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Chapter 1

Regression

1.1 General Setup

See references in Cucker and Smale 2001, Bias_Var_Ridge, Learning Theory from First Principles by
Francis Bach.

Since we want to study learning from random sampling, the primary object in our development is a
probability measure ρ governing the sampling and which is not known in advance (however, the goal is not
to reveal ρ).

Let X be a compact domain or a manifold in Euclidean space and Y = Rk. For convenience we will take
k = 1 for the time being. Let ρ be a Borel probability measure on Z = X × Y whose regularity properties
will be assumed as needed. In the following we try to utilize concepts formed naturally and solely from X,Y

and ρ.
A main concept is the error (or least squares error) of an arbitrary well-defined functoin f defined

by
E(f) =

∫
Z

(f(x)− y)2dρ(x, y), for f : X → Y. (1.1)

For each input x ∈ X and output y ∈ Y , (f(x)− y)2 is the error suffered from the use of f as a model for the
process producing y from x. By integrating over X × Y (w.r.t. ρ, of course) we average out the error over
all pairs (x, y). Hence the word “error” for E(f).

The problem is posed: What is the f which minimizes the error E(f)?
The error E(f) naturally decomposes as a sum. Let us see how. For every x ∈ X, let ρ(y|x) be the

conditional (w.r.t. x) probability measure on Y and ρX be the marginal probability measure on X, i.e. the
measure on X defined by ρX(S) = ρ(π−1(S)) where π : X × Y → X is the projection. Notice that ρ, ρ(y|x)

and ρX are related as follows. For every integrable function ϕ : X × Y → R a version of Fubini’s Theorem
states that ∫

X×Y
ϕ(x, y)dρ =

∫
X

(∫
Y

ϕ(x, y)dρ(y|x)

)
dρX .

This “breaking” of ρ into the measures ρ(y|x) and ρX corresponds to looking at Z as a product of an input
domain X and an output set Y . In what follows, unless otherwise specified, integrals are to be understood
over ρ, ρ(y|x) or ρX .
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Regression is a method for studying the relationship between a response variable Y and a covariate
X. The covariate is also called a predictor variable or a feature. One way to summarize the relationship
between X and Y is through the regression function f∗ : X → Y,

f∗(x) = E(Y |X = x) =

∫
Y

ydρ(y|x).

For each x ∈ X, f∗(x) is the average of the y coordinate of {x} × Y (in topological terms, the average of
y on the fiber of x). Regularity hypotheses on ρ will induce regularity properties on f∗. We will assume
throughout this paper that f∗ is bounded. Note that while ρ and f∗ are mainly “unknown”, ρX is known in
some situations and can even be the Lebesgue measure on X inherited from Euclidean space. Our goal is to
estimate the regression function f∗ from the data of the form

(Y1, X1), . . . , (Yn, Xn) ∼ FX,Y .

Definition 1.1.1 (Model Assumption for General Setup). The model requires assumptions about how the
data are generated. We assume that
• there is a “true” function f∗ such that the relationship between input and output is for all i ∈ {1, . . . , n},

yi = f∗(x) + εi. (1.2)

The “true” function f∗ can be given as a parametric form such as f∗(x) = x>θ∗ (linear regression), f∗(x) =

ϕ(x)>θ∗ (feature regression), etc. This type of regression is referred to as a parametric regression. The
function can also be given in a specific form in some function space such as in Sobolev space. We then need
to choose a parameterized family of prediction functions fθ : X → Y for θ ∈ Θ in some high dimensional
hypothesis space. This type of regression is referred to as a nonparametric regression. Note that in
most cases, the predictor f∗ does not belong to the class of functions {fθ, θ ∈ Θ}, that is, the model is said
misspecified. These terminologies are not rigorous.
• for all i ∈ {1, . . . , n} , εi are independent such that

E(εi) = E(εi|xi) = 0,

V ar(εi) = V ar(εi|xi) = σ2.

Proposition 1.1.2 For every f : X → Y,

E(f) =

∫
X

(f(x)− f∗(x))2dρX +

∫
Z

(f∗(x)− y)2dρ(x, y)︸ ︷︷ ︸
σ2

. (1.3)

The proof is easily followed by

E(f) =

∫
Z

(f(x)− y)2dρ(x, y) =

∫
Z

(f(x)− f∗(x) + f∗(x)− y)2dρ(x, y)

=

∫
Z

(f(x)− f∗(x))2dρ(x, y) +

∫
Z

(f∗(x)− y)2dρ(x, y) +

∫
Z

2(f(x)− f∗(x))(f∗(x)− y)dρ(x, y)

=

∫
X

(f(x)− f∗(x))2dρX +

∫
Z

(f∗(x)− y)2dρ(x, y).

The first term in the right-hand side of Proposition 1.1.2 provides an average (over X) of the error suffered
from the use of f as a model for f∗. In addition, since σ2 is independent of f , Proposition 1.1.2 implies that
f∗ has the smallest possible error among all functions f : X → Y . Thus σ2 represents a lower bound on the
error E(f), and it is due solely to our primary object, the measure ρ. Thus, Proposition 1.1.2 supports: The
goal is to “learn” (i.e. to find a good approximation of ) f∗ from random samples on Z.
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1.2 Simple Linear Regression

In this lecture note, we only consider the parametric regresssion. The simplest version of regression is
when Xi is simple (one-dimensional) and f∗(x) is assumed to be linear:

f∗(x) = β0 + β1x.

This model is called the the simple linear regression model. We will make the further simplifying
assumption that V ar(εi|X = x) = σ2 does not depend on x. We can thus write the linear regression model
as follows.

Definition 1.2.1 The Simple Linear Regression Model

Yi = β0 + β1Xi + εi,

where E(εi|Xi) = 0 and V ar(εi|Xi) = σ2. The variables β0 and β1 are called regression coefficients. In a
fixed designed setting, Y is an observable random variable, X is observable fixed non-random variable, and ε
is unobservable random variables.

Remark 1.2.2 Warning! Pay attention to the model assumption and model derivation. In the model,
whether the distribution of the noise term is specified or only the mean and the variance of the noise term is
specified.

The unknown parameters in the model are the intercept β0 and the slope β1 and the variance σ2. Let
β̂0 and β̂1 denote estimates of β0 and β1. The fitted line (or the hypothesis space) is

f̂(x) = β̂0 + β̂1x.

The predicted values or fitted values are Ŷi = f̂(Xi) and the residuals are defined to be

ε̂i = Yi − Ŷi = Yi −
(
β̂0 + β̂1Xi

)
.

The residual sums of squares or RSS, which measures how well the line fits the data, is defined by
RSS =

∑n
i=1 ε̂

2
i .

Definition 1.2.3 The least squares estimates are the values β̂0 and β̂1 that minimize RSS =
∑n
i=1 ε̂

2
i .

That is

(β̂0, β̂1) = arg min
(β̂0,β̂1)

n∑
i=1

ε̂2i = arg min
(β̂0,β̂1)

n∑
i=1

(
Yi − (β̂0 + β̂1Xi)

)2

:= arg min
(β̂0,β̂1)

Q(β̂0, β̂1).

Theorem 1.2.4 The least squares estimates are given by

β̂1 =

∑n
i=1

(
Xi −Xn

) (
Yi − Y n

)∑n
i=1

(
Xi −Xn

)2 , (1.4)

β̂0 = Y n − β̂1Xn. (1.5)

An unbiased estimate of σ2 is

σ̂2 =
1

n− 2

n∑
i=1

ε̂2i .
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Proof. Here we only provide the derivation for the least squares estimates of β̂0, β̂1 and relegate the derivation
for the unbiased estimate of σ2 to the end of the section. We find the minimum points of Q(β̂0, β̂1),

∂Q

∂β̂0

= 0,
∂Q

∂β̂1

= 0,

to obtain

∂Q

∂β̂0

= −2

n∑
i=1

(
Yi − (β̂0 + β̂1Xi)

)
= 0,

∂Q

∂β̂1

= −2

n∑
i=1

(
Yi − (β̂0 + β̂1Xi)

)
Xi = 0.

Collect the terms to form the normal equation,

nβ̂0 + β̂1

n∑
i=1

Xi =

n∑
i=1

Yi, (1.6)

β̂0

n∑
i=1

Xi + β̂1

n∑
i=1

X2
i =

n∑
i=1

XiYi,

to obtain

β̂1 =

∑n
i=1

(
Xi −Xn

) (
Yi − Y n

)∑n
i=1

(
Xi −Xn

)2 , β̂0 = Y n − β̂1Xn. (1.7)

This must be the minimum point since it is the only critical point of the convex optimization problem.
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Figure 1.1:
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1.3 Least Squares and Maximum Likelihood

Suppose we add the assumption that εi|Xi ∼ N(0, σ2), that is,

Yi|Xi ∼ N(µi, σ
2)

where µi = β0 + β1Xi. The likelihood function is

n∏
i=1

f(Xi, Yi) =

n∏
i=1

fX(Xi)fY |X(Yi|Xi)

=

n∏
i=1

fX(Xi)×
n∏
i=1

fY |X(Yi|Xi) = L1 × L2,

where L1 =
n∏
i=1

fX(Xi) and

L2 =
n∏
i=1

fY |X(Yi|Xi).

