVEHIAF X —
KEBHRE).

Jak, £TX—%%, L'Ecuyer X A ATi8Bays-Durham #E# 5 & (L XHER[6]) 4 T — M EHEAHE
MK EE, ERABIHKEILRIA23 x 1018, EHRETHNFLHER|F, 2T X —HHMmE AL
Fran2(). ZHEHFH, WREAEEHEN LRAEEAM SRR LR MNEG, # 4 2%1000% 1!

MALE AL A ERFATHNENNES, WREF - ANTEAENELERE, TR TELERATHFT
fz, EFRIEVEEEAZLIAENRN., RAWENBELEERLFE, MAREBETREUEAEF. 7
S, MEFHEFROCEES, RAIVEFE TS|+ B F UL K www.netlib.org F B EE LI K & &

4.2.2 generation of random numbers with general distributions

1. Transformation method
(R #H)
Proposition 4.2.1 Let a random variable Y with the distribution function F(y), that is
P(Y <y)=F(y).

If another random variable X ~ U(0,1), then Y = F~1(X) satisfies the desired distribution.
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Proof. Since X ~ U(0,1) and Y = F~1(X), so that

P{Y < y}=P{F'(X)<y}
= P{X<F(y)}=Fy).

Based on above prop., if we already have random variables X;(¢ = 1,2, --) uniformly distributed on
(0,1), then Y; = F~1(X;) is randomly distributed with distribution function F(y). The larger the pdf is, the
steeper the cdf is. The smaller the pdf is, the flatter the cdf is. See Fig. 4.4.

Fly)

Yz Y

(@l
B 72 YHEEFEEREOREH W73 Y E‘Jﬁﬁ;(ﬁxﬁtﬂi

Figure 4.4: The probability density function (pdf) and cumulative distribution function(cdf) of a random
variable Y.

Example 4.2.2 (Project 2) (Exponential Distribution) Let the exponential distribution with pdf
() = 0, y <0,
Py Xe M.y >0,

Its cdf is F(y) =1 —e Y. Then

F~lz) = filn(l —z), z€(0,1).

Based on the transformation method, the exponentially distributed random variable can be obtained by
1
Y= I(l-X;), i=12.-
where X; ~ U(0,1). Check the pdf usign histogram or Kernel Density Estimation (KDE). Or check the

statistics based on p-value using x2-test.

Example 4.2.3 (Normal Distribution) The normally distributed variable has the pdf

1 22
e 2

and its cdf is

F(z) = /_9; p(y)dy = % + %erf (\%) ,

where erf (x) = % fom e~ dt is called the error function. Thus, F~'(z) = v/2erf (22 — 1) . However, it is
directly realized during numerical implementation since erf ' is difficult to compute. This means that the

transformation method has limitation.
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Box-Muller method

To generate normally distributed random variables, we use the following well-known Box-Muller method.

Notice that
“+o0 R 2 “+o0 “+o00o R R +oo 27 R
(/ e " da:) :/ / e~ @) dudy :/ / e " rdrdd = m,
oo —oo J—oo 0 0

on which the Box-Muller method is based. Let (x1,22) = (rcosf,rsin@), then

1 _=f+e3 1 _.2 1 2
—e 52 dridre = —e~ 2 rdrdd = | —db (e_Trdr> .
2w 2w 2w

7‘2 . .
In 6 direction, % is the density for the uniform distribution U(0,2x). In r direction, e~z r is the density

§2 7‘2
corresponding to the distribution function F(r) = for e~ zsds =1— e 7. Thus, random variables (Y1,Y5)

for the two-dimensional normal distribution can be generated through

V) = v/—2In X7 cos(2m X>),
}/2 — \/Tn)(lsin(2ﬂ-X2)7

where X7 and X5 are independent random variables satisfying U(0,1). Notice that
F7l(r)=+y/—2In(1 —7),

where 1 — 7 ~ U(0,1) and r ~ U(0,1). Then the above expression is written in this way since Y3 = r cosé
and Y5 = rsinf, where 0 = 27 X5 and r = v/—21n X;.

Acceptance-rejection method

Not introduced at this moment. The idea is kind of similar to MCMC.

4.2.3 technique for reducing the variance

The error of Monte Carlo is o/v/N, where o = (Var(f))/?.
The rate 1/v/N usually cannot be improved!

But the constant o can!

Importance sampling (Project 2)

If iid. 2; ~ U(0,1), then

On the other hand,

where p(y) is a pdf. Then

where i.i.d. y; ~ p(y).
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Figure 4.5: Sketch for importance sampling.

Let’s see Fig. 4.5 for the sketch for importance sampling. The nonzero values of the integrand function
f(x) are focused in the interval (a,b). If using x; ~ U(0,1), then many samples of z; lie out of the interval
(a,b) and these samples are used for computing the integral foa f(z)dz + fbl f(z)dz = 0. This means that
we spend amounts of computation to calculate the integral part that does not contribute to the final result.
Thus, the efficiency is low and also the accuracy is low. On the other hand, if we take p(y) proportional to
f(y), most samples are used to compute the dominant part of the integral. This is called the importance
sampling and p(y) reflects the important part of f(x).

Theoretically, we can analyze the error from variance point of view:

Vary(f) = /0 f — I(f)Pda = / 2z~ (f),

f AN
vavdy = [ (—) py — I%(f / E gy r(s). (4.1)
p o \P
Here, we notice that since
ex =Ix(f) = I1(f), ey =1Iy(f)—I(f),
their means are
EGX = 07 Eey = 0,

and variances are

Blex|* = —VMK; ) )
2 _ . 2 _ i al f(wi) _ 2
Eley| E(Iy(f) = I(f)) E[NZ(p(yi) 1(f))]

1
ZEb2 Z2Eb b | = B0

i<j

- ye(2 (y”—f(f)) = tvarv(L),

I
-
=
oS
i
&
N——
[ V)
||




In equation (4.1), if we take an appropriate p(y), s.t. fol f;dy < fol f?dz, then the variance reduces
Vary( ) < Varx(f). In particular, if p(y) = JIC((?;) x f(y), then
24 ' 2 2 >
vae)= [ Ly =10 [ ga- iy =P - Py =o
0

This means that when the importance of p(x) is the same with that of f(x), the variance becomes 0 and we

obtain the exact integral value. However, in practice this is difficult to realize due to two reasons. First, for

p(y) = %, it is impossible for us to prior get the value of I(f) in the computation of Iy (f) := Ziv 1 ﬁ(;”)

Second, it is not trivial to get samples with density p(y) « f(y) (while can be done using MCMC).
EEUMAESZR T A RAE RGN RER, CRBT RIS EA RN T MAEE I LA
Y B F R AT IR B B R .
Advantages of importance sampling over simple Monte Carlo (uniform sampling)
e Can significantly improve performance, by reducing the variance
e Can use samples from a different distribution, say ¢, to compute expectations with respect to p
e Can compute the normalization constant of p, as well as Bayes factors
Disadvantages
e Need to be able to evaluate the pdf/pmf p(z) and ¢(z), at least up to proportionality constants

e It might not be obvious how to choose a good ¢

Control Variate method, modification of importance sampling

2% B
The basic idea here is to use a random variable with given statistics (such as the mean) to control another

random variable with unknown statistics. For example,

/01 fla)dz = /Ol[f(fﬂ) — g(2))dz + /Olg(x)d%

with fo x)dzx is already known. Then one can use Monte Carlo to obtain

=¥ Z () )] + I(g), with ; ~iid. U(0,1).

If Var[f — g] < Var[f], then the constant coefficient is reduced while the convergence rate is kept the same.

In extreme case, when f = g, then Var[f — g] = 0.

Example 4.2.4 Consider the integral,

I(f) = /_O:O \/%(1 +r)lem T da,

where r = e (o > 0). Notice that
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4.3 Introduction to Markov Chain Monte Carlo (MCMC)

4.3.1 Application of MCMC

(1) MCMC can be used to generate samples from a given pdf, and then possibly be used for Monte
Carlo sum.

(2) Statistics have two popular methods, frequentist statistics and Bayesian statistics. The main
differences are listed in Table 5.1. Once you understand the Bayesian approach, it seems so natural that it is
hard to imagine any alternative. In fact, there was no satisfying alternative until the early 1900’s, when Karl
Pearson, Jerzy Neyman, Egon Pearson, and Ronald Fisher initiated what is now called frequentist statistics.

Both can be used for parameter estimation. For Bayesian inference,

pwl0)p0) _ _ p(yl0)p(0)
p(y) [ p(yl0)p(0)do’

where y is data and 6 is model (or paramters of model), MCMC is one popular approach, which can be

p(0ly) =

used for uncertainty quantification. However, MCMC is not appropriate for too large amount of data or
too complicated model. Another Bayesian approach is variational inference which involves Kullback-Leibler
(KL) divergence.

(3) The development of MCMC and its connection to statistical mechanics.

The popular application of MCMC starts from the development of statistical mechanics. In statistical
mechanics, an ensemble average is thought of as a concept that the macro state we see is the prob. average
of many micro states in equilibrium (see Fig. 4.6). The prob. here usually corresponds to Gibbs measure
(a more general used terminology for both finite and infinite systems) or Boltzmann distribution (a term for
finite systems). For examle, here is a box containing many gas particles in equilibrium and we can measure
their temperature, pressure, etc. In SM, this macro system, in fact, corresponds to many micro systems, and
its macro quantity is the statistical average of the quantities of these many micro systems. In mathematics,
the discrete and continuous cases are

Aoy = 3PN (g,

o

wm::/%tﬁ@h@m

where Z =3 exp{—fH(0)} and Z = [ exp{—f3H/(o)}do are partition functions.

The following is the statement of equilibrium statistical mechanics. Each of the m subsystems are
independent. each one at a time corresponds a micro state but at any time the prob. distributions of these
microstates are invariant. Metropolis has another point of view of this problem. Since macro quantities, such
as temperature, are invariant in equilibrium with respect to time, this means that the time average should

be the same as the ensemble average, that is
L N
(A@) ~ 5 D Al),
i=1

where {U(Z)}izl is the time series of the states evolving under the physics law. We notice that usually a
physics law gives us a Makovian process. The equality between the the ensemble average and the time average

is referred to as ergodicity in SM. In mathematics, the Metropolis algorithm is based on the ergodic theory.
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Figure 4.6: Ensembles in equilibrium.

Table 4.1: Comparison between frequentists and Bayesians.

frequentists

Bayesians

Hypothesis testing

Set null and alternative hypotheses
and use statistical tests to assess

evidence against the null.

Consider prior beliefs when forming

hypotheses.

Probability Frame probability in terms of Interpret probabilities subjectively

interpretation objective, long-term frequencies. and update them as new data is
collected.

Sampling Emphasize random sampling and Can adapt well to varying sample

often require fixed sample sizes. sizes since Bayesians update their

beliefs as more (observed) data
comes in.

Assumption Parameters that you estimate are There is a probability distribution

fixed and are a single point while

samples are random variables

around both the parameters and the

samples.

The regime for

application

Law of large number using a large

amount of data.

Probability is degree of belief.
Applicable when one has limited

data, priors, and computing power.
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4.3.2 Metropolis-Hasting Algorithm

Monte Carlo simulation

Let X be a discrete random vector whose set of possible values is ;. Let the probability mass function

of X be given by P{X = x;}, and suppose that we are interested in calculating
0= E[h(X)] =) h(z;)P{X = x;},
J

for some specified function h. In situations where it is computationally difficult to evaluate the series, we
often turn to simulation to approximate #. The usual approach, called Monte Carlo simulation, is to use
random numbers to generate a partial sequence of random vectors X1, Xs, ..., X,, having the mass function

P{X = z;}. Since the strong law of large numbers yields

n
. h(X;)
Jm, 2 = =
it follows that we can estimate 6 by letting n be large and using the average of the values of h(X;),i=1,...,n

as the estimator.

Discrete Case

The condition:

(1) X is a vector of dependent random variable whose samples cannot be generated via independent
sampling technique.

(2) We only know P(X = z;) o b(j) but do not know the normalization factor. Assume that B =3_, b(j)
is finite so that the pmf is P(X = z;) = b(j)/B = n(j).

The MH algorithm is given as:

Step 1. Let @ be any specified irreducible Markov transition prob. matrix with entries ¢(i, ).

Step 2. At the nth step, given X,, =4, draw a proposal Y = j with prob. P(Y = j) = q(4, ).

Step 3. Accept the proposal X,,+1 =Y = j with prob.

a(i, §) = min (b(j,.)qg’l.') : 1) :
b(i)q(i, 5)

Otherwise, reject the proposal and set X,,41 = X,, = ¢ with prob. 1 — «(i, ).

Remark 4.3.1 For the MH algorithm, we do not need to know the exact the distribution 7, but only need to
know b(j) which is different from w(j) by a normalization constant. The algorithm is OK when only b(j) is

given.
Remark 4.3.2 Numerically, draw a sample z ~ U(0,1), and set
X — { Y =j, ifz<af(ij),
X, =1, otherwise z > a(i,j).
Remark 4.3.3 One can see that the sequence of states constitutes a Markov chian with transition prob. p;;

given by

q(@, j)ali,j), if j#1,
Q(ia Z) + Z Q(iv k)(l - a(ia k))

ki

Dij

Dii
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This Markov chain will be time reversible and have stationary prob. w(j) if

m()pi; = w()pji,  forj#i,
W(Z)Q(luj)a(laj) = F(])q(],l)()&(],l) (42)

We now check that the detailed balance equation (4.2) is satisfied in the MH algorithm. If

b(4)q(j,1)

b(alig) =

a(i, j) =
then a(j,i) = 1 since %% > 1 and equation (4.2) follows. If a(i,j) = 1 then similarly again Eq. (4.2)

follows.

Continuous Case

Consider a Markov transition kernel density ¢ : £ x E — R™ such that [, q(z,y)dy = 1, Vo € E. The
MH method generates samples {x;} of a target density 7(z), as follows:

Step 1. At the ith step, given x;_1, draw a proposal u ~ g(z;_1, ).

Step 2. Accept the proposal, x; = u with probability min(a(x;—1,u),1). Otherwise set x; = x;_1. Here,

W(U)Q(ua 'ri—l)
m(xi-1)q(zi-1,u)

Practically, we don’t need to know the normalization constant for 7w since only the ratio of 7 is needed

a(wi-1,u) =

to determine the acceptance rate above. Numerically, this step can be realized by drawing a sample of the

standard uniform distribution, z ~ U[0, 1], and then setting,

u, if z < a(zi_1,u),
€Xr; = .
x;—1, otherwise z > a(x;—1,u).

First, let’s investigate why should we believe that z; is a realization of the chain with stationary density
m(z). First of all, let z; be a Markov chain with transition density p(z;_1, ;) and we want to show that = is
the stationary density. That is, we want to show that the chain generated by the MH method above satisfies
the detailed balance condition. Notice that based on the MH method, we can write the transition kernel
p(x;—1,u), which quantifies the probability of accepting u at the ith step given a realization of the chain x;_;

at the (¢ — 1)th step, as a product of the probability of proposing u and the probability of accepting u,
p(xi—1,u) = g(x;—1, u) min(a(x;—1,u), 1).

Thus,

m(u)q(u, ;-1)
m(wi—1)q(zio1,u) ’
m(@i—1)g(zi—1,u)
m(u)q(u, zi—1)
= w(u)q(u, z;—1) min(a(u, ri—1),1)

m(xi—1)p(xio1,u) m(xi—1)q(z;i—1, u) min(

= 7(u)q(u,x;—1) min(1,

= 7(wp(u,z;-1),
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which means that x; generated by MH method satisfies the detailed balanced condition (so that stationary) so
m(x) is the stationary density. To verify theo retically whether we obtain samples of 7 if we implement the MH
method sufficiently large 4 is simply equivalent to asking whether the chain is recurrent and aperiodic (which
is the hypothesis for the convergence). Detailed study of the convergence rates of some Metropolis-Hastings

kernel densities were reported in [11].

Remark 4.3.4 We should remark that if the proposal transition density q is chosen to be symmetric, q(x,y) =

q(y, ), then the resulting method is known as the Metropolis scheme, with an acceptance rate,

m(u)

a(z—1,u) = p—

This is Metropolis scheme.

Intuitively, this rate compares the probability of the proposal u to that of the previous chain value, r;—1. A

popular choice of symmetric proposal density is Gaussian which yields the random walk Metropolis proposal,
q(wi—1,u) = q(ulr;—1) = N(zi-1,C),
for some proposal covariance matriz C. Numerically, we realize the sample as follows,
w=xi_y +CY%, & ~N(0,I).