The term L1 does not involve the parameters β0 and β1. We shall focus on the second term L2 which is
called the conditional likelihood, given by

L2 ≡ L(β0, β1, σ) =

n∏
i=1

fY |X(Yi|Xi) ∝ σ−n exp

{
− 1

2σ2

∑
i

(Yi − µi)2

}
.

The conditional log-likelihood is

`(β0, β1, σ) = −n log σ − 1

2σ2

n∑
i=1

(Yi − (β0 + β1Xi))
2

We find the MLS estimator, (
β̂0, β̂1, σ̂

)
= arg max

β0,β1,σ
`(β0, β1, σ).

For β̂0, β̂1, we see that maximizing the likelihood is the same as minimizing the RSS.

Theorem 1.3.1 Under the assumption of Normality, the least squares estima tor is also the maximum
likelihood estimator.

We can also maximize `(β0, β1, σ) over σ, yielding the MLE

σ̂2 =
1

n

n∑
i=1

ε̂2i .

We take derivative w.r.t. σ2,

∂`

∂σ2
= −n

2

1

σ2
+

1

2

1

(σ2)
2

n∑
i=1

(Yi − (β0 + β1Xi))
2 = 0,

σ2 =
1

n

n∑
i=1

(Yi − (β0 + β1Xi))
2.

Note that MLE estimator σ̂2 is a biased estimator. The unbiased estimator is given by σ̂2 = 1
n−2

∑n
i=1 ε̂

2
i ,

which will be proved in the following.
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1.4 Properties of the Least Squares Estimators

We now record the standard errors and limiting distribution of the least squares estimator. In regression
problems, we usually focus on the proper ties of the estimators conditional on

X = (1, ..., 1;X1, ..., Xn)>.

Thus, we can also state the means and variances as conditional means and variances.

Theorem 1.4.1 Let β̂> = (β̂0, β̂1)> denote the least squares estimators. Then β̂ is linear estimator of
Y1, . . . , Yn such that

E(β̂) = E(β|X) =

(
β0

β1

)
,

V ar(β̂) = V ar(β|X) =
σ2

ns2
XX

(
1
n

∑n
i=1X

2
i −Xn

−Xn 1

)
= σ2

(
X>X

)−1
, (1.8)

where the sample variance sXX = n−1
∑n
i=1(Xi −Xn)2 and

X>X =

(
n

∑n
i=1Xi∑n

i=1Xi

∑n
i=1X

2
i

)
,

(
X>X

)−1
=

1

n
∑n
i=1X

2
i − (

∑n
i=1Xi)

2

( ∑n
i=1X

2
i −

∑n
i=1Xi

−
∑n
i=1Xi n

)
.

Example 1.4.2 Before proving the above theorem, we first write the solution in (1.7) in a compact matrix
form. Define

X =


1 X1

...
...

1 Xn

 , Y =


Y1

Yn

 .

Then

X>X =

(
n

∑n
i=1Xi∑n

i=1Xi

∑n
i=1X

2
i

)
, X>Y =

( ∑n
i=1 Yi∑n

i=1XiYi

)
.

The normal equation (1.6) can be written as(
X>X

)
β̂ = X>Y.

Thus, the solution to β̂ is given by
β̂ =

(
X>X

)−1
(X>Y). (1.9)

Proof. (1) From (1.4) or (1.9), we see that β̂ is a linear estimator of Y = (Y1, . . . , Yn).
(2) We now see from (1.9) that β̂ is unbiased since

E(β̂) = E
[(
X>X

)−1
(X>Y)

]
=
(
X>X

)−1
(X>E(Y)) =

(
X>X

)−1
(X>Xβ) = β.

(3) We can compute the covariance matrix as

V ar(β̂) = V ar(
(
X>X

)−1
(X>Y)) =

(
X>X

)−1
X>V ar(Y )(

(
X>X

)−1
X>)>

=
(
X>X

)−1
X>

(
σ2I
)
X
(
X>X

)−1
= σ2

(
X>X

)−1
.
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The other equalities in (1.8) can be easily verified. In general, all components of β are not pairwisely
independent or pairwisely uncorrelated as can be seen from

V ar(β) = σ2
(
X>X

)−1
=

σ2

ns2
XX

(
1
n

∑n
i=1X

2
i −Xn

−Xn 1

)
.

Only when Xn = 0, we have the uncorrelation between β̂0 and β̂1.

The estimated standard errors of β̂0 and β̂1 are obtained by taking the square roots of the corresponding
diagonal terms of V ar(β̂) and inserting the estimate σ̂ for σ. Thus,

σ̂(β̂0) =
σ̂

√
sXX
√
n

√√√√ 1

n

n∑
i=1

X2
i ,

σ̂(β̂1) =
σ̂

√
sXX
√
n
.

We can also write these as σ̂(β̂0|X) and σ̂(β̂1|X) but we will use the shorter notation σ̂(β̂0) and σ̂(β̂1).

Theorem 1.4.3 Under appropriate conditions we have:
1. (Consistency): β̂0

P→ β0 and β̂1
P−→ β1. (proved using Chebyshev’s inequality)

2. (Asymptotic Normality):

β̂0 − β0

σ̂(β̂0)

d−→ N(0, 1) and
β̂1 − β1

σ̂(β̂1)

d−→ N(0, 1).

3. Approximate 1− α confidence intervals for β0 and β1 are

β̂0 ± zα/2σ̂(β̂0) and β̂1 ± zα/2σ̂(β̂1).

4. The Wald test for testing H0 : β1 = 0 versus H1 : β1 6= 0 is: reject H0 if |W | > zα/2 where W =

(β̂1 − 0)/σ̂(β̂1). (Recall that the Wald satistic for testing H0 : β1 = β1,0 versus H1 : β1 6= β1,0 is W =

(β̂1 − β1,0)/σ̂(β̂1)).

1.5 Hypothesis Test in a Simple Linear Regression

In fact, for any observation data (Xi, Yi) (i = 1, 2, . . . , n), one can apply the least squares method to
find the regression equation no matter if there is a linear correlation between Y and X. When Y and X are
not linearly correlated, it becomes meaningless to compute the linear regression equation. Hence, we need to
determine if Y and X are linearly correlated based on our observation data.

If β1 = 0, then Y and X are NOT linearly correlated which means that the linear model and the linear
regression are not valid. On the other hand, if β1 6= 0 then Y and X are linearly correlated which means
that the linear model and the regression are both valid. Thus the hypothesis test is

H0 : β1 = 0 versus H1 : β1 6= 0.

To test the above hypothesis, we need the following decomposition formula.
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Definition 1.5.1 Define the total sum of squares (TSS) as

TSS =

n∑
i=1

(Yi − Y )2. (1.10)

The explained sum of squares (ESS) is

ESS =

n∑
i=1

(Ŷi − Y )2. (1.11)

The residual sum of squares (RSS) is

RSS =

n∑
i=1

(Ŷi − Yi)2. (1.12)

TSS总偏差平方和，ESS回归平方和，RSS误差平方和

Theorem 1.5.2 The decomposition formula holds true,

TSS = ESS + RSS.

Proof. We compute

TSS =

n∑
i=1

(Yi − Y )2 =

n∑
i=1

(Yi − Ŷi + Ŷi − Y )2

=

n∑
i=1

(Yi − Ŷi)2 + 2

n∑
i=1

(Yi − Ŷi)(Ŷi − Y ) +

n∑
i=1

(Ŷi − Y )2.

The second term vanishes,
n∑
i=1

(Yi − Ŷi)(Ŷi − Y ) =

n∑
i=1

(Yi − β̂0 − β̂1Xi)(β̂0 + β̂1Xi − Y )

=

n∑
i=1

(Yi − Y + β̂1X − β̂1Xi)(Y − β̂1X + β̂1Xi − Y )

= β̂1

n∑
i=1

(Yi − Y + β̂1X − β̂1Xi)(Xi −X)

= β̂1

[
n∑
i=1

(Yi − Y )(Xi −X) + β̂1

n∑
i=1

(X −Xi)(Xi −X)

]

= β̂1

[
n∑
i=1

(Yi − Y )(Xi −X)− β̂1

n∑
i=1

(Xi −X)2

]
= 0,

where made use of the definition of β̂1. Thus, the conclusion is verified.
From the above, we see that the value of TSS (the sample variance of Y ) reveals the diversity of Y1, . . . , Yn.

The value of ESS reveals the diversity of Ŷ1, . . . , Ŷn since

ESS =

n∑
i=1

(Ŷi − Y )2 =

n∑
i=1

(Ŷi − Ŷ )2,

where

Ŷ =
1

n

n∑
i=1

Ŷi =
1

n

n∑
i=1

β̂0 + β̂1Xi = β̂0 + β̂1X = Y − β̂1X + β̂1X

= Y .
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Moreover, since Ŷi = β̂0 + β̂1Xi (i = 1, . . . , n) all lying on the regression line, the diversity of Ŷ1, . . . , Ŷn

revealed by ESS in fact depends on the diversity of X1, . . . , Xn. The value of RSS reveals the other factors
(such as the noise) which affect the fluctuation of Y besides the factor by linear dependence on X.