Remark 4.3.5 There are many choice of q in history.

(1) Tierney, 1994, Markov chain for exploring posterior distributions.

(2) Chib and Greenberg, 1995, Understanding the Metropolis-Hasting Algorithm.
(8) Hastings, 1970, q(x,y) = g2(y).

Remark 4.3.6 Vanilla MCMC was abandoned long time ago since its acceptance rate is too low. For Vanilla
MCMC,

a(i,j) = m(5)a(j,9), aj,i) =m(i)q(ij).
The low acceptance rate is caused by the too small values of above (i, j) or a(j,i). Nowadays, it is still an

important and popular topic to increase the acceptance rate, for instance, by using Hamiltonian MCMC

and Langevin dynamics MCMC.

Remark 4.3.7 (How useful MCMC is and why it works) In many real-world applications, we have to deal
with complex probability distributions on complicated high-dimensional spaces. On rare occasions, it is possible
to sample exactly from the distribution of interest, but typically exact sampling is difficult. Further, high
dimensional spaces are very large, and distributions on these spaces are hard to visualize, making it difficult
to even guess where the regions of high probability are located. As a result, it may be challenging to even
design a reasonable proposal distribution to use with importance sampling.

Markov chain Monte Carlo (MCMC) is a sampling technique that works remarkably well in many situ-
ations like this. Roughly speaking, my intuition for why MCMC often works well in practice is that
(a) the region of high probability tends to be "connected”, that is, you can get from one point to another
without going through a low-probability region, and
(b) we tend to be interested in the expectations of functions that are relatively smooth and have lots of "sym-
metries”, that is, one only needs to evaluate them at a small number of representative points in order to get

the general picture.
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MCMC constructs a sequence of correlated samples X1, X, ... that meander through the region of high
probability by making a sequence of incremental movements. FEven though the samples are not independent,
it turns out that under very general conditions, sample averages % Zfil h(X;) can be used to approrimate
expectations Eh(X) just as in the case of simple Monte Carlo approximation, and by a powerful result

called the ergodic theorem, these approximations are guaranteed to converge to the true value.

60 -

40

0 2000 4000 6000 8000 10,000
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Figure 4.7: Burn-in is important for MCMC.

Remark 4.3.8 Burn-in is important for MCMC so that at least one long run is required (see Fig. 4.7). For
diagnostics, many relatively-long runs are preferred for detecting the pseudo-convergence. A Markov chain
can appear to have converged to its equilibrium distribution when it has not. This happens when parts of the
state space are poorly connected by the Markov chain dynamics: it takes many iterations to get from one
part to another. When the time it takes to transition between these parts is much longer than the length of
stmulated Markov chain, then the Markov chain can appear to have converged but the distribution it appears
to have converged to s the equilibrium distribution conditioned on the part in which the chain was started.
We call this phenomenon pseudo-convergence. This phenomenon has also been called "multimodality "
since it may occur when the equilibrium distribution is multimodal. But multimodality does not cause pseudo-
convergence when the troughs between modes are not severe. Nor does pseudo-convergence only happen when
there is multimodality. Some of the most alarming cases of pseudo-convergence occur when the state space
of the Markov chain is discrete and "modes” are not well defined (Geyer and Thompson, 1995). Hence

pseudo-convergence is a better term.

Remark 4.3.9 (Advantages and disadvantages for MCMC.)
Advantages of MCMC:
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e applicable even when we can’t directly draw samples. When we know nearly nothing about the model, we can
apply MCMC for initial tests to give us something while not always give correct results or accurate results.

e works for complicated distributions in high-dimensional spaces, even when we don’t know where the regions
of high probability are (while MCMC is not guaranteed to give correct results). Notice that in high-dimensional
spaces, the density w(z) is hard for visualization, but on the other hand, the samples {z;}¥.| can be used to
compute expectations of interested functions E f(x) or even for visualization.

e relatively easy to implement

o fairly reliable for sufficiently long runs.

Disadvantages:

e slower than simple Monte Carlo or importance sampling (i.e., requires more samples for the same level of
accuracy)

e computationally expensive in high dimensional spaces, or in multimodality cases, or when model
s complicated.

e can be very difficult to assess accuracy and evaluate convergence, even empirically. There is a great deal of
theory about convergence of Markov chains. Unfortunately, none of it can be applied to get useful convergence
information for most MCMC' applications. Thus most users find themselves in the following situation we call
black box MCMC:

(1) You know nothing other than that. The Markov chain is a "black box" that you cannot see inside.
When run, it produces output. That is all you know. You know nothing about the transition probabilities of
the Markov chain, nor anything else about its dynamics. This Point 1 may seem extreme. You may know a
lot about the particular Markov chain being used—for example, you may know that it is a Gibbs sampler—but
if whatever you know is of no help in determining any convergence information about the Markov chain, then
whatever knowledge you have s useless.

(2) You know nothing about the invariant distribution except what you may learn from running the
Markov chain. This Point 2 may seem extreme. Many examples in the MCMC literature use small problems
that can be done by independent and identically distributed (i.i.d.) Monte Carlo or even by pencil and paper
and for which a lot of information about the invariant distribution is available, but in complicated applications

point 2 is often simply true.

4.3.3 Gibbs sampling

The most widely used version of the Hastings—Metropolis algorithm is the Gibbs sampler.

Discrete Case

Let X = (X1,...,X,) be a discrete random vector with probability mass function p(Z) that is only
specified up to a multiplicative constant, and suppose that we want to generate a random vector whose

distribution is that of X. That is, we want to generate a random vector having mass function
p(Z) = Cy(7)

where g(Z) is known, but C is not.

Step 1. Choose an initial state & = (z1, ..., Zy).
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Step 2. For the current state &, choose a coordinate which is equally likely to be any of the coordinates
1,...,n. If coordinate k is chosen, then generate a random variable Y whose probability distribution is given
by

P{Y =y} = P{Xy =y|X; =x; for j =1,...,n with j # k},
where it is assumed that the above random variable Y can be generated having the above pmf. If Y = y, let
the candidate state ¥ = (1, ..., Tk—1, Y, Tht1s s Tn)-

Step 3. The next state & = (x4, ..., x,) is set equal to i. Repeat step 1 with this new state Z.

The Gibbs sampler uses the Metropolis-Hastings algorithm with the choice

1
q(Z,9) = EP{Xk =y|X, =x; for j=1,...,n with j # k}

1 p(%)
n P{X; =x; for j =1,...,n with j # k}

for the Markov transition matrix (). It is not difficult to verify that for this choice the acceptance probability
a(Z,7) is given by

BEIECEIR

SRR

~—

alZ,g) = min(

S~ [~
()
== 2=
8 8
!
~—

Hence, when utilizing the Gibbs sampler, the candidate state is always accepted as the next state of the

Markov chain.

Continuous Case

Suppose p(z,y) is a p.d.f. or p.m.f. that is difficult to sample from directly. Suppose, though, that we
can easily sample from the conditional distributions p(z|y) and p(y|z). Roughly speaking, the Gibbs sampler
proceeds as follows: set z and y to some initial starting values, then sample x|y, then sample y|z, then x|y,
and so on. More precisely,

Step 0. Set (zo,yo) to some starting value.

Step 1. Sample 21 ~ p(z|yo), that is, from the conditional distribution X|Y = yo.

Sample y; ~ p(y|z1), that is, from the conditional distribution Y| X = .

Step 2. Sample x2 ~ p(x|y1), that is, from the conditional distribution X|Y = y;.

Sample yo ~ p(y|z2), that is, from the conditional distribution Y|X = z5.

Each iteration (1.,2.,3.,...) in the Gibbs sampling algorithm is sometimes referred to as a sweep or
scan. The sampling steps within each iteration are sometimes referred to as updates or Gibbs updates.
Note that when updating one variable, we always use the most recent value of the other variable (even in the
middle of an iteration).

This procedure defines a sequence of pairs of random variables
(XOa Y0)7 (le Y1)7 (X2a }/2)7 (X?n }/3)7
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which has the property of being a Markov chain—that is, the conditional distribution of (X;,Y;) given all of
the previous pairs depends only on (X;_1,Y;_1).
Gibbs sampling with more than two variables is completely straightforward— roughly speaking, we cycle

through the variables, sampling each from its conditional distributional given all the rest.

Remark 4.3.10 F UL EHikF, SARRERE T RO, oA LATRHFTINEAME, XARE
BHE Q PEMAN RN ESMEF RSO LT HEFOBE, MAEREH Gibbs Sampling Hik+, %
2 — AR MR, LRREAS TR, E—RETHLTH EEBBERL

(Project 3) Show both the Metropolis-Hasting samplers and Gibbs samplers for 2D Gaussian distribution
and the distribution with the density

p(z,y) ce”1(z,y € (0,1)).

4.4 Parameter estimation problems

4.4.1 The Bayesian approach

P(this = Bayes | data) < 1 Richard Price Pierre-Simon Laplace

Figure 4.8: Founders of Bayesian statistics.

e Thomas Bayes (1701-1761) was an ordained minister who was also a talented mathematician and a
Fellow of the Royal Society. Bayes came up with an ingenious solution to this problem, but died before pub-
lishing it. Fortunately, his friend Richard Price carried his work further and published it in 1764. Apparently
independently, Laplace rediscovered essentially the same idea in 1774, and developed it much further. (See
Figure 4.8.)

e The idea is to assume a prior probability distribution for #-that is, a distribution representing the
plausibility of each possible value of 6 before the data is observed. Then, to make inferences about 6, one
simply considers the conditional distribution of 6 given the observed data. This is referred to as the posterior
distribution, since it represents the plausibility of each possible value of 8 after seeing the data.

e Mathematically, this is expressed via Bayes’ theorem,

p(z|0)p(9)

(o) = P2

o< p(x|0)p(6), (4.3)
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where z is the observed data (for example, z = x1.,,). In words, we say "the posterior is proportional to the

likelihood times the prior". Bayes’ theorem is essentially just the definition of conditional probability

P(B|A) = P(ﬁ(z)B ) P(AEZ];(B) (4.4)

extended to conditional densities. (From the modern perspective, Bayes’ theorem is a trivial consequence
of the definition of a conditional density-however, when Bayes wrote his paper, the idea of a conditional
probability density did not yet exist!)

e More generally, the Bayesian approach-in a nutshell-is to assume a prior distribution on any unknowns,
and then just follow the rules of probability to answer any questions of interest. This provides a coherent
framework for making inferences about unknown parameters 6 as well as any future data or missing data,
and for making rational decisions based on such inferences.

e Bayes, in a nutshell. The Bayesian approach can be summarized as follows: Assume a probability
distribution on any unknowns (this the prior), assume the distribution of the knowns given the unknowns
(this is the generating distribution or likelihood), and then just follow the rules of probability to answer any
questions of interest.

An overarching theme of the Bayesian perspective is that uncertainty is quantified with probability distri-
butions. Since essentially all statistical methods involve assuming the form of the generating distribution,
it is the prior that distinguishes the Bayesian approach, and makes it possible to just follow the rules of

probability.

What questions of interest often arise?

Here are some recurring examples:

e estimate some unknown parameter or property,
e infer hidden/latent variables or missing data,

e predict future data,

e test a hypothesis, or

e choose among competing models.

How is this done? What methods are employed?

In order to answer a question of interest, you usually have to get ahead of the posterior in one way or
another, and compute one or more posterior expectations (integrals with respect to the posterior density).
Three main categories of methods can be distinguished here: exact solution, deterministic approximation,
and stochastic approximation.

1. Exact solution

In certain cases, it is computationally feasible to compute the posterior (and posterior expectations)
exactly.

e Exponential families with conjugate priors often enable analytical solutions.

e Gaussians, in particular, are highly conducive to analytical solutions.

e For certain graphical models, dynamic programming can provide exact results.

2. Deterministic approximation

Methods include:
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e numerical integration, a.k.a. quadrature/cubature

e quasi-Monte Carlo (QMC), low discrepancy sequences

e Laplace’ s method / Laplace approximation

e expectation propagation (EP), variational Bayes (VB)

For low-dimensional integrals, numerical integration and QMC are superior to stochastic approximations.
QMC can sometimes perform well in high-dimensional situations as well.

3. Stochastic approximation

For high-dimensional integrals, stochastic approximations are often the only option. The basic idea is
that samples from the posterior can be used to approximate posterior expectations. Methods include:

e Monte Carlo approximation, importance sampling

e Markov chain Monte Carlo (MCMC) —Gibbs sampling, Metropolis algorithm, Metropolis-Hastings
algorithm, slice sampling, Hamiltonian MCMC

e sequential importance sampling, sequential Monte Carlo, population Monte Carlo

e approximate Bayesian computation (ABC)

Overall recommendation: be pragmatic, not dogmatic

Overall, be pragmatic—that is, use what has been shown to work. As a default approach, the following
will serve you well:

Design as a Bayesian, and evaluate as a frequentist.

In other words, construct models and procedures from a Bayesian perspective, and use frequentist tools
to evaluate their empirical and theoretical performance. In the spirit of being pragmatic, it might seem
unnecessarily restrictive to limit oneself to Bayesian procedures, and indeed, there are times when a non-
Bayesian procedure may be preferable to a Bayesian one. However, typically, it turns out that there is no
disadvantage in considering only Bayesian procedures—this has been shown formally via the "complete class

theorems".

4.4.2 Applications of Bayesian statistics

e Tracking. For vehicle guidance, navigation, and control, it is essential to know the state of the vehicle
(location, orientation, velocity) of the vehicle at any given time. Usually, an array of sensors provides various
kinds of information of varying quality (e.g., compass, accelerometers, gyroscope, GPS, vision, laser scanner),
and this must be combined with knowledge of the vehicle’ s actions (e.g., wheels, propellors/turbines, rocket
engines, ailerons), along with a physical model, in order to infer the state of the vehicle in real-time. In 1960,
Rudolf Kalman proposed a solution using a Bayesian time-series model which became known as the Kalman
filter. The Kalman filter and its successors have been extraordinarily successful-it is difficult to overstate
their importance in the guidance systems of aircraft, spacecraft, and robotics.

e Phylogenetics. Understanding the evolutionary relationships among organisms—that is, the phyloge-
netic tree—is fundamental in nearly all biological research. Using genetic data from many organisms, along
with models of how changes in the genome occur over time, researchers can infer the unknown evolutionary
"family tree". Some of the dominant approaches use Bayesian inference (e.g., popular programs include
MrBayes and BEAST) and these are widely used throughout biology.
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e Computer science. Spam accounts for the majority of email traffic—typically between 60 to 70% of
emails are spam. Yet, due to the sophisticated spam detection algorithms used by email service providers,
very little spam gets through to your inbox—and only rarely is real mail classified as spam. For instance,
in 2007, Gmail posted the chart, showing that the fraction of spam that gets through is very small indeed.
Bayesian models are the most prominent methods for spam detection. A former Microsoft developer who

moved to Google reportedly said, "Google uses Bayesian filtering the way Microsoft uses the if statement."

Figure 4.9: Prior and posteriors (after successive searches) for the location of the wreckage of Air France
447. (Stone et al. 2011).

e Search. On June 1, 2009, Air France Flight 447 crashed into the Atlantic Ocean, killing all aboard.
Despite three intensive searches, the underwater wreckage had still not been found a year later. French
authorities were eventually able to recover the wreckage with the help of a Bayesian search analysis provided
by the Metron company (Figure 5). Bayesian search analysis involves formulating many hypothetical scenarios
for what happened, constructing a probability distribution of the location under each scenario, and considering
the posterior distribution on location given the searches conducted so far. It has also been used to find

submarines and ships lost at sea.

4.4.3 Conjugate priors

Definition 4.4.1 Given a family p(x|0) : 6 € © of generating distributions, a collection of priors p.(0) in-
dexed by o € H is called a conjugate prior family if for any o and any data, the resulting posterior equals

pa (0) for some o € H.

Proposition 4.4.2 (Beta-Bernoulli model). The collection of Beta(f|a,b) distributions, with a,b > 0, is
conjugate to Bernoulli(6), since the posterior is p(0|z1.,) = Beta(fla + > x;,b+n — > x;).

Proposition 4.4.3 (Gamma-Exponential model). The collection of Gamma(0|a,b) distributions, with a,b >
0, is conjugate to Exp(8), since the posterior is p(0|z1.,) = Gamma(f|a + n,b+ > ;).

Proposition 4.4.4 (Normal-Normal model) Suppose we are using an i.i.d. normal model with mean 6 and
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precision X = 25 (the inverse of the variance):
[ea

X1, X0 ~ NG,

Assume the precision A = % is known and fived, and 0 is given a N(ug,\y') prior: 6 ~ N(uo,\y'), i-e.,

p(0) = N(O|po, A\g*). This is sometimes referred to as a Normal-Normal model. It turns out that the posterior
18

Ox1m ~ N(M,L71),
i.e., p(0]r1.,) = N(O|M,L™1), where L = \g +n\ and

)\0/10 + A Z?:l X

M:
)\0+7L>\

Thus, the normal distribution is, itself, a conjugate prior for the mean of a normal distribution with known

precision.

Proposition 4.4.5 (InverseGamma-Normal model) Now, suppose that the mean p is given while the vari-

ance o is unknown, with i.i.d. Xy,..., Xp ~ N(p,0?) as before. The likelihood function
" )2
plosale?) = (2m) ey (~Z L)

is an Inverse-Gamma distribution on o2. Recall that the density function of the inverse-Gamma distribution

exp(—b/y), i.e.,

a—1

Y ~InvGamma(a,b) is p(y) <y~

ba

myiail exp(—b/y).

InvGamma(y|a,b) =

In particular, the likelihood function corresponds to
2 RS 2
0 ~ InvGamma(n/2 — 1, - E (z; — p)?).

2 <
i=1

If we define a prior to be the inverse-Gamma distribution,
p(o®) o (6%) " exp(-b/o).

we can apply the Beyesian formula to obtain the posterior
n 1 «—
p(0?|21.0) < p(x1.0]|0?)p(0?) ~ InvGamma(a + 5 b+ 3 Z(J{;z —m)?).

i=1

(Project 4) Apply the Metropolis-Hasting scheme for estimating the variance of 1D Gaussian distribution

if assuming that the mean of the Gaussian is given.

Proposition 4.4.6 (NormalGamma-Normal model) Now, suppose that both the mean p and the precision
A= 0_—12 are unknown, with i.i.d. X1,..., X, ~ N(u, A™1) as before. The NormalGamma(m, c,a,b) distribu-
tion, with m € R and ¢,a,b > 0, is a joint distribution on (u, \) obtained by letting

A~ Gammaf(a,b),

WA~ N(m, (N,

93



In other words, the joint pdf for the prior is
p(u, A) = p(plN)p(A) = N (ulm, (eX)™!)Gamma(A|a, b),

which we will denote by NormalGamma(p, A\jm, ¢, a,b) following our usual convention. It turns out that this

provides a conjugate prior for (u, \). Indeed, the posterior is
s M| @10y ~ NormalGamma(M,C, A, B),

i.e., p(l, N|z1.n,) =NormalGamma(u, \|M, C, A, B), where

M o= cm—|—2?:1xi’
c+n
C = c+n,
A = a+n/2
— 1 2 2, N\~ 2
B = b+2<cm - CM +;xl>

For interpretation, B can also be written (by rearranging terms) as

1 1 cn
B=b+: (v, -2+ 7 —m)2.
b+2, (x; — ) +2c+n(x m)

4.4.4 Beta-Bernoulli model

Bernoulli distribution

e The Bernoulli distribution models binary outcomes, i.e., taking two possible values. The convention is
to use 0 and 1.

e It is named for Jacob Bernoulli (1655-1705), who is known for various inconsequential trivialities such
as developing the foundations of probability theory (including the law of large numbers), combinatorics,
differential equations, and the calculus of variations. Oh, and he discovered the constant e.

e The Bernoulli distribution shows up everywhere, due to the ubiquity of binary outcomes (for instance,
in computer vision, neuroscience, demographics and polling, public health and epidemiology, etc.).

e The p.m.f. (probability mass function) is
p(z]0) = P(X = z|0) = 6°(1 — 0)'~"1(x € {0,1}).

e Ifiid. Xy,...,X, ~Bernoulli(f) then for z1,...,z, € {0,1},

p(r1m|0) = P(Xyi=21,..., X, =2,0) = H 6% (1 — )t~
i=1
= 9XT(1— )=,

e Viewed as a function of 6, p(z1.,]6) is called the likelihood function. It is sometimes denoted
L(0;21.,) to emphasize this. Viewed as a distribution on xy.,, we will refer to this as the generator or

¢

generating distribution (sometimes it is referred to as the “ sampling distribution” , but this becomes

ambiguous when one is also sampling from the posterior).
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Beta distribution
e Bayes used a uniform prior on 6, which is a special case of the beta distribution
e Given a,b > 0, we write 6 ~ Beta(a, b) to mean 6 has pdf (probability density function)

1
B(a,b)

p(6) = Beta(f|a,b) = 61 (1 - 6110 <6 < 1),

i.e., p() x 8¢ 1(1 — §)*~1 on the interval from 0 to 1. Here, B(a,b) is Euler’s beta function.
e The mean is 0 = a/(a + b).

The posterior

e Using Bayes’ theorem, and plugging in the likelihood and the prior, the posterior is

p(0lz1:m) o p(x1.4]0)p(0)

1
— 9Tl - g)nfzmimgafl(l -0 '1(0<0<1)

o g El(] gyt XEitl0 < 0 < 1)
o Beta(fla + th b+n— sz)

e So, the posterior has the same form (a Beta distribution) as the prior! When this happens, we say
that the prior is conjugate.

e Since the posterior has such a nice form, it is easy to work with—e.g., for comput ing certain integrals
with respect to the posterior, sampling from the posterior, and computing the posterior p.d.f. and its

derivatives.

Marginal likelihood and posterior predictive

e The marginal likelihood is
o) = [ pialopp(o).

i.e., it is the marginal p.d.f./p.m.f. of the observed data, obtained by integrating 6 out of the joint density
p(x,0) = p(x|0)p(f). When 6 is a vector, this will be a multi-dimensional integral.

e When the data is a sequence x = (z1, ..., Z,,), the posterior predictive distribution is the distribu-
tion of X,,41 given Xi.,, = x1.,. When X1, ..., X,;, X;,11 are independent given 6 = 6, the posterior predictive

p.d.f./p.m.f. is given by
p(zn—&-l‘xlzn) = /p(zn—s—l‘xl:nao)p(0|$1:n)d9

- / D1 10)p(B]1.0) .

Example 4.4.7 (Beta-Bernoulli) If § ~ Beta(a,b) and X1,...,X,|(0 = 0) are i.i.d. Bernoulli(f), then

the marginal likelihood is

1
p(r1m) = /p(xl:n|9)p(t9)d9 - /O 627 (1 — e)n*Zzi%m*la —0)""tdp
_ Bla+>Y xzi,b+n—> x;) Blan,by)
N B(a,b) ~ B(a,b) ’
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by the integral definition of the Beta function, where we let a, = a+»_ x; and b, =b+n—>_ x; for brevity.
Using the fact that p(|z1.,) =Beta(f|ay,by,),

P(Xn+1 = 1|331:n) = /P(Xn—i-l = 1|x1:n70)p(0|ml:n)d0 = /P(Xn+1 = 1|0)p(9|x1n)d0
_ /0Beta(9|an,bn)d9 - an(i:bn’

hence, the posterior predictive pmf is

a7117L+1 b};%wl

Wl (1 €{0,1}).

p($n+1 |x1:n) -

4.4.5 Exponential families

e Exponential families are a unifying generalization of many basic probabilistic models, and they possess
many special properties. In fact, we have already encountered several exponen tial families—Bernoulli, Beta,
Exponential, and Gamma—and there are many more. From the Bayesian perspective, a key feature of
exponential families is that often the posterior has a nice form. While exponential families are useful in
their own right, they can also be combined to construct more complex models in a way that is amenable to
inference with Markov chain Monte Carlo, as we will see later.

e Most of the familiar distributions are exponential families, such as Bernoulli, binomial, Poisson, expo-
nential, beta, gamma, inverse gamma, normal (Gaussian), multivariate normal, log-normal, inverse Gaussian,
Dirichlet, and others. On the other hand, the Cauchy distri bution and Student’s t-distribution are familiar
examples that are not exponential families.

e The concept of exponential families was developed by E. J. G. Pitman (1897-1993), Bernard Koopman
(1900-1981), and Georges Darmois (1888-1960).

e A one-parameter exponential family is a collection of probability distributions indexed by a parameter
0 € ©, such that the pdf/pmf are of the form

p(]0) = exp (p(0)t(x) — £(0)) h(x),

for some functions (), t(z), x(0), and h(x). Terminology: t(z) is called the sufficient statistic function.
e The generalization to more than one parameter is straightforward. An exponential family is a

collection of distributions indexed by 8 € ©, with p.d.f.s/p.m.f.s of the form

p(x]0) = exp (p(0)"t(x) — K(6)) h(z),
for some vector-valued functions

1(0) t1()
p0)=| and @)= [ |,
1 (0) t(x)
and some real-valued functions x(0) and h(x). Here, v denotes the transpose of v. As before, x(6) is the

log-normalization constant, and the content above regarding natural form and conjugate priors applies also

to the multi-parameter case.
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Chapter 5

Poisson Process

5.1 Introduction

e In making a mathematical model for a real-world phenomenon it is always necessary to make certain
simplifying assumptions so as to render the mathematics tractable.

e On the other hand, however, we cannot make too many simplifying assumptions, for then our
conclusions, obtained from the mathematical model, would not be applicable to the real-world situation.

e Thus, in short, we must make enough simplifying assumptions to enable us to handle the mathematics
but not so many that the mathematical model no longer resembles the real-world phenomenon.

e One simplifying assumption that is often made is to assume that certain random variables are expo-
nentially distributed. The reason for this is that the exponential distribution is both relatively easy to work

with and is often a good approximation to the actual distribution.

5.2 The Exponential Distribution

5.2.1 Definition

See the definition in previous subsection 1.6.2.

7 40

Example 5.2.1 (Ezxponential Random Variables and Expected Discounted Returns) Suppose that
you are recetwing rewards at randomly changing rates continuously throughout time. Let r(x) denote the
random rate at which you are receiving rewards at time x. For a value o > 0, called the discount rate, the

quantity
(o)
R:/ e~ “r(x)dx,
0

represents the total discounted reward. (In certain applications, a is a continuously compounded interest rate,

and R is the present value of the infinite flow of rewards.) Whereas

B[R] = E { /0 h e—wr(x)da:] - /0 " e Bl ()],
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18 the expected total discounted reward, we will show that it is also equal to the expected total reward earned
up to an exponentially distributed random time with rate a. Let T be an exponential random variable with

rate « that is independent of all the random variables r(x). We want to argue that

/OT r(a:)dx} .

To show this define for each © > 0 a random variable I(x) by

/0 " e Bl (a)]de = E

I(x) = 1, ifx<T
B 0, ifx>T

and note that

Thus,

/OT r(x)da:]

B { /O h r(m)](x)dm] _ /O " Bl (2)1(2))dz

/000 E[r(z)|E[I(z)]dz by independence

/OOO Elr(2)]P[T > a]dz

_ /O = Elr()]da

Therefore, the expected total discounted reward is equal to the expected total (undiscounted) reward earned by

a random time that is exponentially distributed with a rate equal to the discount factor.

5.2.2 Properties of the Exponential Distribution

Proposition 5.2.2 A random variable X is without memory or memoryless if and only if X is exponentially
distributed.

Example 5.2.3 The dollar amount of damage involved in an automobile accident is an exponential random
variable with mean 1000. Of this, the insurance company only pays that amount exceeding (the deductible
amount of) 400. Find the expected value and the standard deviation of the amount the insurance company
pays per accident.

Sol. If X is the dollar amount of damage resulting from an accident, then the amount paid by the insurance

company is (X —400)T. It is easier to condition on whether X exceeds 400. So let

1, if X > 400
I(z) =
0, ifz <400

Let Y = (X —400)*" be the amount paid. Then

E[Y|I = 1]=1000,
E[Y|I = 0]=0,
Var[Y|I = 1] = (1000)?,

VarlY|I = 0]=0



which can be conveniently written as
E[Y|I] =10°I, Var[Y|I] =10°I.

04 we obtain

Because I is a Bernoullie random variable that is equal to 1 with probability e~
E[Y] = E[E[Y|I]] = 103E[I] = 10%¢™%* = 670.32.
By conditional variance formula,
Var(Y) = E[Var(Y|D)]+ Var(E[Y|I))
— 10804 4 10804 (1- 670.4) '

Method 2. Direct computation. A = 1/1000. Let Y = (X — 400)*". Then

400 o0
EY = / 0-p(x)dx + / (z — 400) - Xe~*dx
0 400

/oo yheA+400) gy, =400 % — 10304,
0

Also
EY? = / (z —400)% - e ™ dx
400
1 1
_ _—400x
Varly] = o400 1 1 103¢—04)2
ar[Y] = e 2 + ) (10%°e°*)
= 10%-2.¢70* — 100705,
Proposition 5.2.4 Let X1,...,X, be independent and identically distributed exponential random variables

having mean 1/X. It is true that X1 + --- + X,, has a gamma distribution with parameters n and \. Let us
now give a second verification of this result by using mathematical induction. Assume that X1+ --- 4+ X1

has density given by
)\t)n72
B = ae A0
fSn—l( ) € (n_2)'

Hence

fs,. (1)

Ixn % fs,s :/0 fx,(t —5)fs, . (s)ds

/t )\e—)\(t—s))\e—ks ()\S)n_Q ds = )\e—)\t ()\t)n_l
o (n—2)! (n—1)1"

Proposition 5.2.5 Another useful calculation is to determine the probability that one exponential random

vartable is smaller than another. That is, suppose that X1 and Xo are independent exponential random
variables with respective means 1/A\1 and 1/A2; what is P{X1 < X5} ? This probability is easily calculated by

conditioning on Xi:

PIX) < Xo} = /Ooo P{X1 < Xo| X1 = 2} fx, (2)de

/ P{x < Xo} e M%dx
0

i A

7)\2112 7)\11’ 1

= e Are dr = .
/o ! A1+ A2
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Proposition 5.2.6 Suppose that X1, X, ..., X,, are independent exponential random variables, with X; hav-
ing rate p;, i = 1,...,n. It turns out that the smallest of the X; is exponential with a rate equal to the sum of

the p;. This is shown as follows:
P{min(Xy,...,X,) > z}=PX; >z foreachi=1,..,n)

= HP(X,» > ) (by independence)
i=1

That is, min(Xq,..., X)) ~E(u1 4+ -+ + pin)-

Example 5.2.7 Suppose you arrive at a post office having two clerks at a moment when both are busy but
there is no one else waiting in line. You will enter service when either clerk becomes free. If service times
for clerk i are exponential with rate A;, i = 1,2, find E[T), where T is the amount of time that you spend in
the post office.

Sol. Let R; denote the remaining service time of the customer with clerk i, i = 1,2, and note, by the
lack of memory property of exponentials, that Ry and Rs are independent exponential random variables with

respective rates A1 and Ay. Conditioning on which of Ry or Ry is the smallest yields

E[T] E[TlRl < RQ]P{Rl < RQ} + E[T‘RQ < R1]P{R2 < Rl}

A2

A
FITIRi < R + FE|TIRy < R .
[T|Ry < Ry [T| Ro 1]/\1+)\2

A1+ A2

Now, with S denoting your service time

E[T|R, < Ro]=E[Ri+S|Ri < Ry
= E[R:|R: < Ry] + E[S|R1 < Ry
= E[min{R;, R} + Ail

1 1

JE— + .
A+ A
The final equation used that conditional on Ry < Ro the random variable Ry is the minimum of R and Rs
and is thus exponential with rate Ay + Aa; and also that conditional on Ry < Ry you are served by server 1.

As we can show in a similar fashion that

1 1
ET R, < Ri|=—F7—+ —,
[T| Rz < Rq] e g
we obtain the result 5
ElT] = .
[T IV

Another way to obtain E|T) is to write T as a sum, take expectations, and then condition where needed.

This approach yields

E[T] = E[min(Ry,Ry)+ 5]

= FE[min(Ry, R2)] + E[S]
1

= —— +ES.
A1+ A2
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To compute E[S], we condition on which of Ry and Ry is smallest.