The larger ESS corresponding to the smaller RSS will give us a “better” regression equation. Obviously
we have

0 ≤ ESS

TSS
≤ 1.

The following states the relationship between the ratio and the linear relation of Y and X.

ratio linear dependence relation between Y and X
1 completely linear dependence

close to 1 strongly linear dependence
close to 0 weakly linear dependence

0 completely no linear dependence

Definition 1.5.3 The correlation between X and Y is defined as

r =

∑n
i=1XiYi − nX Y√∑n

i=1X
2
i − nX

2
√∑n

i=1 Y
2
i − nY

2
,

which is a statistic.

Theorem 1.5.4 There is the following relation among TSS, ESS, and the correlation r,

1− RSS

TSS
=

ESS

TSS
= r2, (1.13)

where the quantity r2 is called R-squared.

Proof. We compute

ESS =

n∑
i=1

(Ŷi − Y )2 =

n∑
i=1

(β̂0 + β̂1Xi − Y )2

=

n∑
i=1

(Y − β̂1X + β̂1Xi − Y )2 = β̂2
1

n∑
i=1

(Xi −X)2, (1.14)

where we see that ESS is a rank 1 quantity. Substituting the expression of β̂1 in (1.7) into above, we arrive
at the resulting relation.

Using the above theorem, we have 0 ≤ r ≤ 1,

the value of r linear dependence relation between Y and X
r = 1 completely linear dependence

r is close to 1 strongly linear dependence
r is close to 0 weakly linear dependence

r = 0 completely no linear dependence

Moreover, we can have the following hierarchy,

the value of r linear dependence relation between Y and X
r > 0.8 significantly linear dependence

0.5 < r ≤ 0.8 strongly linear dependence
0.3 < r ≤ 0.5 weakly linear dependence

r ≤ 0.3 nearly no linear dependence

11



There are several direct testing methods for the validity of linear regressions. The first approach is
based on the locations of scattering points. If the points are scattered near one straight line, then the linear
regression equation is thought to be valid. The second approach is based on correlation coefficient r. When
r > 0.8, the linear regression equation is thought to be valid. In the following, we introduce a delicate
approach for testing the validity of the linear regression equation. The approach can also be generalized to
multivariate linear regression regime. For this testing approach, we need a stronger assumption for the linear
regression model.

Definition 1.5.5 For the linear regression model, Yi = β0 + β1Xi + εi, (i = 1, . . . , n), if the noises {εi} are
i.i.d. normally distributed with N(0, σ2), then the model is called a normal linear regression model.

Let the hypothesis test be
H0 : β1 = 0 versus H1 : β1 6= 0.

We take the statistic
F ∝ ESS

RSS
.

Based on the result in (1.13), we see that when ESS is large and RSS is small (corresponding to large r2),
there is a significantly linear dependence between Y and X, in which we should reject H0. Thus, the rejection
region is F ≥ C for some constant C.

We now derive the distribution of the statistic F . Based on the definition of TSS in (1.10), we see that

TSS

σ2
∼ χ2(n− 1).

Based on equation (1.14), we see that β̂1 is normally distributed and ESS has rank of 1 for the quadratic
form. For the quadratic form of Y1, . . . , Yn,

RSS =

n∑
i=1

(Ŷi − Yi)2 =

n∑
i=1

(β̂0 + β̂1Xi − Yi)2,

its rank is of n− 2 since β̂0 and β̂1 are constraint to (1.4) and (1.5). Notice that

TSS

σ2
=

ESS

σ2
+

RSS

σ2
.

Since the ranks of TSS,ESS,RSS satisfy n− 1 = 1 + (n− 2), we arrive at the result that

ESS

σ2
∼ χ2(1),

RSS

σ2
∼ χ2(n− 2),

and they are independent of each other based on the conclusion of Cochran’s Theorem. Hence, we construct
the statistic

F =
ESS/1

RSS/(n− 2)
= (n− 2)

ESS

RSS
∼ F (1, n− 2),

when H0 is true. We take the significance level α, then the rejection region is

F > Fα(1, n− 2).

Moreover, the statistic F can be computed by

F = (n− 2)
ESS

RSS
= (n− 2)

ESS

TSS− ESS
= (n− 2)

r2

1− r2
.

12



In summary, the validity of a linear regression equation can be tested as follows:
(1) Propose the hypothesis test H0 : β1 = 0 versus H1 : β1 6= 0.

(2) Compute the statistic F = (n− 2) r2

1−r2 .

(3) If F > Fα(1, n − 2), then we reject the null H0 and the linear regression equation is valid. If F ≤
Fα(1, n− 2), then we accept the null H0 and the linear regression equation is invalid.

Example 1.5.6 In a regression problem for weight Y and height X, the number of samples is 10 and the
correlation coefficient is r = 0.91. We ask whether the linear dependence is significant between Y and X.
Solution. We compute

F = (n− 2)
r2

1− r2
= (8)

0.912

1− 0.912
= 37.9 > 5.32 = F0.05(1, 8).

Hence we reject the null hypothesis and believe that there is a significantly linear dependence between weight
and height.

柯赫伦定理

Theorem 1.5.7 (Cochran’s Theorem) A theorem, given by Cochran in 1934, concerning sum of chi-squared
variables. Let Y represent an n×1 vector of independent standard normal random variables and let A1, . . . , Ak

be non-zero symmetric matrices such that
∑k
j=1Aj = I. Write Qj = Y >AjY. Cochran’s theorem, published

in 1934, state that, if any one of the following three conditionis true, then so are the other two.
(1) The ranks of A1, . . . , Ak sum to n which is the rank of Y .
(2) Each of Q1, . . . , Qk has a chi-squared distribution of degrees of freedom of the ranks of A1, . . . , Ak.
(3) Each of Q1, . . . , Qk is independent of all the others.

1.6 Estimation for the Variance of Noises

The value of σ2 reflects the well fitness of linear regression. In most cases, σ2 is unknown so that we
need to estimate it. One general idea is to estimate σ2 by σ̂2 = 1

n

∑n
i=1 ε

2
i . However, the values of εi are still

not observable. We can estimate them by ε̂i = Yi − β̂0 − β̂1Xi. Therefore,

σ̂2 =
1

n

n∑
i=1

ε̂2i =
1

n

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2 =

1

n
RSS.

However, this estimator is biased and we need to correct it to obtain the unbiased estimator.

Theorem 1.6.1 For the linear regression model, Yi = β0 +β1Xi+ εi, (i = 1, . . . , n), the noises {εi} are pair-
wise uncorrelated and all have the same expected value 0 and variance σ2 (no assumption for the distribution
of the noises). Then σ̂2 = 1

n−2RSS is an unbiased estimator of σ2.

Proof. We compute that

E[(n− 2) σ̂2] = E [RSS] = E [TSS− ESS]

= E

[
n∑
i=1

(Yi − Y )2 − β̂2
1

n∑
i=1

(Xi −X)2

]
,
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where the formula for ESS follows from (1.14). For the first term, we have

E(Yi − Y )2 = V ar(Yi − Y ) +
[
E(Yi − Y )

]2
= V ar

(1− 1

n

)
Yi −

1

n

n∑
j=1,j 6=i

Yj

+
[
β0 + β1Xi − β0 − β1X

]2
=

(
1− 1

n

)2

σ2 +
(n− 1)σ2

n2
+ β2

1

(
Xi −X

)2
=

(
1− 1

n

)
σ2 + β2

1

(
Xi −X

)2
.

For the second term, we use the following result,

V ar(β) = σ2
(
X>X

)−1
=

σ2

ns2
XX

(
1
n

∑n
i=1X

2
i −Xn

−Xn 1

)
.

Then

Eβ̂2
1 = V ar(β̂1) + (Eβ̂1)2 =

σ2

ns2
XX

+ β2
1

=
σ2∑n

i=1

(
Xi −X

)2 + β2
1 .

Therefore, we can compute the final results,

E[(n− 2) σ̂2] =

n∑
i=1

E(Yi − Y )2 −
(
Eβ̂2

1

) n∑
i=1

(Xi −X)2

=

n∑
i=1

[(
1− 1

n

)
σ2 + β2

1

(
Xi −X

)2]−( σ2∑n
i=1

(
Xi −X

)2 + β2
1

)
n∑
i=1

(Xi −X)2

= (n− 1)σ2 + β2
1

n∑
i=1

(
Xi −X

)2 − σ2 − β2
1

n∑
i=1

(Xi −X)2

= (n− 2)σ2.

Thus, E [RSS] = (n− 2)σ2 which means that σ̂2 = 1
n−2RSS is an unbiased estimator of σ2.

1.7 Prediction

Suppose we have estimated a regression model f̂(x) = β̂0 + β̂1x from data (X1, Y1), ..., (Xn, Yn). We
observe the value X = x∗ of the covariate for a new subject and we want to predict their outcome Y∗. An
estimate of Y∗ is

Ŷ∗ = β̂0 + β̂1x∗. (1.15)
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Using the formula for the variance of the sum of two random variables,

V ar(Ŷ∗) = V ar(β̂0 + β̂1x∗) = V ar(β̂0) + x2
∗V ar(β̂1) + 2x∗Cov(β̂0, β̂1)

=
σ2

ns2
XX

(
1

n

n∑
i=1

X2
i + x2

∗ − 2x∗Xn

)

=
σ2∑n

i=1(Xi −X)2

1

n

(
n∑
i=1

X2
i + nx2

∗ − 2x∗

n∑
i=1

Xi

)

=
σ2
∑n
i=1(Xi − x∗)2

n
∑n
i=1(Xi −X)2

.