A1 A2
FE[S|IR; < R E[S|R, > R
(SR 2])\1+/\2+ [S|Ry > 2])\1+/\2
2

A+ A

E[S]

5.3 The Poisson Process

5.3.1 Counting Processes

Definition 5.3.1 A stochastic process {N(t),t > 0} is said to be a counting process if N(t) represents the
total number of “events” that occur by time t. A counting process must satisfy:

(i) N(t) > 0.

(ii) N(t) is integer valued.

(i1i) If s < t, then N(s) < N(t).

(iv) For s <t, N(t) — N(s) equals the number of events that occur in the interval (s,t].

Some examples of counting processes are the following:

o If we let N(t) equal the number of persons who enter a particular store at or prior to time ¢, then
{N(t),t > 0} is a counting process in which an event corresponds to a person entering the store. Note that
if we had let N(¢) equal the number of persons in the store at time ¢, then {N(¢),t > 0} would not be a
counting process (why not?).

o If we say that an event occurs whenever a child is born, then {N(¢),¢ > 0} is a counting process when
N(t) equals the total number of people who were born by time ¢. (Does N(t) include persons who have died
by time ¢? Explain why it must.)

e If N(t) equals the number of goals that a given soccer player scores by time ¢, then {N(¢),t > 0} is a
counting process. An event of this process will occur whenever the soccer player scores a goal.

ML E

Definition 5.3.2 A counting process is said to possess independent increments if the numbers of events that
occur in disjoint time intervals are independent. For erxample, this means that the number of events that
occur by time 10 (that is, N(10)) must be independent of the number of events that occur between times 10
and 15 (that is, N(15) — N(10)).

Remark 5.3.3 The assumption of independent increments might be reasonable for example (a), but it prob-
ably would be unreasonable for example (b). The reason for this is that if in example (b) N(t) is very large,
then it is probable that there are many people alive at time t; this would lead us to believe that the number
of new births between time t and time t + s would also tend to be large (that is, it does not seem reasonable
that N (t) is independent of N(t + s) — N(t), and so {N(t),t > 0} would not have independent increments
in example (b)). The assumption of independent increments in example (¢) would be justified if we believed
that the soccer player’s chances of scoring a goal today do not depend on "how he’s been going." It would not

be justified if we believed in "hot streaks” or "slumps."

FRAE
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Definition 5.3.4 A counting process is said to possess stationary increments if the distribution of the number
of events that occur in any interval of time depends only on the length of the time interval. In other words, the

process has stationary increments if the number of events in the interval (s, s +t) has the same distribution
for all s.

Remark 5.3.5 The assumption of stationary increments would only be reasonable in example (a) if there
were no times of day at which people were more likely to enter the store. Thus, for instance, if there was
a rush hour (say, between 12 P.M. and 1 P.M.) each day, then the stationarity assumption would not be
Justified. If we believed that the earth’s population is basically constant (a belief not held at present by most
scientists), then the assumption of stationary increments might be reasonable in example (b). Stationary
increments do not seem to be a reason able assumption in example (c) since, for one thing, most people would
agree that the soccer player would probably score more goals while in the age bracket 25-30 than he would

while in the age bracket 35-40. It may, however, be reasonable over a smaller time horizon, such as one year.

5.3.2 Definition of the Poisson Process

Definition 5.3.6 The counting process {N(t),t > 0} is said to be a Poisson process having rate A\, A > 0, if
(i) N(0) =0.

(11) The process has independent increments.

(iii) The number of events in any interval of length t is Poisson distributed with mean \t. That is, for all
s,t>0

P{]\T(t—i-s)—]\f(s):n}:e_’\t()\t)n7 n=0,1,...

n!

Remark 5.3.7 Note that it follows from condition (i) that a Poisson process has stationary increments

Remark 5.3.8 Note that E[N(t)] = A and Var[N(t)] = At, and this is why X is called the rate of the

process since A = E[N(t)]/t denotes the number of events that occur in a unit time.

Example 5.3.9 For a stock market, the transactions of the stock trading are a Poisson process. There are
120,000 trading transactions every 10 minutes.
(1) Compute the rate A for number of times per minute.
(2) The prob. for 100 trading transactions in 1 sec?
Sol. (1) Since
E[N(t,t+ 10]] = 10A = 120000.

Then A = 12000 per minute.
(2) The rate is Ay = 12000/60 = 200 per second.

n 2 100
P(N2(1) = 100) = %64‘2’& = %6_200 =1.88 x 10717,

Remark 5.3.10 The Poisson processes are early proposed by the French scientist, Stmeon-Denis Poisson,
so that named after him. Poisson process is one of the widely used counting processes. Many counting
processes with independent increments and stationary increments are Poisson processes. When determining

if a counting process is Poisson one, one can apply the following alternative definition.
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Definition 5.3.11 The function f(-) is said to be o(h) if

Cf)
pin = =0

Definition 5.3.12 The counting process {N(t),t > 0} is said to be a Poisson process having rate A, A > 0,
if

(i) N(0) =0.

(ii) The process has stationary and independent increments.

(111) P{N(h) =1} = Ah + o(h).

(iv) P{N(h) > 2} = o(h).

Theorem 5.3.13 Definition 5.3.6 and 5.3.12 are equivalent.
Proof. We can show 5.3.6 = 5.3.12 by using Taylor expansion.

P(N(h) 1) =M -e ™ =X o (1= X+ o(h)) = A+ o(h).
P{N(h) > 2}=1-P(N(h)=0)— P(N(h) =1)
= 1—e = Ahe

= 1—[1— A+ o(h)] — [Ah+ o(h)] = o(h).

We then show the reverse, 5.3.12 = 5.3.6. To start, fix u > 0 and let

9(t) = Blexp{—uN (1)}

We derive a differential equation for g(t) as follows:

g(t+h) Elexp{—uN(t + h)}]
= Elexp{—uN(t)} exp{—u[N(t + h) — N(t)]}]
= Elexp{—ulN(t)}|E[exp{—u[N(t + h) — N(¢)]}] by independent increments

= g(t)Elexp{—uN(h)}] by stationary increments.
Now, assumptions (iii) and (iv) imply that
P(N(h) =0)=1—Ah+o(h).
Hence, conditioning on whether N(h) =0 or N(h) =1 or N(h) > 2 yields

Elexp{—uN(h)}] = 1-P{N(h)=0}+e “P{N(h) =1}
T B(exp{—uN(W}N(h) = 2)P(N(h) = 2)
(1 —Ah)+ e “Ah+o(h).

Then we have
gt +h)=g{t)[l — A+ e “Ah+ o(h)],

implying that o ®
glt+h)—g(t
h

o(h)
-

=gOA (e 1)+

103



Letting h — 0 gives
gt =gt)r (e =1).
Integrating, and using ¢(0) = E(exp(—uN(0))) = E1 = 1, shows that
log(g(t)) = At(e™ —1),
g(t) = exp[At(e” ™ —1)].

That is, the Laplace transform of N(t) evaluated at u is exp[At(e " — 1)]. For Poisson process, its MGF is

o0 n At
g(t) _ E[efuN(t)} _ Z ()‘t) |6 e un
n:
n=0

= (e _ —u —u
ey % — e Mexp{e "Mt} = exp[M(e" — 1)].
n=0

Since that is also the Laplace transform of a Poisson random variable with mean At, the result follows from the
fact that the distribution of a nonnegative random variable is uniquely determined by its Laplace transform.
(Or say, that MGF has a uniqueness property, that is, if MGF exists, then there exists only one unique
corresponding distribution associated with that MGF). m

5.3.3 Interarrival and Waiting Time Distributions

Poisson™F 743, % 34 B (8] 8] [&

Interarrival Time

Definition 5.3.14 Consider a Poisson process, and let us denote the time of the first event by 1. Further,
for n > 1, let T,, denote the elapsed time between the (n — 1)st and the nth event. The sequence {T,,,n =
1,2,...} is called the sequence of interarrival times. For instance, if Ty =5 and Ty = 10, then the first

event of the Poisson process would have occurred at time 5 and the second at time 15.

We shall now determine the distribution of the T;,. To do so, we first note that the event {7} > ¢} takes

place if and only if no events of the Poisson process occur in the interval [0,¢] and thus,
P{Ty > t}=P{N(t)=0}=¢",
Tn ~ &N,
le (l’) = )\6*)\1.

Hence, T7 has an exponential distribution with mean 1/\. Now,

P{Ty > t}=EP(Ty>tT)) = /Ooo P(Ty > t|Ty = s)fr, (s)ds

/ P(0 events in (s,s +t)|T1 = s)fr, (s)ds
0

/OO P(0 events in (s, s +t]) fr, (s)ds
0

/ T P(N(t+ ) — N(s) = 0) i, (s)ds

/ e Mfr (s)ds = e .

0
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Therefore, we conclude that Ts is also an exponential random variable with mean 1/,
T, ~ &),
fr,(z) = Xe 7.
and, furthermore, that 75 is independent of T;. Repeating the same argument yields the following.

Proposition 5.3.15 T,,,n = 1,2, ..., are independent identically distributed exponential random variables

having mean 1/\.

Remark 5.3.16 The proposition should not surprise us. The assumption of stationary and independent
icrements is basically equivalent to asserting that, at any point in time, the process probabilistically restarts
itself. That is, the process from any point on is independent of all that has previously occurred (by independent
increments), and also has the same distribution as the original process (by stationary increments). In other

words, the process has no memory, and hence exponential interarrival times are to be expected.

Remark 5.3.17 The mean time for 1 event is 1/\, correspondingly, so that for 1 unit time, E[N(t)]/t = A

events occrus.

Waiting Time
S 0 % 7 B Sk T Y B B B A

Definition 5.3.18 Another quantity of interest is Sy, the arrival time of the nth event, also called the

waiting time until the nth event. It is easily seen that
n
i=1
and hence from Proposition 5.3.15 it follows that S, has a gamma distribution with parameters n and A.

That is, the probability density of S, is given by

)t

Remark 5.3.19 The above gamma distribution density may also be derived by noting that the nth event will

fsn (t) = e

occur prior to or at time t if and only if the number of events occurring by time t is at least n. That is,
{N(t) >n} < {S, <t}

(Also notice that {N(t) =n} < {S, <t < Sny1}), Hence,

= At )
Fs,(t) = P{Sy < 1} = P{N(t) > n} = 3 e M 20D
‘ 4!
j=n
which upon differentiation, yields

oo

— ¢ (A At
j=n j=n

fs,(t)

(At~
(G- D!

Il
>
®
>
<
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Example 5.3.20 Suppose e that people immigrate into a territory at a Poisson rate A =1 per day.

(a) What is the expected time until the tenth immigrant arrives?

(b) What is the probability that the elapsed time between the tenth and the eleventh arrival exceeds two days?
Sol. (a) E[S10] = 10E[T;] = 10/X = 10 days.

(b) PT); = e 2 = e 2 =~ 0.133.

Remark 5.3.21 Proposition 5.3.15 also gives us another way of defining a Poisson process. Suppose we start
with a sequence {T,,,n > 1} of independent identically distributed exponential random variables
each having mean 1/X. Now let us define a counting process by saying that the nth event of this process
occurs at time

Spi=T1+ -+ T,

The resultant counting process {N(t),t > 0}* will be Poisson with rate \.

5.3.4 Further Properties of Poisson Processes

Poissonit 12 By 4t 5 AUt

e Consider a Poisson process {N(t),t > 0} having rate A, and suppose that each time an event occurs
it is classified as either a type I or a type II event. Suppose further that each event is classified as a type I
event with probability p or a type II event with probability 1 — p, independently of all other events.

e For example, suppose that customers arrive at a store in accordance with a Poisson process having
rate A; and suppose that each arrival is male with probability 1/2 and female with probability 1/2. Then a

type I event would correspond to a male arrival and a type Il event to a female arrival.

Proposition 5.3.22 Let N1(t) and Na(t) denote respectively the number of type I and type II events occurring
in [0,t]. Note that N(t) = N1(t)+ Na(t). {N1(t),t > 0} and {N2(t),t > 0} are both Poisson processes having

respective rates A\p and \(1 — p). Furthermore, the two processes are independent.

Proof. We can verify that {Ny(t),t > 0} is a Poisson process with rate Ap by showing that it satisfies
Definition 5.3.12.

e N;(0) = 0 follows from the fact that N(0) = 0.

e {Ny(t),t > 0} inherits the stationary and independent increment properties of the process {N(¢),¢ >
0}.

o P{Ni(h) = 1} = P{Ni(h) = 1N(h) = 1}P{N() = 1} + P{Ni(h) = 1IN(R) > 2}P{N(h) > 2}
= p(Ah + o(h)) + o(h) = Aph + o(h).

e P{Ni(h) > 2} < P{N(h) > 2} = o(h).

Thus we see that {Ny(t),t > 0} is a Poisson process with rate Ap and, by a similar argument, that
{Nz(t),t > 0} is a Poisson process with rate A(1 —p). Because the probability of a type I event in the interval
from ¢ to t + h is independent of all that occurs in intervals that do not overlap (¢,t + h), it is independent

of knowledge of when type II events occur, showing that the two Poisson processes are independent. m

Example 5.3.23 If immigrants to area A arrive at a Poisson rate of ten per week, and if each immigrant
is of English descent with probability 1/12 , then what is the probability that no people of English descent will
emigrate to area A during the month of February?

Sol. Since pAt = 1/12-10 -4 = 10/3, so that P(N(t) = 0) = e P\t = ¢~10/3,
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Proposition 5.3.24 The above decomposition property of Poisson processes can be generalized to any finite
number of types. That is, consider a Poisson process {N(t),t > 0} having rate \, and suppose that each
time an event occurring is classified into one of m types. Suppose further that each event is independently
classified as jth (j = 1,...,m) type with probability p; satisfying Z;nzl pj = 1. Let N;(t) denote the number
of type j event occurring in [0,t]. Note that N(t) = Z;":l N;(t). Then, {N;(t),t >0} (j=1,...,m) are all

Poisson processes having rates \; := A\p;. Furthermore, all these m number of processes are independent.

Example 5.3.25 At a crossing road, 6 vehicles come from the east per minute, 6.5 from the south, 9 from
the west, and 8.5 from the north. At the crossing, every vehicle turns left or right with prob. 0.3, go straight
forward with prob. 0.35, and turn around with prob. 0.05. Compute the rate for vehicles leaving the crossing

road at each direction.
Sol.

Table 5.1: Poisson diversion and confluence.

toward east toward south toward west toward north
from east A\; = 6.0 0.05\1 0.30A1 0.35\1 0.30\1
from south Ay = 6.5 0.30 2 0.05)\o 0.30)2 0.35\9
from west A3 = 9.0 0.35\3 0.30)3 0.05A3 0.30A3
from north \y = 8.5 0.30 4 0.35\4 0.30 4 0.05\4
leaving rate Ag =795 As = 7.80 Aw = 7.05 AN =720

Proposition 5.3.26 Let {N1(t)} and {N2(t)} be independent Poisson processes with rate Ay and Ao, respec-
tively. Then
N(t) = Ni(t) + Na(t),

18 a Poisson process with rate A = A1 + As.

Proof. ¢ N(0) = N;(0) + N2(0) = 0.
e {N(t),t > 0} has the stationary and independent increment properties.

P{N(h)

1} = P{Ny(h) = 1, Na(h) = 0} + P{Ny(h) = 0, Na(h) = 1}
(Ath +o0(h))(1 = Xh 4 o(h)) + (A2h + o(h))(1 — A2h + o(h))
(A1 + X2)h + o(h) = Ah + o(h).

e Since
P{N(h) = 0} = P{Ny(h) = 0}P{Ny(h) = 0}
= (1=Xh+o(h)(1—=Xh+o(h))
= 1—Xh+o(h),
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so that

P{N(h) > 2} =1-P{N(h)=0}— P{N(h) =1}
= 1—[1=Mi+o(h)] — M+ o(h)] = o(h).

] S

Proposition 5.3.27 The above confluence property of Poisson processes can be generalized to any finite
number of types. That is, let {N;(t)} (j = 1,...,m) be independent Poisson processes with rate \; (j =
1,...,m). Then

is a Poisson process with rate A = 3770, ;.

Example 5.3.28 (The Coupon Collecting Problem) There are m different types of coupons. Each time

a person collects a coupon it is, independently of ones previously obtained, a type j coupon with probability p;,

Z;.":l p; = 1. Let N denote the number of coupons one needs to collect in order to have a complete collection

of at least one of each type. Find E[N].

Sol. If we let N; denote the number one must collect to obtain a type j coupon, then we can express N as
N = 1%zxgxm Nj.

However, even though each Nj is geometric with parameter p;, the foregoing representation of N is not that

useful, because the random variables N; are not independent.

We can, however, transform the problem into one of determining the expected value of the maximum of
independent random variables. To do so, suppose that coupons are collected at times chosen according to
a Poisson process with rate A = 1. Say that an event of this Poisson process is of type j, 1 < j < m, if the
coupon obtained at that time is o type j coupon. If we now let N;(t) denote the number of type j coupons
collected by time t, then it follows from Proposition 5.3.24 that {N;(t),t > 0}, j = 1,...,m are independent
Poisson processes with respective rates A\p; = pj. Let X; denote the time of the first event of the jth process,
and let

X = max Xj,
1<j<m

denote the time at which a complete collection is amassed. Since the X; are independent exponential random

variables with respective rates p;, it follows that

P{X < t}= P{1I<I§%mej <t} =P{X; <t, forall j=1,...,m}

m m m

= H P{X] < t} = H(l _ e—APjt) — H(l _ e—pjt).

j=1 j=1

Therefore,

BIX] /0 T PiX > 1t

/ 1- [ —em" 3t
0 j=1
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where the proof follows that
E[X] = / P{X > t}dt,
0

/0 LHdt = /O (1— F(t))dt,
/ HF () — 1+ F@)ldt = 0,
0
/OO(tF(t)—t)’dt = 0,
0
(tF(@) - 1), = O

It remains to relate E[X], the expected time until one has a complete set, to E[N], the expected number of
coupons it takes. This can be done by let ting T; denote the ith interarrival time of the Poisson process that

counts the number of coupons obtained. Then it is easy to see that X is a compound random variable,

N
X=> T,
i=1

Since the T; are independent exponentials with rate 1 (E[T;] = 1), and N is independent of the T;, we see
that

N
E[X|N] = E[Y TiN] = NE[T}] = N

Therefore, using double expectation formula,
E[N]=E[X] = / 1= [ e bt
0 =1

5.3.5 Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken place by time t, and we are
asked to determine the distribution of the time at which the event occurred. Now, since a Poisson process
possesses stationary and independent increments it seems reasonable that each interval in [0, ] of equal length

should have the same probability of containing the event. In other words, the following can be checked.

Proposition 5.3.29 The time of the event should be uniformly distributed over [0,t]. This is easily checked

since, for s <t,

P{Ty < s,N(t) = 1}

P{T; < s|N(t) =1}

P{N(t) =1}
_ P{1 event in [0,s),0 events in [s,t]}
B P{N(t) =1}
_ P{N(s) =1}P{N(t) — N(s) =0}
P{N(t) =1}
(/\sef)\s)(ef)\(tfs)) S
B PR Tt

where we recall that P{N(t) = n} = e~ (\t)"/n!.

This result may be generalized, but before doing so we need to introduce the concept of order statistics.
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Definition 5.3.30 Let Y1,Y3,...,Y, be n random wvariables. We say that Y1), Y(2),...,Y(n) are the order
statistics corresponding to Y1,Ya, ..., Y, if Yy is the kth smallest value among Y1,...,Y,, k=1,2,...,n. For
instance, if n = 3 and Y1 = 4, Yo =5, Y3 =1 then Yy =1, Yoy =4, Y3y = 5. Ifthe Y;, i =1,...n,
are independent identically distributed continuous random variables with probability density f, then the joint

density of the order statistics Y(1y,Y(2), ..., Y(n) 1s given by

n
Fi ) = [[fwi), n<wa < <y
i=1

The preceding follows since

(i) (Yy, Y(2ys ooy Y(n)) will equal (y1,y2, ..., Yn) if (Y1,Y2,...,Ys) is equal to any of the n! permutations of
(Y1, Y2, -, Yn);

(i) the probability density that (Y1,Ya,...,Yy) is equal to yiy , ..., Yi,, s ]_n[ flyi;) = ﬁ f(y;) wheniy, ..., iy
s a permutation of 1,2, ...,n. ! !
Proposition 5.3.31 If the Y;, i = 1,....,n, are uniformly distributed over (0,t), then we obtain from the
preceding that the joint density function of the order statistics Y(1),Y(2), .-, Y(n) 18
n!
g O<y1 <y2 < -+ <yp <t

We are now ready for the following useful theorem.

f(y17y27 sy yn) -

Theorem 5.3.32 Given that N(t) = n, the n arrival times Sy, ..., Sy, have the same distribution as the order

statistics corresponding to n independent random variables uniformly distributed on the interval (0,t).

Proof. To obtain the conditional density of Si, ..., S, given that N(¢) = n note that for 0 < s1 < -+- < s, <t
the event that S; = s1, 82 = 82, ...,.5, = $p, N(t) = n is equivalent to the event that the first n+1 interarrival
times satisfy 71 = s1,7T2 = S2 — S1, ..., In = Sp — Sp—1, Int+1 > t — s,. Hence, we have that the conditional
joint density of Si, ..., S, given that N(t) = n is as follows:
fls1,--s8m,m)  g(s1)g(sa = 1) ---g(sn — 50 1) P{N(t) = N(sn) = 0}
P{N(t) =n} P{N(t) =n}
A=A \e—AM(s2-51) ... \e—Asn—sn—1) o= Alt—s5n)

(At)re=At /n)

f(s1,...,8n|n)

n!
= 0<s1 <" <5 <0ty

e~?* is the density of the exponential distribution for 7;. m

where g(x) = A

5.3.6 Applications of Central Limit Theorem

Proposition 5.3.33 Let N(t) be a Poisson process. Let Y; = N(%) - N(@)7 j=12,...,n be iid.
random variables with Y1 = N(%), EY; = %,Var(Yl) = % < 00. The sum is

1
n
n

Nt =Y

j=1
having mean At and variance A\t. By Central Limit Theorem, for large At (either \ large or t large),

N(t)—n3t  N(t)— Mt _ N(t) — E[N(1)]

nAt VAt Var(N(t))

n

£ =

~ N(0,1).
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Example 5.3.34 For a stock market, the transactions of the stock trading are a Poisson process. There are
120,000 trading transactions every 10 minutes. What is the prob. for the number of transactions greater than
k = 1050 in 5 seconds?

Sol. A1 = 200 times per second and t = 5. Then

N;(5) — 1000 _ 1050 — 1000

>
v/1000 v/1000 )
P{¢>1.58} =1—0.9429 = 0.0571.

P{Ny(t =5) > 1050} = P{

Q

Notice that the exact solution

k

P{N;(5) > 1050} =1— P{Ny(5) <1050} =1— Y P{Ny(5) = j}
3=0
F . 10009
— —1000
= 1= e
3=0

which is not easy to compute.

5.4 Generalization of the Poisson Process

5.4.1 Nonhomogeneous Poisson Process

In this section we consider two generalizations of the Poisson process. The first of these is the nonho-
mogeneous, also called the nonstationary, Poisson process, which is obtained by allowing the arrival rate at

time t to be a function of ¢.

Definition 5.4.1 The counting process {N(t),t > 0} is said to be a nonhomogeneous Poisson process with
intensity function \(t), t > 0, if

(i) N(0) =0.

(ii) {N(t),t > 0} has independent increments.

(iii) P{N(t + h) — N(t) > 2} = o(h).

(iv) P{N(t+h) — N(t) = 1} = A(t)h + o(h).

5.4.2 Compound Poisson Process

Definition 5.4.2 A stochastic process {X(t),t > 0} is said to be a compound Poisson process if it can be

represented as

N(t)
X(t)=)_Y;, t=0,
=1

where {N(t),t > 0} is a Poisson process, and {Y;,i > 1} is a family of i.i.d. random variables that is also

independent of {N(t),t > 0}. The random variable X (t) is said to be a compound Poisson random variable.

e If Y; =1, then X (¢) = N(¢), and so we have the usual Poisson process.
e Suppose that buses arrive at a sporting event in accordance with a Poisson process, and suppose that

the numbers of fans in each bus are assumed to be i.i.d. Then {X(¢),t > 0} is a compound Poisson process
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where X (t) denotes the number of fans who have arrived by ¢. Then Y; represents the number of fans in the
ith bus.

e Suppose customers leave a supermarket in accordance with a Poisson process. If the Y;, the amount

spent by the ith customer, i = 1,2, ... , are i.i.d., then {X(¢),¢t > 0} is a compound Poisson process when

X (t) denotes the total amount of money spent by time ¢.

Proposition 5.4.3 Because X (t) is a compound Poisson random variable with Poisson parameter At, we

have
EX®)] = E E[Z YiIN(#)]| = E[N@)EY:]] = EIN(¢)]E[Y]]
= ME[Y],
and
Var[X(t)] = EWVar[X@)|N@)])+ Var(E[X(t)|N

N(t)
- E VarZY|N + Var EZY|N

= FE{N@®)Var[Y;]} + Var{N()E[Y:]}
= E[N@)]VarlVi] + (E[Y:])* Var[N(1)]
(At) {VarYi] + (E[Yi])*}

= (\t) (BYD).

Example 5.4.4 Suppose that families migrate to an area at a Poisson rate A = 2 per week. If the num-
ber of people in each family is independent and takes on the values 1, 2, 3, 4 with respective probabilities
1/6,1/3,1/3,1/6, then what is the expectedvalue and variance of the number of individuals migrating to this
area during o fized filve-week period?

Sol. Letting Y; denote the number of people in the ith family, we have

1 1 1 1 5

ElY,] = 1-242.2 44 =2

[¥i] 6+ 3+3 3+ 6 2
1 1 1 1 43
EIY2 = 12.2492.-432.-142.- = 22,
[Y77] ST o3t o et o=

Hence, letting X (5) denote the number of immigrants during a five-week period, we obtain that

EIX(5) = ME[Y]=2.5-2—025

2
43 215

Var[X(5)] (M) (BY?)=2-5- —

Proposition 5.4.5 Similarly to the result in 5.5.33. Let X(t) be a compound Poisson random variable.

Then
X(t) — E[X(t)]

~ N(0,1),
Var(X(t)) ©.1)

when t is large or A is large.
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Example 5.4.6 In Ezample 5.4.4, find the approximate probability that at least 240 people migrate to the
area within the next 50 weeks.
Sol. Since A\ =2, E[Y;] =5/2, E[Y}?] = 43/6, we see that

E[X(50)] =250, Var[X(50)] =4300/6
Now, the desired probability is

P{X(50) > 240}

P{X(50) > 239.5}
X(50) — 2 239.5 — 2
Py (50) — 250 _ 239.5 — 250

V/4300/6  ~ ,/4300/6

= 1-—¢(—0.3922) = 0.6525.

}

5.5 Parameter Estimation for Poisson Processes

5.5.1 Estimate the rate \ using N(t)
Let N(t) be the Poisson process with the rate A. Since the distribution of N () is

tn
PIN(t) = n} = (An') M =012,

the likelihood function based on n = N (t) is

The log of likelihood is
I(A)=InL(A\) =nln A — X+ co, ¢ is a constant.

Using I'(A) = 0, the maximum likelihood estimate (MLE) of X is n/t. In general, if N(¢) number of events
occur during [0, ¢], then the MLE of A is

« N(t

)

Proposition 5.5.1 The MLE \ is unbiased and strongly consistent.

*iB R E B AT
Proof. Since EN(t) = M,

E\= ==

the MLE ) is unbiased. For each ¢ > 0, there exists an integer p, such that p —1 < ¢ < p. Then

Np—-1) _N@) _ N
P -t T p-1

Due to the independent increments and stationary increments,
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where N(j — 1, j] are i.i.d. random variables. Using the law of large number, we have

N(p—1 N(p—-1 -1
lim =D im Y=Y 5 P2l pna) ), as
n—o00 P n—o00 p—l n—oo P
N
lim ﬂ = EN(1)=), as.
n—oop— 1
Therefore,
N
lim ﬁ— , a.s
t—oo t

that is, A is strongly consistent. m

5.5.2 Estimate the rate )\ using S,

Let the time for the occurrence of the nth event, S,, = s,,, be observed. The likelihood function is

A" n—1_—\s
L()\): F(n)sn 1@ )un.

The log of likelihood is
I(A) =InL(A) =nln X — As, + co, ¢ is a constant.

Using I'(A) = 0, the maximum likelihood estimate (MLE) of X is n/s,. If S,, = s,, is observed, then the MLE

of \is

N n
A= —.
S’ll

Proposition 5.5.2 The MLE \ is not unbiased but strongly consistent.

Proof. The MLE ) is not unbiased. Since S,, ~ I'(A,n), we have

n n—1
_Als o hs

fSn (S) - F(TL)
Then
N n o p Angnl © pA ATlgn—2
E = F— = — —As — A AN ¥
A Sy, /0 s T'(n) e ds /0 n—1T(Mn-1) e ds
n\ o n\
- nil/o Fowa()ds = "2 >,

and therefore the MLE ) is not unbiased. Based on the law of large number, when n — co we have

) T 4+ T, 1
Aflzi:uﬁEﬂzf, a.s.
n n A

and thus the MLE \ is strongly consistent. m

Proposition 5.5.3 The estimator \ = ”S—fl is unbiased and strongly consistent. The proof follows from the

above.
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Chapter 6

Continuous-Time Markov Chain
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Chapter 7

Brownian Motion and Stationary

Process

7.1 Brownian motion

e Let us start by considering the symmetric random walk. Now suppose that we speed up this process
by taking smaller and smaller steps in smaller and smaller time intervals. If we now go to the limit in the
right manner what we obtain is Brownian motion.

e More precisely, suppose that each At time unit we take a step of size Az either to the left or the right

with equal probabilities. If we let X (¢) denote the position at time ¢ then

where
if the ith step is to the right,

X; = 1,
' —1, if the ith step is to the left.
As EX; =0,Var(X;) =1, so that

EX(t) = 0,

Var(X(t) = Aa? [Aﬂ .

o If we let Az = O(At) (advection) and At — 0, then both mean and variance would converge to 0
(trivial).
o If we let Az = o/ At (diffusion) and At — 0, then

EX(t) = 0,
Var(X(t)) — ot

MagE, PR
Definition 7.1.1 {X(¢),¢ > 0} has independent increments, that is, for all t; <ty < - < tp,

X(tn) - X(tnfl)v X(tnfl) - X(tTL*Q)a s 7X<t2) - X(tl)a X(tl)a
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are independent.

Definition 7.1.2 {X(t),t > 0} has stationary increments, that is, the distribution of X (t + s) — X(t) does

not depend on t.

Definition 7.1.3 A stochastic process {B(t),t > 0} is said to be a Brownian motion if

(i) B(0) = 0;

(i1) {B(t),t > 0} has statinoary and independent increments;

(iii) for every t > 0, B(t) is normally distributed with mean 0 and variance ot. Also denoted by a Wiener

process W (t).

e In 1827, the English botanist Robert Brown discovered the random-walk motion exhibited by a small
particle that is totally immersed in a liquid or gas. In 1905, Einstein developed a theory for the interpretation
for collision of water molecules. Later on, Norbert Wiener gave the motion a rigorous mathematical formu-
lation in his 1918 dissertation and in later papers. Since then, the process has been used beneficially in such
areas as statistical testing of goodness of fit, analyzing the price levels on the stock market, and quantum
mechanics.

PR VA B35 2]

Remark 7.1.4 When o = 1, the process is called standard Brownian motion. Because any Brownian motion
can be converted to the standard process by letting B(t)/o we shall, unless otherwise stated, suppose throughout
this chapter that o = 1.

A ES, EARTTE

Proposition 7.1.5 The interpretation of Brownian motion as the limit of the random walks suggests that
B(t) should be a continuous function of t. This turns out to be the case, and it may be proven that, with
probability 1, B(t) is indeed a continuous function of t but is not a differentiable function of t almost

everywhere. This fact is quite deep, and no proof shall be attempted.

7.1.1 Joint probability density function
Theorem 7.1.6 The joint density of B(t1),...,B(tyn) is given by

f(xlw"axn) = ftl(xl)ftzftl(xQ_‘rl)"'ftn*tnf1(xn_"I"nfl)
2 zo—x1)2 Tn—Tn—1)>
B exp {— [7 + Gl g s

(2m)"/2lta (t2 — t1) -+ (tn — tn—1)]'/?