The estimated standard error σ̂(Ŷ∗) is the square root of this variance, with σ̂2 in place of σ2. However,
the confidence interval for Y∗ is NOT of the usual form Ŷ∗ ± zα/2σ̂(Ŷ∗). The reason for this is explained in
Exercise 10 of Larry book. The correct form of the confidence interval is given in the following theorem.

Theorem 1.7.1 (Prediction Interval). Under the assumption for the normal distribution for the noises, we
have a 1− α prediction interval for Y∗,

Ŷ∗ ± tα/2(n− 2)σ̂

√
1 +

∑n
i=1(Xi −X∗)2

n
∑n
i=1(Xi −X)2

= Ŷ∗ ± tα/2(n− 2)σ̂

√
1 +

1

n
+

(X∗ −X)2∑n
i=1(Xi −X)2

.

where σ̂2 = 1
n−2RSS is unbiased and Ŷ∗ = β̂0 + β̂1X∗ is given in (1.15). If there is no assumption for the

normal distribution of the noises, then an approximate 1− α prediction interval for Y∗ is

Ŷ∗ ± zα/2σ̂

√
1 +

∑n
i=1(Xi −X∗)2

n
∑n
i=1(Xi −X)2

,

when the number of data n is large enough.

Proof. We know based on the model assumption that

Y − β0 − β1X

σ
∼ N(0, 1).

However, β0, β1, σ are all unknown in the model so that they need to be replaced. For the denominator, we can
use the unbiased σ̂2 = 1

n−2RSS, which is (asymptotically) χ2 distributed. For the numerator, Y − β̂0 − β̂1X

is (asymptotically) normally distributed with mean

E(Y − β̂0 − β̂1X) = E(β0 + β1X + ε− β̂0 − β̂1X) = 0.

We can construct the following pivot quantity,

Y−β̂0−β̂1X√
V ar(Y−β̂0−β̂1X)√

1
n−2

RSS
σ2

∼ N(0, 1)√
χ2(n−2)
n−2

∼ t(n− 2),

where the only unknown is Y . Using the result(
β̂0

β̂1

)
∼ N

((
β0

β1

)
, σ2

(
X>X

)−1
=

σ2

ns2
XX

(
1
n

∑n
i=1X

2
i −Xn

−Xn 1

))
,
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we can compute

V ar(Y − β̂0 − β̂1X) = V ar(β0 − β̂0 + β1X − β̂1X + ε)

= σ2 + V ar(β̂0 − β0) +X2V ar(β̂1 − β1) + 2XCov(β̂0 − β0, β̂1 − β1)

= σ2

[
1 +

1

n
∑n
i=1(Xi −X)2

(
n∑
i=1

X2
i + nX2 − 2X

n∑
i=1

Xi

)]

= σ2

[
1 +

∑n
i=1(Xi −X)2

n
∑n
i=1(Xi −X)2

]
= σ2

[
1 +

∑n
i=1X

2
i − nX

2
+ nX

2 − 2nXX + nX2

n
∑n
i=1(Xi −X)2

]

= σ2

[
1 +

1

n
+

(X −X)2∑n
i=1(Xi −X)2

]
.

Thus the pivot quantity can be simplified,

Y−β̂0−β̂1X√
V ar(Y−β̂0−β̂1X)√

1
n−2

RSS
σ2

=

Y−β̂0−β̂1X

σ

√
1+

∑n
i=1

(Xi−X)2

n
∑n

i=1
(Xi−X)2

σ̂
σ

=
Y − β̂0 − β̂1X

σ̂

√
1 +

∑n
i=1(Xi−X)2

n
∑n

i=1(Xi−X)2

.

The prediction 1− α confidence interval for Y∗ at X = X∗ is

Ŷ∗ ± tα/2(n− 2)σ̂

√
1 +

∑n
i=1(Xi −X∗)2

n
∑n
i=1(Xi −X)2

.

1.8 Multiple Regression

1.8.1 Parameter estimation

Now suppose that the covariate is a vector of length k. The data are of the form

(Y1, X1), ..., (Yi, Xi), ..., (Yn, Xn),

where
Xi = (Xi1, ..., Xik).

Here, Xi is the vector of k covariate values for the ith observation. The linear regression model is

Yi =

k∑
j=1

βjXij + εi,

for i = 1, ..., n, where E(εi|X1i, ..., Xki) = 0. Usually we want to include an intercept in the model which we
can do by setting Xi1 = 1 for i = 1, ..., n. At this point it will be more convenient to express the model in
matrix notation. The outcomes will be denoted by

Y =


Y1

...
Yn

 ∈ Rn×1,
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and the covariates will be denoted by

X =


X11 · · · X1k

...
. . .

...
Xn1 · · · Xnk

 ∈ Rn×k.

Each row is one observation; the columns correspond to the k covariates. Thus, X is a (n× k) matrix. Let

β =


β1

...
βk

 and ε =


ε1
...
εn

 .

Then we can write the true model as
Y = Xβ+ ε.

The form of the least squares estimate is given in the following theorem.

Theorem 1.8.1 Assuming that the (k × k) matrix X>X is invertible,

β̂ = (X>X)−1X>Y, (1.16)

V ar(β̂|X) = σ2(X>X)−1,

β̂ ≈ N(β, σ2(X>X)−1), (1.17)

where β̂ is a linear unbiased estimator of β.

The first result can be easily found by

β̂ = arg min
β
‖Y −Xβ‖22 .

Then the solution can be derived by taking the derivative w.r.t. β. The second and third results can be
followed from the previous sections. The estimate regression function is f̂(x) =

∑k
j=1 β̂jxj . An unbiased

estimate of σ2 is

σ̂2 =

(
1

n− k

) n∑
i=1

ε̂2i =

(
1

n− k

)∥∥∥Y −Xβ̂
∥∥∥2

2
=

RSS

n− k
,

where ε̂ = Y −Xβ̂ is the vector of residuals. An approximate 1− α confidence interval for βj is

β̂j ± zα/2σ̂(β̂j),

where σ̂(β̂j) is the jth diagonal element of the matrix σ̂2(X>X)−1.
We now prove that σ̂2 is the unbiased estimate of σ2.

Theorem 1.8.2 Assume that X is full rank with rank of k. E[σ̂2] = E[ RSS
n−k ] = σ2.

Proof. We compute and denote

Êrr = Y − Ŷ = Y −Xβ̂ =
(
In −X(X>X)−1X>

)
Y.

Then
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E (RSS) = E
∥∥∥Êrr∥∥∥2

2
= E(Ê>rrÊrr) = E(tr[Ê>rrÊrr])

= E(tr[ÊrrÊ
>
rr]) = tr(E[ÊrrÊ

>
rr]).

Since the expected value is zeros,

E(Êrr) = E[Y −Xβ̂] = E[Y −X(X>X)−1X>Y]

= Xβ−X(X>X)−1X>Xβ = 0,

then the second order moment can be computed by

E[ÊrrÊ
>
rr] = V ar(Êrr) = V ar(

(
In −X(X>X)−1X>

)
Y)

=
(
In −X(X>X)−1X>

)
V ar(Y)

(
In −X(X>X)−1X>

)>
=

(
In −X(X>X)−1X>

) (
σ2I
) (

In −X(X>X)−1X>
)

= σ2
(
In −X(X>X)−1X>

)
.

Therefore,

E (RSS) = tr(E[ÊrrÊ
>
rr]) = σ2tr

(
In −X(X>X)−1X>

)
= σ2tr

(
In)− tr(X(X>X)−1X>

)
= σ2

(
n− tr((X>X)−1X>X

)
= σ2 (n− k) .

Theorem 1.8.3 One has
Cov(Êrr, β̂) = 0.

Proof. We compute

Cov(Êrr, β̂) = Cov(Y −Xβ̂, β̂) = Cov(Y, β̂)−XCov(β̂, β̂)

= Cov(Y, (X>X)−1X>Y)−XV ar(β̂)

= V ar(Y)[(X>X)−1X>]> −Xσ2(X>X)−1

= σ2X(X>X)−1 − σ2X(X>X)−1 = 0.

In above derivations, we only assume the mean and variance of noises but have not assumed the distribution
of noises or Y. In the following, we further assume that ε ∼ N(0, σ2).

Theorem 1.8.4 Let Y ∼Nn(Xβ, σ2In). Then (1) β̂ and RSS are independent. (2) RSS/σ2 ∼ χ2(n − q),
where q is the rank of the matrix X.

Proof. (1) Since Êrr and β̂ are uncorrelated and they are both normally distributed, they are independent
with each other. Since RSS is a function of Êrr, then β̂ and RSS are independent.