Proof. As B(t) is normal with mean 0 and variance ¢, its density function is given by

First note that the set of equalities

B(tl) T,
B(tg) = X2,
B(t,) = xp,



is equivalent to

B(tl)_B(tQ = 0):.’171—(.’)3‘0:0),
B(tz)—B(tl) = T2 — T,
B(tn) —B(tnfl) = Tp —Tp-1,

Then, by inde by the independent increment assumption it follows that B(t;) — B(tg), B(t2) — B(t1), ...,
B(t,) — B(tn—1), are independent and, by the stationary increment assumption, that B(ty) —X (tx—1) is

normal with mean 0 and variance t; — t;_1. Hence, the joint density is given in the theorem. m

Corollary 7.1.7 Given B(tg) = xo, the conditional pdf of B(t) (t > to) is

_;ex _(x—x0)2 = L ex —M
pla, teo,to) = —mm—s p{ 2(tto)}_ 27 (t — to) p{ Q(ttO)}.

Thus, we obtain the symmetry of a Brownian motion,

1
P(B(t) > xo‘B(to) = x()) = P(B(t) § {170|B(t0) = xo) = 5
One can further check that p(x,t|xo,to) satisfies the diffusion equation
op _19%
ot 20z2’

with the initial condition p(x,t = to|xo,to) = 0(xg). This is the Fokker-Planck equation.

7.1.2 Markovian property of a Brownian motion

Em SR AR

e forward Markovian process

Vit <ty < -+ < ty, given B(t1),...,B(tn—1), conditional pdf of B(t,) is the same with the condition
pdf of B(t,) given only B(t,_1).

1 G R K

e backward Markovian process

Yty <ty < --- <ty given B(ta),..., B(ty), conditional pdf of B(t;) is the same with the condition pdf
of B(t1) given only B(ts).

o R X T AR T kM

e intermediate Markovian process

Vi <to < -+ < tp, given B(t1),...,B(ti—1), B(tit+1),...,B(t,), conditional pdf of B(t;) only depends
on B(t;—1) and B(t;41)-

Theorem 7.1.8 V0 < t; < t < to. Let B(t1) = a,B(t2) = b, B(0) = 0. Then, conditional pdf of B(t) is
normal with mean a + (b — a)(t — t1)(ta — t1) ™" and variance (to —t)(t — t1)(ta — t1) L.

Proof. The joint pdf of B(t1), B(t), B(ts2) is

exp {4 [ + ot 4 e}

t1 t—tq to—t

Tl ) = i -
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and the joint pdf of B(t1), B(ts) is

172 T2 —T 2
1 b )

A e EI (O

Thus,

M2 )2 2
% + (a:t _QZ) + (m; _a;) ] } only z remains

1
2
1,/ 1 1 2z, 229
{ 2" <tt1+t2t> I(ttlthQt)H
{1' ty —t; 5 (mltg—xlt—l—xgt—xgtl) }}
= expy—j — 2z
1
2

IB@)|B(t)=a,B(ts)=b(T|a,b) o< exp

=)t —0)" (t—t)(t2—1)

x expd— to —t1 (CC _ T1to — X1t + 2ot — l‘2t1>2
(t—t1)(ta — 1) (ta — 1)

mltg — 1’1t + l'gt — l’gtl — x1t1 + .’Eltl

The mean is

mean =
(t2 —t1)
1
= ($1(t2 —t1)+($2—$1)t— (562 —$1)t1)
to —t1
B (wg —x1)(t —t1) (b—a)t—t1)
= 1z + P— =a+ PR— )
and the variance is
var = o2 = —(t —t)(t2 = t).
to — 11
]
Corollary 7.1.9 Ift; =0,a = 0, then mean= i’—;, var= %

7.1.3 Brownian motion is a Gaussian process

Definition 7.1.10 A stochastic process X (t),t > 0 is called a Gaussian, or a normal process if X (t1), ...

X (tn) has a multivariate normal distribution for all t1, ... t,.

Remark 7.1.11 If {B(t),t > 0} is a Brownian motion process, then because each of B(t1), B(tz2), ..., B(tn)
can be expressed as a linear combination of the independent normal random variables B(ty), B(ts) — B(t1),

B(ts) — B(ta), ... ,B(tn) — B(tn—1) it follows that Brownian motion is a Gaussian process.

Theorem 7.1.12 {B(¢),t > 0} is a Brownian motion if and only if {B(t),t > 0} is a Gaussian process with
B(0) =0, Vs, t >0, E(B(t)) =0, E(B(s)B(t)) = min{t, s}, and B(t) has a continuous path.

Proof. Only "=" is proved. E(B(t)) =0. Vs <,

E(B(s)B(t)) = E[B(s)(B(t) — B(s) + B(s))] = E[B(s)(B(t) — B(s)] + E[B*(s))]
= E[B(s)|E[(B(t) — B(s)] + s = s.

The remaing proofs are ignored here. m
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7.2 Martingale

7.2.1 Filtration and filtered probability space

See references in arxiv.org/pdf/0712.0622

https://www.math.nyu.edu/~varadhan/course/PROB.ch5.pdf

https://www.math.arizona.edu/ “tgk/464 07/cond exp.pdf

https://www.cs.yale.edu/homes/aspnes/pinewiki/Martingales.html

Filtrations have been introduced by Doob and have been a fundamental feature of the theory of stochastic
processes. Most basic objects, such as martingales, semimartingales, stopping times or Markov processes

involve the notion of filtration.

Definition 7.2.1 Let (2, F,P) be a probability space. A filtration on (Q,F,P) is an increasing family
(Fo)i>0 of sub-o-algebras of F. In other words, for each t, F; is a o-algebra included in F and if s < t,
Fs C Fi. A probability space (Q, F, P) endowed with a filtration (F;)i>0 is called a filtered probability space,
denoted by (Q, F, (Ft)t>0, P).

7.2.2 Introduction to Martingale

A martingale is a model of a fair game. While discrete-time and continuous-time martingale are

defined similarily, we here still define them separately.

discrete-time case

Definition 7.2.2 A stochastic process X = (Xp,Fn), n C {0,1,2,...}, defined on a filtered probability
space (Q, F, (Fn)n>0, P), that is, a probability space (Q, F,P) with a non-decreasing family of o-algebras
(Fadnefo1,2,..3, Fs € Ft ©F, s <t, such that E|X,| < oo, X,, is F,-measurable and

E(X:|F,) = X,.

Remark 7.2.3 The information that we have at time n is the value of all the variables in F,,. Fs C F; for
s <t means that we do not lose information. A random variable X is said to be F,-measurable means that

we can determine the value of X if we know the value of all the random variables in F,.

Proposition 7.2.4 By induction on k, we can show that for k > 0, E[X;1x|F:] = Xi. This can be shown by

observing that
BlXi k| Fe] = E{E[Xeqrl Fepn-a]Fe} = E{Xpppa| i} = = E{Xe |/} = Xo.
Proposition 7.2.5 We notice that
E(X,) = E{E[X{|Fo]} = E(Xp), Vt=0,1,2,...

In other words, martingales never go anywhere, at least in expectation.
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continuous-time case

Definition 7.2.6 A stochastic process X = (X3, Fi), t € T C [0,00), defined on a filtered probability space
(Q, F, (Ft)t=0, P), that is, a probability space (Q, F, P) with a non-decreasing family of o-algebras (Fy)ier,
Fs CF:t CF, s <t, such that E|X;| < oo, Xy is Fy-measurable and

E(X.|F,) = X,.

7.2.3 Examples of martingale in Brownian motion

Theorem 7.2.7 {B(t),t > 0} is a Brownian motion. Notice that ¥t > t,
E(B(t)|B(to) = xo) = E(B(t) — B(to)|B(to) = z0) + B(to) = xo = B(to),
so that B(t) is a martingale.

Theorem 7.2.8 {B(t),t > 0} s a Brownian motion. Then
(1) {B®)},

(2) {B*(t) — t},

(3) {*BO=231) v e R,

(4) {eiAB(t)-s-%)\zt}’ YAEeR

are all martingales.
Proof. We only prove (2) and (3). For (2),
E(B2(t) — t|B(ty) = mo) = BE(B*(t) — B(to) + B*(to) — t|B(to) = x0)
= B[B*(t) — B*(to)|B(to) = o] + B*(to) — t
E[(B(t) = B(to))* + 2B(t)B(to) — 2B (to)| B(to)] + B*(to) — t
= E[(B(t) - B(t))?|B(to)] + 2B(to) E[B(t) — B(to)|B(to)] + B*(to) — t

= t—1to+ 0+ B*(ty) —t = B*(ty) — to.

For (3), first notice that

BABO-B(t)  _ / Mo—wo) L -Gt
om(t — to)

szo*k(t*to))zdx . e%Xz(tﬂfa)

1 / S S
e 2(t—tg)
V27 (t —to)

_ e%/\2(t—to) )
Then

E[eAB(t)—%)\Qt'B(tO) = =z = E[eAB(t)—AB(to)+>\B(to)—%)‘2’5|B(t0) = x0)
e)\B(tU)—%)\QtE[e/\B(t)—)\B(tg)|B(t0) _ a?o}

_ e)\B(to)—%)\Zte%)\z(t—to) _ e/\B(to)—%/\%O.
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7.3 It6 calculus

7.3.1 The pathwise property of Brownian motions
1 77 Rsk
Definition 7.3.1 We say that X,, is mean-square convergent to X if
lim || X, — X||,» = lim (BE(X, - X)2)"* =0
n—oo " L n— o0 " ’

denoted by
lim X, "= X.

n—oo

Lemma 7.3.2 Assume that B(t) is a standard Brownian motion and B(0) = 0. Fizt. Let 0 = tg < t; <
. <tp =1 and A = maxij<i<n(ty —tx—1). Then, the following mean-square convergence holds:

n

lim Y (B(ty) — B(ty_1))* =" ¢.
A—0 1

Proof. We need to prove that

n 2

lim £ ;(B(tk)—B(tk,l))z—t =0.

Notice that ABy := B(tx) — B(tg—1) ~ N(0,tx — tx_1), so that

E[(ABr)?’] = tp—te,
E[(ABL)Y = 3(tx —tr1)’,
and for k # [,
E[(AB)*(AB)?] = E[(ABw)*|E[(ABy)?] = (ty — tr—1) (i — 1) -
Therefore,
E|Y (ABy)?—t| =E ZABk —2EY AB+1t?
k=1 k=1 k=1
= D Bt —te) +2) (ti—tiia) (G —tj1) =2t | > (e —tp1)| +1
k=1 i<j k=1
n n 2
= ) 2tk tee1)’ + > (e - tkl)] —2t2 412
k=1 k=1
= D 2tk —tr)?.
k=1
Since

D (e —th1)” SAD (e —tie1) = At =0, as A — 0 and ¢ fixed,

the proof is finished. m
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Remark 7.3.3 Roughly, we have
[dB(t))* ~ dt.

Theorem 7.3.4 We have that

n

. me 1 1
}\%kle(tk_l)(B(tk) = B(tk-1)) =" 5B°(t) - 5t (7.1)
N ms. 1o 1

il_%%)k:lB(tk)(B(tk) = B(tr-1)) = 5B7(1) + 5. (7.2)

Here, the first quantity later on is defined to be the Ité integral f(f B(s)dB(s).

Proof. Eq. (7.1) + Eq. (7.2): we need to prove that

n

Zn: (B(tr) + B(tr-1)) (B(tx) = B(ti—1)) = ) B*(tx) = B*(tx—1) = B2(1),

k=1 k=1

which is obviously true. Eq. (7.1) — Eq. (7.2): we need to prove that

n

lim Y (B(ty) — B(ty_1))* "= t,
A—0 1

which has been proved in above lemma. Done. m

Remark 7.3.5 It integral, named after Kiyosi It6, does not obey the Fundamental Theorem of Calculus,

since for a deterministic function B(s), we have

/ B(s)dB(s) = %BQ(t).
0

Theorem 7.3.6 Brownian motion {B(t)} is continuous a.e. but not differentiable a.e. for all paths w. (not

proved here.)

Remark 7.3.7 Let us compare the two famous stochastic calculus. For Ité integral, one has
t n
Y (s)dX(s) =1i Y (tp—1) (X (tr) — X (tr—
| v@axe) fimy DY (1) (X(00) = X(11-1)

which is constructed via the forward Euler discretizations. For Stratonovich integral, one has

[ vseaxts = im 3 HOIEOD () - x)),
0 k

=1

which is constructed via the trapezoidal or the midpoint method.

7.3.2 Stochastic Differential Equations

Definition 7.3.8 H := {X CE|IX|P? < oo}, that is, H contains random variables whose second-order mo-

ments exist.

Ko7 E 5
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Definition 7.3.9 Let {X(t) € H :Vt € [0,T]} be a stochastic process. If for to € [0,T], limyy, X (1) ™
X(to), i.e.,

' . 1/2

Jim (X () = X(to)] 2 = Jim (E(X ()~ X (1)) =0,

t—to

then X (t) is said mean-square continuous at tg.
77T

Definition 7.3.10 Let {X(t) € H : ¥t € [0,T]} be a stochastic process. X'(to) is said to be the mean-square
derivative of X (t) at to € [0,T] if

lim
h—0

X (to + hf)L = X(to) me iy

X (t) is said to be mean-square differentiable at to € [0,T).

Theorem 7.3.11 Let X(t) be mean-square continuous on [a,b].
(1) X(t) is integrable on |a,b], i.e., f;X(t)dt exists.
b b 1/2
() 2 x|, < S IX O ga dt, where | XDl s = (EX@)2) for any t € a,b],
(3) Let Y(t) == f; X(u)du (a <t <Db). Then {Y(t) € H :t € [a,b]} is mean-square continuous and mean-
square differentiable on [a,b]. Moreover, Y'(t) = X (t).

(4) If X'(¢t) is mean-square continuous on [a,b], then

X(t)—X(a):/ X' (u)du,
fora <t<hb.

Definition 7.3.12 Let {F;,t > 0} is a set of monotonically increasing sub-o field of F, i.e., Fy, C Ft, C F
for ¥ty < ta. Then {F,t > 0} is called a filtration.

Proposition 7.3.13 {B(t),t > 0} is a Brownian motion. Then, for V0 < s <,
(1) B(s) is measurable w.r.t. Fy.

(2) E(B(t)|Fs) = B(s).

(3) E(B(t) — B(s)|Fs) = 0.

Definition 7.3.14 The set of stochastic process {g(t,w),t > 0} is denoted by L2 if
(1) g(t,w) is measurable w.r.t. [0,T] x Q.

(2) ¥t € 10,TY, g(t,-) is measurable w.r.t. the filtration F;.

(3) fOT Elg(t,w)]?dt < 0o and E[g(t,w)]? < oo for Vt € [0,T).

Definition 7.3.15 {B(t),t > 0} is a standard Brownian motion. Let {g(t,w) € L%, t > 0} satisfy the above

definition. Let 0 =to <t1 < ...<t, =1 and A\ = maxi<p<n(tx — tk—1). If

}‘%kz:lg(tk_l)(B(tk) — B(te-1)) =" Iy(t),

exists, then
t
1,0 = [ gls.w)aB(s)
0

is said to be the Ito integral of {g(t,w) € L2.,t > 0} w.r.t. {B(t),t >0} on [0,1].
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Theorem 7.3.16 For Vg € L2,

(1) Ely(t )
(2) E12 fo Eg s)ds, and Cov(I4(s), I4(t)) = [, Eg*(u)du for any 0 < s <.
(3) {I,(t fo ),t > 0} is martingale w.r.t. Fy.

Proof. (1) Ignore the limitation of A — 0, then

=> g(tr-1) — B(ty-1))-
k=1

Thus, denote g(tx_1) by gr_1,

BL®) = Y Elg(Bt) - Blte)] = 3 B{Elger(Bltr) — B(tus)|Blti)] )
k=1

k=1

= " B{a BI(Bt) - Bte—1))B(te-1)] |
k=1

- iE{gk—l 0} =0,
k=1

(2) We ounly prove the first part.

n

B - E{;[gk_ﬂB(tk)—B(tk_n)]}z
- E{;[gil(B(tk) Bltr_1) +2§ gi-195-1(B(t:) — B(ti 1))(B<tj)—B(tj71))]}
= > B {Blat (B - B}
+2;E{E [9i—19j—1(B(t:;) — B(ti—1)) (B(t;) — B(tj—1))]|B(t1) - '-B(tj—l)}

I
NE

B{gt 1 E(B(t) ~ Bltx-))?][ B(t)}

x>
I
—

+23" B{gi 191 (B(t:) - B(t: 1) B[(B(ty) - B(t;1))|IB(1) -+ B(t; 1) }

i<j

= iE{giq(tk - tkfl)}
k=1

[ B opas

(3) Let {¢n(t,w)} be a sequence of simple measurable functions mean-square converging to g(¢,w) in the

=0

definition of the It6 integral. If we define

-/ (s )dB(5,).

it follows easily from the It isometry that || M{* — I4(t)|| ;. — 0 for all t € [0,T]. Therefore, {I,(t), F;} is a

martingale w.r.t. {F;} if {M}*, F;} is a martingale. From the definition of ¢,,, M]* is clearly Fi-measurable
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and in L?(, F, P). Assume that 0 < s <t < T. Then, by the linearity of the conditional expectation and
the Itd integral,

soiiE) = B0z + ([ o.0is0)E)

= M'+FE (/: ¢n(r)dB(r)|]-'S> .

It remains to prove that the last term is 0. The integral only consists of terms of the form

gk(Btk+1 - Btk)’

where s <1y <tp41 <t and & is Fy -measurable. Since Fy C F;, , we have

E (/St ¢n(r)dB(T)|E> =F (Zn: Ee(Biyy — Btk)]:s>

= ZE (gk‘(BthA Btk |]: ZE fk Btk+1 Btk)|]:tk) |}_S}

k=1
= ZE [EkE ((Btk+1 Btk |]:tk |]: ZE Ek 0‘]:
k=1 k=1

The proof is complete. m

7.3.3 Itd Stochastic Process and It6 formula

Definition 7.3.17 {X(¢),t > 0} is said to be a It Stochastic Process if X (t) satisfies

X(t)— X(to) :/ b(s,X(s))ds—l—/ o(s,X(s))dB(s),

to to
or

dX (t) =b(t, X (t))dt + o(t, X (t))dB(t).
It6’s lemma or Itd formula is the chain rule for stochastic calculus.

Theorem 7.3.18 (It6’s lemma or Ité formula) Let {X(t),t > 0} be a It6 stochastic process as above.
Let f(t,z) € CY2 and let Y (t) := f(t, X (t)). Then the stochastic process {Y (t),t > 0} satisfies

) 0 292 t 9
Y(t) =Y (t) = /to (8{ + ba—i + 023;;> (s, X (s))ds + . aa—i(s,X(s))dB(s),

dY (1) = (g{ + b% + (;gxé) (t, X (£))dt + U%(t, X()dB(t). (ae.)

Proof. The expansion of f(¢,x) in a Taylor series is

of of 1O f
df = Zpdt+ 5 do + 5 5-gda’ +

Substituting X (¢) for x and therefore the governing equation gives

— af af aZf 2 742 2 2
df = EdH 8—[bdt+ cdB(t)] + 5@[6 dt? + 2bodtdB(t) + o*dB>(t)] +
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In the limit dt — 0, the terms dt? and dtdB(t) tend to zero faster than dB?(t) and notice that dB?(t) = O(dt).
Setting the dt? and dtdB(t) terms to zero, and substituting dt for dB?(t) (due to the quadratic variation of

a Wiener process), and collecting the dt and dB(t) terms, we obtain

af Of o2d%f of

df = <— b2t 4 ——) dt + 05 dB(t).

ot Ox 2 0z2

7.3.4 History of Kiyosi Ito

Kiyosi Ito

Figure 7.1: Kiyosi Ito.

e See reference on the website https://mathshistory.st-andrews.ac.uk /Biographies/Ito. See Fig. 7.1 for
Kiyosi Ito.

e Kiyosi It6 was born on 7 September 1915, in Hokusei-cho (now Inabe, Mie Prefecture), Japan. He died
on 10 November 2008, in Kyoto, Japan. Kiyosi Itd6 was a Japanese mathematician who pioneered the theory
of stochastic integration and stochastic differential equations. He won the Gauss prize in 2006.

e Kiyosi Ito6 studied mathematics in the Faculty of Science of the Imperial University of Tokyo. It
was during his student years that he became attracted to probability theory. He explains how this came
about: Fwver since I was a student, I have been attracted to the fact that statistical laws reside in seemingly
random phenomena. Although I knew that probability theory was a means of describing such phenomena, I
was not satisfied with contemporary papers or works on probability theory, since they did not clearly define the
random variable, the basic element of probability theory. At that time, few mathematicians regarded probability
theory as an authentic mathematical field, in the same strict sense that they regarded differential and integral
calculus.  With clear definition of real numbers formulated at the end of thel9th century, differential and
integral calculus had developed into an authentic mathematical system. When I was a student, there were few
researchers in probability; among the few were Kolmogorov of Russia, and Paul Levy of France.

e In 1938 It6 graduated from the University of Tokyo and in the following year he was appointed to the
Cabinet Statistics Bureau. He worked there until 1943 and it was during this period that he made his most
outstanding contributions: During those five years I had much free time, thanks to the special consideration
given me by the then Director Kawashima ... Accordingly, I was able to continue studying probability theory, by
reading Kolmogorov’s Basic Concept of Probability Theory and Levy’s Theory of Sum of Independent Random

Variables. At that time, it was commonly believed that Levy’s works were extremely difficult, since Levy,
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a pioneer in the new mathematical field, explained probability theory based on his intuition. I attempted to
describe Levy’s ideas, using precise logic that Kolmogorov might use. Introducing the concept of reqularisation,
developed by Doob of the United States, I finally devised stochastic differential equations, after painstaking
solitary endeavours. My first paper was thus developed; today, it is common practice for mathematicians to
use my method to describe Levy’s theory.

e In 1940 he published On the probability distribution on a compact group on which he collaborated with
Yukiyosi Kawada. The background to Itd’s famous 1942 paper On stochastic processes (Infinitely divisible
laws of probability) which he published in the Japanese Journal of Mathematics is given: Brown, a botanist,
discovered the motion of pollen particles in water. At the beginning of the twentieth century, Brownian
motion was studied by FEinstein, Perrin and other physicists. In 1923, against this scientific background,
Wiener defined probability measures in path spaces, and used the concept of Lebesgue integrals to lay the
mathematical foundations of stochastic analysis. In 1942, Dr. Ité began to reconstruct from scratch the
concept of stochastic integrals, and its associated theory of analysis. He created the theory of stochastic
differential equations, which describe motion due to random events.

e Although today we see this paper as a fundamental one, it was not seen as such by mathematicians at
the time it was published. It6, who still did not have a doctorate at this time, would have to wait several years
before the importance of his ideas would be fully appreciated and mathematicians would begin to contribute
to developing the theory. In 1943 It6 was appointed as Assistant Professor in the Faculty of Science of Nagoya
Imperial University. This was a period of high activity for It6, and when one considers that this occurred
during the years of extreme difficulty in Japan caused by World War II, one has to find this all the more
remarkable.

e In 1945 It6 was awarded his doctorate. He continued to develop his ideas on stochastic analysis with
many important papers on the topic. Among them were On a stochastic integral equation (1946), On the
stochastic integral (1948), Stochastic differential equations in a differentiable manifold (1950), Brownian
motions in a Lie group (1950), and On stochastic differential equations (1951).

e In 1952 It6 was appointed to a Professorship at Kyoto University. In the following year he published his
famous text Probability theory. In this book, Itd develops the theory on a probability space using terms and
tools from measure theory. The years 1954-56 It6 spent at the Institute for Advanced Study at Princeton
University. An important publication by It6 in 1957 was Stochastic processes. This book contained five
chapters, the first providing an introduction, then the remaining ones studying processes with independent
increments, stationary processes, Markov processes, and the theory of diffusion processes. In 1960 It6 visited
the Tata Institute in Bombay, India, where he gave a series of lectures surveying his own work and that of
other on Markov processes, Levy processes, Brownian motion and linear diffusion.

e Nowadays, Dr. Itd’s theory is used in various fields, in addition to mathematics, for analysing phenom-
ena due to random events. Calculation using the "It6 calculus" is common not only to scientists in physics,
population genetics, stochastic control theory, and other natural sciences, but also to mathematical finance
in economics. In fact, experts in financial affairs refer to Itd calculus as "It6’s formula." Dr. It6 is the father
of the modern stochastic analysis that has been systematically developing during the twentieth century. This
ceaseless development has been led by many, including Dr. Itd, whose work in this regard is remarkable for
its mathematical depth and strong interaction with a wide range of areas. His work deserves special mention
as involving one of the basic theories prominent in mathematical sciences during this century.

e A recent monograph entitled Itd’s Stochastic Calculus and Probability Theory (1996), dedicated to
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Ito on the occasion of his eightieth birthday, contains papers which deal with recent developments of Itd’s
ideas: Professor Kiyosi Ito is well known as the creator of the modern theory of stochastic analysis. Although
It6 first proposed his theory, now known as It6é’s stochastic analysis or Itd’s stochastic calculus, about fifty
years ago, its value in both pure and applied mathematics is becoming greater and greater. For almost all
modern theories at the forefront of probability and related fields, Ité’s analysis is indispensable as an essential
instrument, and it will remain so in the future. For example, a basic formula, called the Ité formula, is well

known and widely used in fields as diverse as physics and economics.

7.4 Variation on Brownian Motion

7.4.1 Brownian motion with drift

Definition 7.4.1 We say that {X(t),t > 0} is a Brownian motion process with drift coefficient p and
variance parameter o2 if

(i) X(0) = 0;

(i1) {X(t),t > 0} has stationary and independent increments;

(iii) X (t) is normally distributed with mean ut and variance to?.

Definition 7.4.2 An equivalent definition is to let {B(t),t > 0} be standard Brownian motion and then
define

X(t) = oB(t) + ut.
7.4.2 Geometric Brownian motion

Definition 7.4.3 If {Y(t),t > 0} is a Brownian motion process with drift coefficient u and variance param-
eter 02, i.e., Y(t) = o B(t) + ut, then the process {X(t),t > 0} defined by

X(t)=e"®,
1s called geometric Brownian motion.

e For the geometric Brownian motion {X (¢)}, the mean, second-order moment, variance at time ¢ given

the history of the process up to time s can be computed (see details in [10]),

EIX(1)[X(u),0 < u<s]=X(s)elt et/
B[X%(t)|X(v),0 < u<s|= )(2(8)6(75—8)(2u-~—202)7
Var(X(t)| X (w),0 < u<s]= X2(5)6(t75)(2u+o2)<602(t78) —1),

since Y (t) — Y'(s) is normal with mean u(t — s) and variance o2(t — s).
e Geometric Brownian motion is a martingale only when p + 02/2 = 0.
e In particular, geometric Brownian motion is not a Gaussian process.

e Geometric Brownian motion { X (t) = e#*T5®) ¢ > 0} satisfies the stochastic differential equation

dX(t) = (u+ %2)X(t)dt +oX(t)dB(t).
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e Application in financial mathematics and Black-Scholes PDE model. For instance, Geometric Brownian
motion is useful in the modeling of stock prices over time when you feel that the percentage changes are
independent and identically distributed. For instance, suppose that X, is the price of some stock at time n.
Then, it might be reasonable to suppose that X,,/X,,_1, n > 1, are independent and identically distributed.
Let

Zn=Xn/Xn-1= Xn=2Z,X,_1.

Iterating this equality gives
Xn=2ZnZp1- Z1Xo.

Thus,

log(Xy) = Zlog(Zi) + log(Xo),

Since log(Z;), ¢ > 1 are independent and identically distributed, {log(X,,)} will, when suitably normalized by
central limit theorem, approximately be Brownian motion with a drift, and so {X,,} will be approximately

geometric Brownian motion.

7.5 Stationary and weakly stationary processes
FRRLE

Definition 7.5.1 A stochastic process { X (t),t > 0} is said to be a stationary process if for all s,n,ty,... t,
the random vectors X (t1),..., X (t,) and X(t1 + 8), ..., X (t, + 8) have the same joint distribution. In other
words, a process is stationary if, in choosing any fized point s as the origin, the ensuing process has the same

probability law.

Two examples of stationary processes are:

e An ergodic continuous-time Markov chain {X(¢),¢ > 0} when
PAX(0) =j} =m, j =0,

where {7;,j > 0} are the limiting probabilities or the stationary distribution.

e {X(t),t >0} when X(t) = N(t+ L) — N(t),t > 0, where L > 0 is a fixed constant and {N(t),t > 0}
is a Poisson process having rate \.

EFRLE

Definition 7.5.2 The condition for a process to be stationary is rather stringent and so we define the process
{X(t),t > 0} to be a second-order stationary or a weakly stationary process if E[X(t)] = ¢ and
Cov[X(t), X(t + s)] does not depend on t. That is, a process is second-order stationary if the first two
moments of X (t) are the same for all t and the covariance between X (s) and X (t) depends only on |t — s|.

For a second-order stationary process, define R(s) = Cov[X (t), X (t + s)].

Remark 7.5.3 As the finite dimensional distributions of a Gaussian process (being multivariate normal)
are determined by their means and covariance, it follows that a second-order stationary Gaussian process is

stationary. See the following example.
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Example 7.5.4 (The Ornstein-Uhlenbeck Process) Let {X(t),t > 0} be a standard Brownian motion
process, and define, for a > 0,

V(t) = e_o‘t/QB(eat)
The process {V (t),t > 0} is called the Ornstein-Uhlenbeck (OU) process. It has been proposed as a model for
describing the velocity of a particle immersed in a liquid or gas, and as such is useful in statistical mechanics.

Let us compute its mean and covariance function.

E(WV(t) = e BB
= e /2 /00 & feat (x)dx
= O’ -
CoolV(E), Vit +5)] = e ot/2eal)/200[B(ect), B(ea(t+)
= e ¥mas/2pin{et, e(tHs))

e—at—as/2eo¢t — e—as/2,

where fi(x) = \/%e*“‘ﬁ/%. Hence, {V (t),t > 0} is weakly stationary and as it is clearly a Gaussian process
(since Brownian motion is Gaussian) we can conclude that it is stationary.

For the OU process, another more usually used form is the corresponding SDE,
dV (t) = —%V(t)dt + VadB(t).
For this SDE in equilibrium or in long time limit, one can show that
EV() = 0,

2
CoolV()V(t+s) = WO g5 —as2,

2(3)

See equation (1.30) in reference [14].
We now see the equivalence between above two forms of the OU process from another view point. For
the analytic solution V (t) = e=*"/2B(e'), we see that

a(e2v (1)) = dB(e™),
so that for the RHS we have
EB(e*) = 0, E[B?(e®!)] = e, Cov(B(e®), B(e*H1)) = ¢,
For the PDE form, it can be rewritten as
d <eat/ 2V(t)) = /2 /adB(t) := g(t)dB(1).

We now use the results in Theorem 7.3.16. Denote I,(t) = ffoo g(s)dB(s),(the reason for choosing starting
from —oo is that we hope to ignore the effect of the initial condition, that is, we hope to consider the system
for sufficient long time to let the system in equilibrium. See also reference [14] for the relation between long

time limit and the equilibrium state.) then

L5 = o
BIJ(t) = /_too Eg*(s)ds = /_too (6“5/2\/&>2 ds = e™,
Conty(0.1,(t+9) = [ ; Bg?(s)ds = e,



which is exactly the same as above results. Since both systems are weakly stationary, Gaussian processes and

they have the same moments up to second order, they are identically stationary Gaussian processes.

As the following examples show, there are many types of second-order station ary processes that are not
stationary.

Example 7.5.5 (An Autoregressive Process) Let Zy,Z1,Zs,... be uncorrelated random variables with
E[Z,)=0,n>0 and

2/(1=X2%), n=0,

Var(ze) — { /1=, n

o, n>1.

where \? < 1. Define

Xo = 2o,
Xn

)\anl'i_va 712 ]-

The process { X, n > 0} is called a first-order autoregressive process. It says that the state at time n (that is,

X, ) is a constant multiple of the state at time n — 1 plus a random error term Z,. Iterating above equation
yields

X, = )\()\anl + anl) +Zn

n

— Z )\n—iZi’

i—0

~

and so
n ) n+m ]
Cov(Xp, Xpnim) = Cov <Z NV, Z )\""'m_lZi)
i=0 i=0

= Z NN Coy (2, Z;)

=0

1 - :
2\2n+m —21
e (i )

1 1_)\2n
— 2y2n+m —2n
= o)\ (1_>\2+)\ 1_)\2>

aZam
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where the preceding uses the fact that Z; and Z; are uncorrelated when i # j. As E[X,] = 0, we see that
{X,,n > 0} is weakly stationary (the definition for a discrete time process is the obvious analog of that
given for continuous time processes). It is easy to see that {X,,n > 0} is not necessary to be stationary by
taking Zo and other Zy, Zs, ... to be Bernoulli distribution. In detail, if taking Xo = Zg = £/02/(1 — A\2),
Z1 = +o with 1/2 probability, then the distribution of X1 = A\Zy + Z1 is different from that of X.