(2) We have the RSS,

RSS =
[
Y −X(X>X)−1X>Y

]> [
Y −X(X>X)−1X>Y

]
= Y>

[
I−X(X>X)−1X>

]
Y.
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We would like to write RSS as the sum of squares of n− q random variables with normal distributions. Let

G = X(X>X)−1X>,

which is a symmetric non-negative definite matrix having the same rank with X. Then there exists an
orthogonal matrix C such that

CGC> =



λ1 · · · 0

. . .
... λq

0
...

. . .

0 · · · 0


.

Since G2 = G, thus

CGC> = CG2C> = CGC>CGC> =



λ2
1 · · · 0

. . .
... λ2

q

0
...

. . .

0 · · · 0


.

Therefore,

λ2
i = λi,

λi = 1, i = 1, . . . , q.

CGC> =

(
Iq 0

0 0

)
.

We take the transformation
Z = C (Y −Xβ) .

Then Z is still normally distributed with

E(Z) = CE (Y −Xβ) = 0,

V ar(Z) = CV ar (Y −Xβ)C> = Cσ2IC> = σ2In.
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This means that each component of Z is independent and normally distributed with N(0, σ2). We compute

RSS = Y>
[
I−X(X>X)−1X>

]
Y

= (Z>C + β>X
>

)
[
I−X(X>X)−1X>

] (
C>Z + Xβ

)
=

(
Z>C

[
I−X(X>X)−1X>

]
+ β>X

> − β>X>
) (

C>Z + Xβ
)

= Z>C
[
I−X(X>X)−1X>

] (
C>Z + Xβ

)
= Z>C

[
I−X(X>X)−1X>

]
C>Z = Z>C [I−G]C>Z

= Z>CC
>
Z− Z>CGC

>
Z = Z>Z− Z>

(
Iq 0

0 0

)
Z

= z2
q+1 + · · ·+ z2

n.

Thus, RSS is the sum of squares of n− q random variables (zq+1, · · · , zn) with normal distributions. Thus,

RSS

σ2
∼ χ2(n− q).

In the following, we always assume that among the k components, the first one corresponds to the
constant term and the others correspond to dimensions of variables. We let

k = p+ 1,

so that p is dimension of variables.

Theorem 1.8.5 Let ESS be defined in (1.11). Let X be full rank with rank of k = p+ 1. Then

ESS

σ2
∼ χ2(p).

Proof. Denote β̂ = (β̂0, β̂1, . . . , β̂p). We first write β̂0 in terms of all the other β̂1:p := (β̂1, . . . , β̂p) in order
to show that Ŷ = Y ,

β̂ = arg min
β
‖Y −Xβ‖22 = arg min

β0,β1:p

‖Y − 1β0 −X1:pβ1:p‖22 .

Taking derivative w.r.t. β0, we obtain

−2
(
Y − 1β̂0 −X1:pβ̂1:p

)>
1 = 0,

n∑
i=1

Yi −
n∑
k=1

p∑
j=1

β̂jXkj = nβ̂0,

β̂0 = Y −
p∑
j=1

β̂jX ·j .

Thus,

Ŷ =
1

n

n∑
i=1

Ŷi =
1

n

n∑
i=1

(β̂0 + β̂1Xi1 + · · ·+ β̂pXip)

= β̂0 + β̂1X ·1 + · · ·+ β̂pX ·p = Y −
p∑
j=1

β̂jX ·j + β̂1X ·1 + · · ·+ β̂pX ·p

= Y .
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Then we can compute ESS as,

ESS =

n∑
i=1

(Ŷi − Y )2 =

n∑
i=1

(Ŷi − Ŷ )2 =

n∑
i=1

(β̂0 +

p∑
j=1

β̂jXij − β̂0 −
p∑
j=1

β̂jX ·j)
2

=

n∑
i=1

 p∑
j=1

(β̂jXij − β̂jX ·j)

2

=

n∑
i=1

 p∑
j=1

p∑
k=1

β̂j β̂k(Xij −X ·j)(Xik −X ·k)


=

p∑
j=1

p∑
k=1

β̂j β̂k

[
n∑
i=1

(Xij −X ·j)(Xik −X ·k)

]
:=

p∑
j=1

p∑
k=1

β̂j β̂kAjk,

where we see that Ajk is the covariance matrix of X1:p, which is symmetric positive definite. Therefore,
ESS is the sum of squares of normal random variables β̂1, . . . , β̂p with rank of p. Since the rank of RSS is
n− p− 1 = n− k as proved before, and hence the sum of the rank of RSS and the rank of ESS is

n− p− 1 + p = n− 1,

which is the same as the rank of
TSS

σ2
∼ χ2(n− 1).

We can easily examine the following equality in (1.18). By Cochran’s Theorem, we conclude that ESS
σ2 and

RSS
σ2 are independent with each other, and moreover,

ESS

σ2
∼ χ2(p),

RSS

σ2
∼ χ2(n− p− 1).

Theorem 1.8.6 Let TSS be defined in (1.10), ESS be defined in (1.11), and RSS be defined in (1.12). We
still have

TSS = ESS + RSS. (1.18)

Theorem 1.8.7 In summary, let TSS be defined in (1.10), ESS be defined in (1.11), and RSS be defined in
(1.12). Let X be full rank with rank of k = p+ 1. Then

TSS

σ2
∼ χ2(n− 1),

ESS

σ2
∼ χ2(p),

RSS

σ2
∼ χ2(n− p− 1) = χ2(n− k).

Q: Here I leave one question to the reader. What are the distributions for ESS and RSS if
there is a linear dependence among the data X (that is, X is not full rank)?

For the χ2 distribution, independence assumption is very important. We can numerically and analytically
check that 2χ2(1) 6= χ2(2), that is, p2ξ21

(x) 6= pξ21+ξ22
(x) for i.i.d. ξ1 and ξ2 with standard normal distribution

N(0, 1).

Example 1.8.8 Let us derive the centralizing and normalizing regression model. Sometimes we need to first
centralize and also normalize the data before constructing the regression model,

Yi − Y = β0 +

p∑
j=1

βj
(
Xij −X ·j

)
+ εi, i = 1, . . . , n.

Then we follow the formula in (1.16) to estimate the regression coefficients which are similar to those as
introduced above.
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1.8.2 Hypothesis Test for Multiple Regression

We now focus on hypothesis testing and significance testing problem for the multiple regression. The
first problem is if there is a linear dependence relation between Y and X1, . . . , Xp. If there is no linear
relation between them, then all the βj (j = 1, . . . , p) should be zero. Then the null hypothesis is

H0 : β1 = β2 = · · · = βp = 0. (1.19)

Based on the above results, ESS
σ2 ∼ χ2(p), RSS

σ2 ∼ χ2(n − p − 1), we set our testing procedure as follows.
When (1.19) is true, we test the hypothesis based on the statistic

F =
ESS/p

RSS/(n− p− 1)
∼ F (p, n− p− 1).

Given the significance level α, we reject the null hypothesis (1.19) when F ≥ F1−α(p, n − p − 1) and then
there is a linear dependence relation between Y and X1, . . . , Xp.

The second problem is if each variate Xj is significant to Y under the condition that Y is linearly
dependent on X1, . . . , Xp. If Xj is not significantly important to Y, then βj should be zero. Then the null
hypothesis is set to be

H
(j)
0 : βj = 0, for j = 1, . . . , p. (1.20)

Based on the result in (1.17) that β̂j ∼ N(βj , cjjσ
2), where cjj is the (j+1)th diagonal component of (X>X)−1

(constant 1 vector is included in the first column of X). In addition, β̂j is independent of σ̂2 = RSS
n−p−1 based

on Theorem 1.8.4. When the null hypothesis (1.20) is true, we can construct the statistic for testing,

Tj =

β̂j−βj√
cjjσ√

RSS
σ2

1
n−p−1

=
β̂j − βj√
cjj σ̂

=
β̂j√
cjj σ̂

∼ t(n− p− 1).

Given the significance level α, we reject the null hypothesis (1.20) when |Tj | ≥ t1−α/2(n − p − 1) and then
there is a significantly linear dependence relation between Y and Xj . We can repeat the above procedure for
all j = 1, . . . , p.

1.9 Bias-Variance Decomposition for Ordinary Least Squares

One can always play with kernel trick to generalize the simple linear regression to the
feature space regression. The techniques are all the same but the choices of the features are
sometimes tricky.

See references in
(1) Bias_Var_Ridge.pdf,
(2) Benyamin Ghojogh - Elements of Dimensionality Reduction and Manifold Learning,
(3) Learning Theory from First Principles by Francis Bach, etc.

1.9.1 Risk decomposition for OLS

We now go back to Proposition 1.3 to do error analysis for Ordinary Least Squares (OLS) problem.
Recall that

E(f) =

∫
X

(f(x)− f∗(x))2dρX + σ2.
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In our current linear regression setup, we have the following generalization error,

E(f̂)− E∗ = E

[
1

n
‖Xβ∗ −Xβ̂‖22

]
. (1.21)

where E∗ = σ2 is the minimum of E , the true model is assumed to be

Y∗ = f∗(X) + ε = β0∗ + β1∗X1 + · · ·+ βp∗Xp + ε = Xβ∗ + ε,

and the estimator of f∗(X) is given by a linear regression function f̂(X),

f̂(X) = β̂0 + β̂1X1 + · · ·+ β̂pXp = Xβ̂.