7.6 Discretization of SDEs

See references, http://www.spec.gmu.edu/ pparis/classes/notes  630/class4 2018.pdf and
https://www.seas.upenn.edu/ ~ese3030,/homework /week 11/week 11 white gaussian noise.pdf.
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Definition 7.6.1 £(t) is a standard Gaussian white noise (GWN) if £(t) is a Gaussian process such that

(€@t)) = E€(t) =0,  (£(t1),&(t2)) = Cov(§(t), &(t2)) = 6(t1 — ta).

Lemma 7.6.2 (Wiener-Khinchin theorem) Let f(t) be a stationary process. Define its inverse Fourier trans-

form by
flw) = FA0)w) = [ feat
Then, the Fourier transform takes the form

16 = FU@0 = 5 [ Fwreat

Define the auto-correlation function
/ fr) ft+7)

Then the Wiener-Khinchin theorem states that

where S(w) := | f(w)|? is called the power spectral density or power spectrum.

Proof. We have

C(t) = /f(T)*f(t + T)dT = (2;_)2 /]?(W1)€_iwl(t+7—)f*(WQ)eiMQwaldWQdT

= 1 /f(wl)e_i“’ltf* (wa) (27) 6 (w1 — wa) dwidws

o 2 ) A 2

f o= r [[f)[ | .

]

Remark 7.6.3 The Wiener-Khinchin theorem is a special case of the cross-correlation theorem with f = g.

Remark 7.6.4 The spectral contents of a non-stationary process will be time-varying.

Theorem 7.6.5 The standard Gaussian white noise has constant power spectral density, i.e., S(w) = 1.

_ 1 —wt
= %/S(w)e dt,

Proof. Since

Q
—~
~
~—
Il
—~
I
—~
~
~—
AN
—~
(=}
=
~
Il
o]
—
~
~—
Il
=

o 1 —iwt
Thus S(w) =1 is proved. =

Definition 7.6.6 Let &(t) be a standard Gaussian white noise, then the random process

= [Cetsas

18 te standard Brownian motion or standard Wiener process.
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Remark 7.6.7 Roughly speaking, one has

dB(t)
—= =£(f).

20 _ e
Definition 7.6.8 Definte the discrete time process AB,, as the integral of £(t) over the interval [t,, tny1] =

[nh, (n+ 1)h], i.e.,

(n+1)h
AB,, = / &(s)ds.
nh

7.6.1 Euler Maruyama scheme

Consider the SDE
dXt = a(Xt, t)dt + b(Xt, t)dBt,

where X; = X (t) is the stochastic process and B; = B(t) is the standard Brownian motion, with initial
condition Xy = xy. Suppose that we wish to solve this SDE on some interval of time [0,7]. Then the
Euler-Maruyama approximation to the true solution X is the Markov chain Y defined as follows:

e partition the interval [0, 7] into N equal subintervals of width A¢ > 0:
0=t <t1 < -~-tN:TandAt:T/N;

e set Yy = xg;
e recursively define Y, for 0 <n < N —1 by

Y1 =Y, +a(Y,, tn) At + (Y, t,)AB,,

where

ABn = Btn+1 - Btn =&V At, with ¢ ~ N(O, 1),

that is, the random variables AB,, are i.i.d. normal random variables with expected value 0 and variance At.

7.7 Langevin equation and the Fluctuation-Dissipation Theorem

e The random motion of a small particle immersed in a fluid is a Brownian motion.

e Observations were made on pollen grains, dust particles, and other objects of colloidal size.

¢ "Brownian particle" is not a real particle, but instead some collective propertyof a macroscopic system.
e Newton’s equation or Hamiltonian dynamics.

e One-dimensional motion of a spherical particle (Radius a, mass m, position z, velocity v) in a fluid

medium (with viscosity 7).

dv
— = Fiotai(t)-
mdt total (1)
e The force is dominated by a frictional force —yv, where v = 67na is given by Stoke’s law:
dv
m— = —qv
dt YU,
o(t) = e mu(0).

However, <%mv2>eq = %kBT. = Fj,tq1 should be modified!
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e random Langevin equation for a Brownian particle:

d
md—: = —yv + g&(t), (7.3)

where £(t) is 1.i.d. Gaussian white noise with

(€(1) =0, (€M) =t —1).

dv vy o
bR = £t
dt + m mg( ),

at v a o

il B —  em —£(t

© <t+mv> © ms()’
d v
da (ej'fv) = eﬁif(t)a

e Only 3 terms possibly contribute to the <2mv2> g

e For the multiplication of two noise terms,

e ey /0 2 gy ”)dt”>

(t t) o _q¢-t'h o
—e

= (EE("))

m

50" =)

_ne=t) 02 2w<t—t'>d2'yt’ m
m —
m2 m 2y

2'y(t/7t) 24t
= 73 m |t _ — (11— ™ ).
2myy 2m’y

In the limit of ¢ — oo (that is, for sufficient long time, the system will be in equilibrium),

(v(t)?) = -

2my’

/ m
" n -2t f) — ks f”) o?
dt e

(U
e
o
e

2

e http://vallance.chem.ox.ac.uk/pdfs/Equipartition.pdf

The equipartition theorem states that energy is shared equally amongst all energetically accessible degrees
of freedom of a system. The equipartition theorem can go further than simply predicting that the available
energy will be shared evenly amongst the accessible modes of motion, and can make quantitative predictions
about how much energy will appear in each degree of freedom. Specifically, it states that each quadratic
degree of freedom will, on average, possess an energy %k 1. We can use the Maxwell-Boltzmann distribution
of molecular speeds to determine the average kinetic energy of a particle in a gas, and show that it agrees
with the equipartition result. The average translational kinetic energy of a particle in a gas is %kBT, or
%kBT per translational degree of freedom, in agreement with the equipartition theorem. Then, we have
<%mv2> = %kBT, and thus



Therefore, we obtain the fluctuation-dissipation theorem or Einstein relation:
0% = 2vkpT.

(&) BEAKGEH, MADMEZEHK, wiBriE
e https://www.physik.uni-augsburg.de/theol /hanggi/History /Renn.pdf
In Einstein 1905’s paper about Brownian motion, o2,v,T are macroscopic quantities, which can be
measured. Thus, the Boltzmann constant can be approximated. Furthermore, it was already well-known
that

where R is the gas constant and N4 is the Avogadro’s number. Recall that R appears in the Clausius-
Clapeyron equation, pV = nRT.

Ei%

e In 1926, Perrin studied the Brownian motion using pollen grains and eventually won the Nobel prize.

In his paper, he claimed that his experiments are based on Einstein’s theoretical prediction (z ~ v/%).

7.7.1 Significance of fluctuation-dissipation theorem

(1) The concept of atoms and molecules become universally accepted.
(2) Deduction of the value of the Avogado’s number.
(3) The theory applies to diffusion phenomena, including mixing of gases and liquids, atom motion in

solids, spread of the black plague, etc.

7.8 Forward and Backward Kolmogorov equations for SDEs

see Kolmogorov_handout_Lecturel0_2019%20|Good|.pdf
E, W,, Li, T., and Vanden-Eijnden, E. (2014). Applied Stochastic Analysis.
Consider the SDE
dX, = b(X,;, t)dt + o(Xy,t)dB;, X, B; € R%. (7.4)

We assume throughout this lecture that b, o satisfy a global Lipschitz condition and linear growth condition.

We work with a vector-valued process here, since it will be no more complicated than a scalar one.

7.8.1 Backward Kolmogorov Equation
Definition 7.8.1 Define the linear operator L by

(Lf)(2,t) == b(z,t) - Vf(2,t) +a(z,t): V> f(z,1),
with a(z,t) = Lo(z,t)o” (z,1) is a tensor.

Theorem 7.8.2 Backward Kolmogorov Equation (time-inhomogeneous).
(i) Let X; solve SDE (7.4). Let u(y,s) = E¥*f(X:) = E[f(X}:)|Xs = y], (notice that the conditioning Xs =y
here is the independent variable of u), where f € C2(R?). Then
Osu(y,s) + Lyu(y,s) = 0, s<t,
u(y,t) = f(y).



(ii) Let p(z,tly, s) be the transition density of X; solving (7.4). Then

Osp+Lyp = 0, s<t,
6(z —y).

p(ztly,t)
The operator L, acts on the y-variables of p.

Remark 7.8.3 Notice that Equations (7.3) and (7.3) are solved backward in time, with the given terminal

conditions. This is the origin of the name "backward equation.”

Proof. (from E et al. (2014)) We first prove (i). Using Itd formula, we can show for any function u(z,r)

that

du(X,,r) = (u+b-Vxu+a:V% f)(X,,r)dt+Vxu-o-dB,,
du(Xp,r) = (Opu+ Lu)(X,,r)dr +Vu-o-dB,.

Integrate from s to p and take the expectation conditional on Xy = y to obtain
EY® /P du(X,,r) = EY* /P {(Oru+ Lu)(X,,r)dr + Vu-o-dB.}.
s s
Notice that by martingale property in Theorem 7.3.16 (proof in (3)), the last term vanishes, that is,
Ey’s/qu~a-dBr =0.

Then, divide by p — s and take the limit p — s,

1 1 P
Il,i_%pfsEy’S [w(Xp,p) — u(Xs,8)] = ;Lr%pfsE%s/s (Oru + Lu) (X, r)dr,
D
li EVsu(X,,p) — Elu(Xs,s)|Xs =y]] = EY*Ii X X, r)dr,
lin L [B7*u(X,.p) ~ Elu(X.,9)X. =] i —— [ O+ L)X, r)ar
fim [P u(X,.p) ~ulys)] = B (@t Ly, = B[O+ Lx,)(Xeos)|X, = o,
p—sp—

= (Osu+ Lyu) (y,3).

Next we would like to prove that the LHS vanishes. In the definition u(y, s) = E¥*f(X:) = E[f(X:)|Xs = y],
we take s =t and y = X; to obtain

u(Xy,t) = E[f(Xy)| Xy = Xo] = f(Xy).
Take EY* at both sides to obtain
BV u(Xy,t) = BV f(Xt) = uly, s),

where the last equation follows from the definition of u(y, s). Therefore, the LHS vanishes.

For the initial condition, take s = ¢ in the definition of u(y, s) to obtain
u(y,t) = BV f(Xy) = E[f(X0)|Xe = ] = f(y).

To show (ii), use the definition u(y, s) = E[f(X;)|Xs = y] to write u(y, s) = [ f(x)p(z, t|ly, s)dx (notice that
t is a constant), and compute dsu and L,u. Substitute into dsu(y, s) + Lu(y, s) = 0 to obtain

0. [ @wlastly s+ £, [ aplaty, s =
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If p(-|y, s) has continuous bounded derivatives in s and y, then we can move the derivatives inside the integral

to obtain

/f(x) [Osp(z, tly, 8) + Lyp(x, tly, s)] dz = 0.

This holds for all test function f, so Osp(x,t|y,s) + Lyp(x,tly,s) = 0 as claimed. The terminal condition

follows from the terminal condition on wu,

u(y,t) = / @)l tly, )z = [(y). = ple, tly,1) = 6z — ).

For a time-homogeneous equation, we have an equation that is solved forward in time for the Backward

Kolmogorov Equation.

Theorem 7.8.4 Backward Kolmogorov Equation (time-homogeneous). Let X; solve a time homoge-
neous SDE (7.4). Let u(x,t) = E*f(X;) = E[f(X;)|Xo = x|, where f € C2(R%) is bounded with two bounded
derivatives. Then

ou(z,t) = Lyu(z,t), u(z,0)= f(x), t>0.

Proof. One can derive this from the equation for a time-inhomogeneous process by a change of variables.
Consider the function v(z,s) = u(z,t — s). Then Osv(z,s) = —0su(x,t — s), and Lu(z,s) = Lu(x,t — s), so
v solves

Osv(x, 8) + Lo(x,s) =0, wv(z,0) = f(z).

which is the desired equation. Furthermore, we have by definition and the time-homogeneity of the process
that v(z,s) = E®'5f(X;) = E%0f(X,). m
There is a different proof, which shows the result directly (Varadhan [2007], section 6.3 p.95-96.)

Example 7.8.5 (Brownian motion). Consider a Brownian motion, which solves the SDE dX; = dBs.

The generator is L = %A so the Backward equation is
1
Opu = §Au, u(z,0) = f(x).

This is a heat equation for u, with initial condition f(x).

7.8.2 Forward Kolmogorov Equation

Now we consider the forward equation.

Definition 7.8.6 The forward Kolmogorov equation will be formulated in terms of L*, the formal adjoint of
L. This is the operator that satisfies

(Lf.g)={fL"g),

for all f,g in a suitable function space, and where (f,g) = [ fgdx is the L%-inner product. Let’s work out
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the formal expression for £*. We have
(Lf.g) = /g(b~Vf+a:V2f)dx:/(gb-Vf+ga:V2f)d:c
= /(v (f9b) - (gb))der/(V'(gaon)f(V'(ga))~Vf)d:c
/(v (fgb) - (gb))dm+/(V-(ga~Vf)— V- (/Y- (g) = V-V (ga)] ) da
= /[ IV (gb) + V-V - (ga) d:v—/f (bg)+V2:(ag)]dxz/fﬁ*gdxz(f,ﬁ*g).

In the third line, we used the Divergence theorem and assumed that all the terms vanish at infinity. We are
left with
Lig(wt) = =V - (b, )g(w,1) + V7 (alz.)g(x,1)). (7.5)

Theorem 7.8.7 Forward Kolmogorov Equation (Fokker-Planck equation).
(i) Let p(x,t) the probability density of X at time t, and let po(x) be its initial probability density. Then p
solves

Op=Lyp, p(x,0) = po().

The operator L is defined in (7.5).
(i1) Suppose Oip(x,t|y,s) is continuous in t. Then the transition probability density p(x,t|y,s) is a weak

solution to

Owp = Lyp, (x,t=sly,s) =d(x —y). (7.6)

Remark 7.8.8 The forward equation (sometimes called the Fokker-Planck equation) is the same whether the

process is time-homogeneous or not.

Proof. We show (ii) first. The first step of the proof is similar to that in Kolmogorov Backward Equation.
For any f(z) € C? not depending on time ¢, we apply the It6 formula:

df(Xr) = (£er)(Xr)dT +Vf.o-dB,.

Take the integral and then take the expectation:

E”W&%ﬁ@M::EW/M&mKMT

[ e [ 21wt rivs)az

Take 8, of the equation, and assume that d;p is continuous so we can interchange 9; and [, to find

/fumuw%@m—fw>

/ﬂ@@mwm@wz/EWWMﬂ%@w

This holds for all suitable test functions f and defines a weak solution to (7.6). Indeed, integrate by parts
on the RHS of above equation to get

/ﬂ@@m@ﬂ%ﬁ—ﬁwmﬂ%$ﬂw

This holds for all test functions f, which implies the result in (ii). Notice that we assumed that all the

boundary terms vanished when we integrated by parts.
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To show (i), notice that p(x,t|y, s) is the fundamental solution, so that write

p(z,t) = /p(x,tlyﬁ)po(y)dy.

Integrate both sides of the result in (ii) over po(y) to get the result in (i). (From PDE view point, this is just
the convolution formulation for the solution and one can now understand the solution of the PDE problem

from the transition probability matrix view point.) ®

Example 7.8.9 (Brownian motion). For a Brownian motion solving dX; = dBy,, we have L = %A, 80

L= %A. The probability density therefore solves a heat equation

1
Orp = §AP7 pli=0 = po-
In this example, we had L = L* but that almost always won’t be the case.

Remark 7.8.10

e Boundary condition is complicated.

e Microscopic and macroscopic views are quite different! For micro view, we have Newton’s law and Hamil-
tonian system, which is time reversible. For macro view we have heat equation and energy dissipation, which

is time irreversible.

7.9 Gaussian Processes

Read more references.
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Chapter 8

Time Series

Kalman filter
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