The following proposition shows that the minimum can be attained at β∗, and that is equal to σ2.

Proposition 1.9.1 (Risk decomposition for OLS - fixed design). Under the linear model and fixed design
assumptions above, for any β̂ ∈ Rp+1, we have E∗ = σ2 and

E(f̂)− E∗ = E‖β̂ − β∗‖2Σ̂,

where Σ̂ := 1
nX
>X is the input covariance matrix and ‖β‖2

Σ̂
:= β>Σ̂β. If β̂ is now a random variable (such

as an estimator of β∗), then

E(f̂)− E∗ = ‖E[β̂]− β∗‖2Σ̂︸ ︷︷ ︸
Bias

+E[‖β̂ − E[β̂]‖2
Σ̂

]︸ ︷︷ ︸
Variance

.

Proof. We see from equation (1.21) that

E(f̂)− E∗ = E[
1

n
(Xβ̂ −Xβ∗)

>(Xβ̂ −Xβ∗)]

= E[(β̂ − β∗)>
1

n
X>X(β̂ − β∗)] = E[(β̂ − β∗)>Σ̂(β̂ − β∗)]

= E‖β̂ − β∗‖2Σ̂.

If Σ̂ := 1
nX
>X is invertible, then this shows that β∗ is the unique global minimizer of E(f̂), and that the

minimum value E∗ is equal to σ2. This shows the first claim.
Now if β̂ is random, we perform the usual bias/variance decomposition:

E(f̂)− E∗ = E‖β̂ − E(β̂) + E(β̂)− β∗‖2Σ̂
= E‖β̂ − E(β̂)‖2

Σ̂
+ 2E

[(
β̂ − E(β̂)

)
Σ̂
(
E(β̂)− β∗

)]
+ E‖E(β̂)− β∗‖2Σ̂

= E[‖β̂ − E(β̂)‖2
Σ̂

] + ‖E(β̂)− β∗‖2Σ̂.

Remark 1.9.2 The quantity ‖ · ‖Σ̂ is called the Mahalanobis distance norm (it is a “true” norm whenever Σ̂

is positive definite). It is the norm on the parameter space induced by the input data.
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1.9.2 Statistical Properties of the OLS estimator

We can now analyze the properties of the OLS estimator, which has a closed form β̂ = (X>X)−1X>Y,
with the model Y = Xβ∗ + ε. The only randomness comes from ε and we thus need to compute expectation
of linear and quadratic forms in ε. As stated before, the properties of OLS are repeated as follows.

Proposition 1.9.3 (Estimation properties of OLS). The OLS estimator β̂ = (X>X)−1X>Y has the follow-
ing properties:
(1) it is unbiased, that is, E[β̂] = β∗.

(2) its variance is V ar(β̂) = E[(β̂−β∗)(β̂−β∗)>] = σ2(X>X)−1 = σ2

n Σ̂−1; Σ̂−1 is often called the precision
matrix.

We can now put back the expression of the variance in the risk.

Proposition 1.9.4 (Risk of OLS). The excess risk of the OLS estimator is equal to

E(f̂)− E∗ =
σ2k

n
,

where we assume that X is full rank of k.

Proof. Note here that the expectation is over ε only as we are in the fixed design setting. Using the risk
decomposition of Proposition 1.9.1 and the fact that E[β̂] = β∗, we have

E(f̂)− E∗ = E[‖β̂ − E(β̂)‖2
Σ̂

].

Then we have

E(f̂)− E∗ = tr
[
E
([
β̂ − E(β̂)

]
Σ̂
[
β̂ − E(β̂)

])]
= tr

[
E

(
Σ̂
[
β̂ − E(β̂)

] [
β̂ − E(β̂)

]>)]
= tr

[
Σ̂E

([
β̂ − E(β̂)

] [
β̂ − E(β̂)

]>)]
= tr

[
Σ̂V ar

(
β̂
)]

= tr

[
Σ̂
σ2

n
Σ̂−1

]
=
σ2k

n
.

1.10 Different Model Setups

There are various relations among many machine learning tools like Ordinary Least Squares (OL-
S), Ridge Linear Regression, Principle Component Analysis (PCA), Independent Component Analysis (I-
CA), Partial Least Squares (PLS), L1 regression (see robust_regression.pdf), Quantile Regression (see ro-
bust_regression.pdf), etc. Every tool has its own advantage depending on how one uses them.

• Ordinary Least Squares (OLS) is used for regression problem when the covariate X is full rank.
• Ridge Linear Regression is used for regression when the covariate X is high dimensional and X is NOT

but close to full rank (there are linear dependences among dimensions of X). In my view, ridge regression is
good for the case that the number of feature is less than but close to the number of regression coefficients.
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Figure 1.2: PCA vs. ICA.

• LASSO regression stands for Least Absolute Shrinkage and Selection Operator, which is used when
the number of feature is much less than the number of regression coefficients (the rank of X is much smaller
than the full rank).

• Principle Component Analysis (PCA) is used for dimension reduction and principle orthogonal com-
ponent detection.

• Independent Component Analysis (ICA) is used for separating different types of signals (see Fig. 1.2).
• The idea behind Principal Component Regression (PCR) is to first perform a principal component

analysis (PCA) on the design matrix X and then use only the first principal components to do the regression.
• Partial Least Squares (PLS) combines PCA and multiple regression to regress when X is far away from

full rank or very low rank. (see PLS_simple_explanation.pdf) The idea behind PLS is to decompose both
the design matrix X and response matrix Y (the general case of multiple responses is often considered) like
in principle component analysis.

Here I only know a little about these methodologies and I only study them a little bit by myself.
See references in my local computers file folders, 2018.04.22 DM_ICA_PCA, 2018.05.29 REU Program,

2018.06.04 Regression. huiguifenxi regression.
See references in my local computers, OLS_OR_MLE_PCA.pdf, linear regression model two noises

76-1-141.pdf, OLS_PCA.pdf, PLS_simple_explanation.pdf, lasso high-dimensional regression.pdf,
12.Robust.pdf, PLS-pretty-Abdi.pdf, robust_regression.pdf, Intro_to_PCA_and_ICA.pdf,
Robustness_Multivariate_Orthogonal.pdf, PCA_ICA_compare.pdf.

See website onWhat is LASSO Regression Definition, Examples and Techniques.html, Lasso regression—
Introduction to Regression Models.html, https://stat151a.berkeley.edu/spring-2024/lectures/Lecture23.html
(local is [Good] Lasso or ‘L1’ regression.html), Visually differentiating PCA and Linear Regression _ Know
Thy Data.html.

See codes in regression.mw.
See more in my original hand-writing notes.
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1.10.1 Both Variables Have Errors

Suppose both X and Y contain some random errors, εX and εY , which may come from measurement or
other resources. A suitable model is as follows,

X = ξ + εX , εX ∼ N(0, σ2
X),

Y = α+ βξ + εY , εY ∼ N(0, σ2
Y ),

where εX and εY are independent random measurement errors. There are two analysis approaches concerning
this model: the functional and the structural. The basic difference between the two approaches is whether
to consider ξ as a non-random variable or a random variable following normal distribution with mean µ and
variance τ2,

ξ ∼ N(µ, τ2),

and independent to both random errors. Since the latter approach is more general, in the discussion below,
we will follow the structural model where X and Y follow a bivariate normal distribution with mean and
covariance structure as follows:(

X

Y

)
∼ N

((
µ

α+ βµ

)
,

(
τ2 + σ2

X βτ2

βτ2 β2τ2 + σ2
Y

))
,

where

Cov(X,Y ) = (EXY )− (EX)(EY ) = E(αξ + βξ2)− µ (α+ βµ)

= αµ+ β
(
τ2 + µ2

)
− µ (α+ βµ) = βτ2.

Given a random sample of observed X’s and Y ’s, we can obtain the MLE of the slope of the regression. Its
value, however, depends on the ratio of the two error variances

γ = σ2
Y /σ

2
X ,

to have

β̂ =
SY Y − γSXX +

√
(SY Y − γSXX)2 + 4γS2

XY

2SXY
,

where

SXX =
1

n

n∑
i=1

(xi − x)2, SXY =
1

n

n∑
i=1

(xi − x)(yi − y), SY Y =
1

n

n∑
i=1

(yi − y)2.

We now derive the MLE of β. The computation is extremely complicated so I used Maple for help.
Denote

Z =

(
X

Y

)
∼ N(m,Σ),

where

m =

(
µ

α+ βµ

)
, Σ =

(
τ2 + σ2

X βτ2

βτ2 β2τ2 + σ2
Y

)
.

The likelihood for one data is

p(X,Y |α, β, µ, τ, σ2
X , σ

2
Y ) =

1

2π |Σ|1/2
exp

(
−1

2
(z −m)>Σ−1(z −m)

)
.
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Since (xi, yi) are i.i.d., the log likelihood for all the data is

ln

n∏
i=1

p(xi, yi) = −n ln(2π)− n

2
ln |Σ| −

n∑
i=1

1

2
(zi −m)>Σ−1(zi −m),

where

Σ−1 =
1

|Σ|

(
β2τ2 + σ2

Y −βτ2

−βτ2 τ2 + σ2
X

)
,

|Σ| = β2τ2σ2
X + τ2σ2

Y + σ2
Xσ

2
Y .

We first assume σ2
X and σ2

Y are given and denote γ = σ2
Y /σ

2
X in order to find α, β, µ, τ as functions of σ2

X

and σ2
Y (or equivalently σ2

X and γ). We change the variables

λ0 = µ, λ1 = α+ βµ, λ2 = β2τ2 + γτ2 + γσ2
X , β = β,

to obtain that

|Σ| = σ2
X

(
β2τ2 + γτ2 + γσ2

X

)
= λ2σ

2
X ,

Σ−1 =
1

|Σ|

(
β2τ2 + σ2

Y −βτ2

−βτ2 τ2 + σ2
X

)
=

1

λ2σ2
X(β2 + γ)

(
β2λ2 + γ2σ2

X −β(λ2 − γσ2
X)

−β(λ2 − γσ2
X) λ2 + β2σ2

X

)
.

We write the log likelihood function in the new parameterization as

l(λ0, λ1, λ2, β|xi, yi, σ2
X , σ

2
Y ) (1.22)

= −n ln(2π)− n

2
lnσ2

X −
n

2
lnλ2

−

[(
β2λ2 + γ2σ2

X

) n∑
i=1

(xi − λ0)2 − 2β(λ2 − γσ2
X)

n∑
i=1

(xi − λ0)(yi − λ1)

+
(
λ2 + β2σ2

X

) n∑
i=1

(yi − λ1)2

]/(
2λ2σ

2
X(β2 + γ)

)
.

First we compute λ0 and λ1,

∂l

∂λ0
= − 1

2λ2σ2
X(β2 + γ)

[(
β2λ2 + γ2σ2

X

) n∑
i=1

2(λ0 − xi) + 2β(λ2 − γσ2
X)

n∑
i=1

(yi − λ1)

]
= 0,

∂l

∂λ1
= − 1

2λ2σ2
X(β2 + γ)

[
2β(λ2 − γσ2

X)

n∑
i=1

(xi − λ0) +
(
λ2 + β2σ2

X

) n∑
i=1

2(λ1 − yi)

]
= 0.

Thus we can easily observe that
λ0 = x, λ1 = y.

Substituting above back into (1.22) and replacing with SXX , SXY , SY Y , we obtain the log likelihood,

l(λ2, β|xi, yi, σ2
X , σ

2
Y , λ0, λ1)

= −n ln(2π)− n

2
lnσ2

X −
n

2
lnλ2

−
[
nSXX

(
β2λ2 + γ2σ2

X

)
− 2β(λ2 − γσ2

X)nSXY +
(
λ2 + β2σ2

X

)
nSY Y

]
/
(
2λ2σ

2
X(β2 + γ)

)
.
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Taking derivative w.r.t. λ2,

∂l

∂λ2
=

n
(
SXXγ

2 + 2SXY βγ + SY Y β
2 − β2λ2 − γλ2

)
2λ2

2(β2 + γ)
= 0,

λ2 =
SXXγ

2 + 2SXY βγ + SY Y β
2

β2 + γ
.

Taking derivative w.r.t. β,

∂l

∂β
=

[
SXXβγ

2σ2
X + SXY β

2γσ2
X − SXY γ2σ2

X − SY Y βγσ2
X

−SXXβγλ2 − SXXβ2λ2 + SXY γλ2 + SY Y βλ2

]
× n

λ2σ2
X(β2 + γ)2

= 0.

Substituting λ2, then we obtain

−
(
SXXβγ + SXY β

2 − SXY γ − SY Y β
)

(−β2γσ2
X − γ2σ2

X + SXXγ
2 + 2SXY βγ + SY Y β

2)

(β2 + γ)
= 0.

Numerically, only the following solution makes sense,

SXY β
2 + SXXβγ − SY Y β − SXY γ = 0,

β̂ =
SY Y − γSXX +

√
(SY Y − γSXX)2 + 4γS2

XY

2SXY
. (1.23)

One possibly further get estimators for α, β, µ, τ(σ2
X , σ

2
Y ) from λ0, λ1, λ2, β. Finally one can get estimators

for σ2
X , σ

2
Y or σ2

X , γ from the likelihood.
Inference (hypothesis test, confidence interval) on the slope parameter can be carried out similarly using

the maximum likelihood approach. We consider this the general and correct approach when both variables
are random. Since it is a parametric model, the readers are reminded that normality transformation should
be performed prior to the regression analysis if a variable is found not normal.

1.10.2 Ordinary Least Squares (OLS) Regression

Figure 1.3: The OLS regression (a) and (b) and the OR (c).

As illustrated in Figure 1.3(a), the ordinary least square (OLS) estimate of Y on X will minimize the
squared vertical distance

∑n
i=1 (yi − α− βxi)2 from the points to the regression line. The OLS estimate of

the slope is β̂ = SXY /SXX . This is the case when γ = ∞ in the general structural modelling approach
(equation (1.23)). Similarly, the OLS estimate of X on Y would minimize the horizontal distance to the
regression line

∑n
i=1 (xi − α− βyi)2 (see Fig. 1.3(b)). The OLS estimate of the slope is β̂ = SXY /SY Y

which corresponds the inverse of the result (1.23) when γ = 0. The latter is also called the reverse regression.
Notice that the OLS is suitable when only one of the two variables is random.
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1.10.3 Orthogonal Regression (OR)

Instead of minimizing the vertical (or horizontal) distance as in the OLS, the orthogonal regression
(OR) takes the middle ground by minimizing the orthogonal distance from the observed data points to the
regression line as illustrated in Figure 1.3(c). The resulting OR estimate of β is:

β̂ =
SY Y − SXX +

√
(SY Y − SXX)2 + 4S2

XY

2SXY
.

This is the same as the MLE in the general structural modelling approach when γ = 1. It means that the
orthogonal regression is suitable when the error variances are equal. Let us now minimize the orthogonal
distance to the fitted line, y − α− βx = 0,

min
α,β

l(α, β) :=

n∑
i=1

(
|yi − α− βxi|√

β2 + 1

)2

=

n∑
i=1

(yi − α− βxi)2

β2 + 1
.

Taking derivative w.r.t. α, ∂l/∂α = 0, we obtain that

α = y − βx.

Taking derivative w.r.t. β,

∂l

∂β
=

n∑
i=1

[
2(α+ βxi − yi)xi

β2 + 1
− (yi − α− βxi)2

(β2 + 1)
2 2β

]
= 0.

We simplify above, (
β2 + 1

) (
β
∑

x2
i + α

∑
xi −

∑
xiyi

)
−β
(∑

y2
i + β2

∑
x2
i + nα2 − 2α

∑
yi − 2β

∑
xiyi + 2αβ

∑
xi

)
= 0.

Using Maple to substitute in α = y − βx, and also denoting DXX =
∑
x2
i , DXY =

∑
xiyi, DY Y =

∑
y2
i ,

(DXY − nxy)β2 + (DXX −DY Y − nx2 + ny2)β + nxy −DXY = 0,

SXY β
2 + (SXX − SY Y )β − SXY = 0.

We finally obtain

β̂ =
SY Y − SXX +

√
(SY Y − SXX)2 + 4S2

XY

2SXY
.

1.10.4 The Connection Between OR and PCA

There is a close relationship between the Principle Component Analysis (PCA) and the Orthogonal
Regression. For the sample covariance matrix of the random variables (X,Y ), [SXX , SXY ;SXY , SY Y ], its
highest eigenvalue (or equivalently the SVD of the centralized data) is

(SXX − λ̂)(SY Y − λ̂)− S2
XY = 0,

λ̂2 − (SXX + SY Y )λ̂+ SXXSY Y − S2
XY = 0.

λ̂ =
SXX + SY Y +

√
(SXX + SY Y )2 − 4(SXXSY Y − S2

XY )

2
.
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And the eigenvector (first principal component) corresponding to this eigenvalue is(
SXY ,

SY Y − SXX +
√

(SY Y − SXX)2 + 4S2
XY

2

)
.

Therefore, the slope of the first principal component is

β̂ =
SY Y − SXX +

√
(SY Y − SXX)2 + 4S2

XY

2SXY
,

which is the same as the slope estimator from the orthogonal regression.
Intuitively, the first principal component is the line passing through the greatest dimension of the con-

centration ellipse, which coincides with the orthogonal regression line. Therefore, existing statistical inference
techniques for the PCA can be applied directly to the inference of the slope parameter from the OR approach

1.11 Introduction to Comparison between Ridge Regression and

Lasso Regression

OLS is not robust to outliers. It can produce misleading results if unusual cases go undetected
— even a single case can have a significant impact on the fit of the regression surface. We first define the
canonical regularizers: `0, `1, `2. In regression, arguably the three canonical choices for regularizers are
the `0, `1, `2 norms:

‖β‖0 =

k∑
j=1

1{βj 6= 0}, ‖β‖1 =

k∑
i=1

|βi| , ‖β‖2 =

(
k∑
i=1

β2
i

)1/2

.

Critically, ‖·‖0 is not convex, while ‖·‖1 and ‖·‖2 are convex. This makes best subset selection
a nonconvex problem, and one that is generally very hard to solve in practice except for very
small k (dimension of parameters). On the other hand, the lasso and ridge regression problems
are convex, and many efficient algorithms exist for them.

1.11.1 Ridge Regression

Experimental and theoretical studies show that PLS (see PLS_simple_explanation.pdf), Principal Com-
ponent Regression (PCR) (see PLS_simple_explanation.pdf), and ridge regression tend to behave similarly.
Ridge regression maybe preferred for its relative interpretational and computational simplicity for low di-
mensional paramaters.

Ridge regression is a popular form of regularised linear regression, in which we change the objective
function from the standard least squares formulation to the following,

min
β

1

n
‖Y −Xβ‖22 + λ ‖β‖22 ,

for a given value of λ. The solution can be shown to be

β̂ridge =
(
X>X + nλI

)−1
X>Y.

The “right” value of λ for a given problem is usually obtained through cross validation. One problem with
this might be that the solution β̂ridge is still “dense”, meaning that, in general, every entry of it is nonzero, and
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we still have to invert a dense k× k matrix. In my opinion, ridge regression is good for a degenerate
but close to a full rank X>X matrix whereas it is not good for a very low rank X>X matrix
when the dimension of parameters k is large.

For example, consider our highly correlated regressor example. The ridge regression will still include
both regressors, and their coefficient estimates will still be highly negatively correlated, but both will be
shrunk towards zero. Maybe it would make more sense to select only one variable to include. Let us try to
think of how we can change the penalty term to achieve this.

A “sparse” solution is an estimator β̂ in which many of the entries are zero — that is, an estimated
regression line that does not use many of the available regressors. In a word — ridge regression estimates
are not sparse. Let’s try to derive one that is by changing the penalty. A very intuitive way to produce a
sparse estimate is as follows:

min
β

(
1

n
‖Y −Xβ‖22 + λ ‖β‖0

)
=

 1

n
‖Y −Xβ‖22 + λ

k∑
j=1

1{βj 6= 0}

 ,

however, this is practically difficult since the problem is nonconvex. This finds a tradeoff between
the best fit to the data, but with a penalty for using more regressors. This makes sense, but is very difficult
to compute. In particular, this objective is very non-convex. Bayesian statisticians do attempt to estimate
models with a similar kind of penalty (they are called “spike and slab” models), but they are extremeley
computationally intensive and beyond the scope of this course.

1.11.2 Lasso Regression

A convex approximation to the preceding loss is the L1 or Lasso loss, leading to Lasso or L1 regression.
The popular form of regularised linear regression is lasso, which solves the following problem:

min
β

1

n
‖Y −Xβ‖22 + λ ‖β‖1 ,

where ‖β‖1 =
∑
i |βi| . This loss is convex (beacuse it is the sum of two convex functions), and so is much

easier to minimize. Furthermore, as λ grows, it does produce sparser and sparser solutions — though
it may not be obvious at first.
What is Lasso Regression?

LASSO regression, also known as L1 regularization, is a popular technique used in statistical modeling
and machine learning to estimate the relationships between variables and make predictions. LASSO stands
for Least Absolute Shrinkage and Selection Operator. The primary goal of LASSO regression is to find a
balance between model simplicity and accuracy. It achieves this by adding a penalty term to the traditional
linear regression model, which encourages sparse solutions where some coefficients are forced to be exactly
zero. This feature makes LASSO particularly useful for feature selection, as it can automatically identify
and discard irrelevant or redundant variables.

Lasso regression is a regularization technique. It is used over regression methods for a more accurate
prediction. This model uses shrinkage. Shrinkage is where data values are shrunk towards a central point
as the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters).
This particular type of regression is well-suited for models showing high levels of multicollinearity or when
you want to automate certain parts of model selection, like variable selection/parameter elimination. Lasso
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Regression uses L1 regularization technique (will be discussed later in this article). It is used when we have
more features because it automatically performs feature selection.
L1 Regularization

Regularization is an important concept that is used to avoid overfitting of the data, especially when the
trained and test data are much varying. Regularization is implemented by adding a “penalty” term to the
best fit derived from the trained data, to achieve a lesser variance with the tested data and also restricts the
influence of predictor variables over the output variable by compressing their coefficients. In regularization,
what we do is normally we keep the same number of features but reduce the magnitude of the coefficients.
We can reduce the magnitude of the coefficients by using different types of regression techniques which uses
regularization to overcome this problem. So, let us discuss them.

LASSO regression introduces an additional penalty term based on the absolute values of the coefficients.
The L1 regularization term is the sum of the absolute values of the coefficients multiplied by a tuning
parameter λ:

L1 = λ
∑
i

|βi|

where λ is the regularization parameter that controls the amount of regularization applied and βi (i = 1, . . . , k)

are the regression coefficients.
Shrinking Coefficients

By adding the L1 regularization term, LASSO regression can shrink the coefficients towards zero. When
λ is sufficiently large, some coefficients are driven to exactly zero. This property of LASSO makes it useful
for feature selection, as the variables with zero coefficients are effectively removed from the model.
Tuning parameter λ

The choice of the regularization parameter λ is crucial in LASSO regression. A larger λ value increases
the amount of regularization, leading to more coefficients being pushed towards zero. Conversely, a smaller
λ value reduces the regularization effect, allowing more variables to have non-zero coefficients.

• λ denotes the amount of shrinkage.
• λ = 0 implies all features are considered and it is equivalent to the linear regression where only the

residual sum of squares is considered to build a predictive model
• λ =∞ implies no feature is considered i.e, as λ closes to infinity it eliminates more and more features
• The bias increases with increase in λ
• The variance increases with decrease in λ

Model Fitting
To estimate the coefficients in LASSO regression, an optimization algorithm is used to minimize the

objective function. Coordinate Descent is commonly employed, which iteratively updates each coefficient
while holding the others fixed.

By striking a balance between simplicity and accuracy, LASSO can provide interpretable models while
effectively managing the risk of overfitting. It’s worth noting that LASSO is just one type of regularization
technique, and there are other variants such as Ridge regression (L2 regularization) and Elastic Net.
Lasso Meaning

LASSO regression offers a powerful framework for both prediction and feature selection, especially when
dealing with high-dimensional datasets where the number of features is large. The word “LASSO” stands for

32



Least Absolute Shrinkage and Selection Operator. It is a statistical formula for the regularisation of
data models and feature selection.
Standardization

Lasso performs best when all numerical features are centered around 0 and have variance in the same
order. If a feature has a variance that is orders of magnitude larger than others, it might dominate the
objective function and make the estimator unable to learn from other features correctly as expected.

This means it is important to standardize our features. We do this by subtracting the mean from our
observations and then dividing the standard deviation. This so called standard score Z for an observation X
is calculated as:

Z =
X −X
s

,

where X = (X1, . . . , Xn) is an observation in one feature, X is the mean of that feature, and s is the standard
deviation of that feature.
The Lasso Produces Sparse Solutions (Intuition)

One way to see that the Lasso produces sparse solutions is to start with a very large λ and see what
happens as it is slowly decreased.

Start at λ very large, so that β̂lasso(λ) = 0. If we take small step of size ε in a particular direction away
from zero in entry βj , then λ‖β̂‖1 increases by ελ, and the RSS changes by the gradient of the squared error,

ε

n∑
i=1

(yi − β̂(λ)xi·)xij := ε

n∑
i=1

ε̂ixij = ε

n∑
i=1

yixij , (because β̂(λ) = 0).

As long as |
∑n
i=1 yixij | < λ for all j ∈ {1, . . . , k}, we cannot improve the loss by moving away from 0. Since

the loss is convex, that means 0 is the minimum.
Eventually, we decrease λ until

∑n
i=1 yixij = λ for some j (greedy variable selection). At that point,

βj moves away from zero as λ decreases, and the ε̂i also change. However, until
∑n
i=1 ε̂ixiq = λ for some

other q 6= j, only βj will be nonzero. As λ decreases more and more, variables tend to get added to the
model, until λ = 0, when of course β̂lasso(0) = β̂OLS, the OLS solution.
Conclusion

LASSO regression emerges as a crucial technique for statistical modeling and machine learning, striking
a balance between model simplicity and accuracy.

With its ability to promote sparsity through feature selection, LASSO regression aids in identifying
relevant variables and managing overfitting, particularly in high-dimensional datasets.

See more details about Lasso regression in Learning from First Principles by Bach.

1.11.3 Comparison in Short

In short, Ridge is a shrinkage model, and Lasso is a feature selection model. Ridge tries to balance the
bias-variance trade-off by shrinking the coefficients, but it does not select any feature and keeps all of them.
Lasso tries to balance the bias-variance trade-off by shrinking some coefficients to zero. In this way, Lasso
can be seen as an optimizer for feature selection. See Table 1.1 for more comparisons. Also see Fig.
1.4 for illustration.
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Table 1.1: Comparison between Ridge Regression and LASSO Regression.

Ridge Regression LASSO Regression

Penalty Term The penalty term is the sum of the
squares of the coefficients (L2

regularization).

The penalty term is the sum of the
absolute values of the coefficients
(L1 regularization).

Shrinkage Shrinks the coefficients but does not
set any coefficient to zero.

Can shrink some coefficients to zero,
effectively performing feature
selection.

Overfitting Helps to reduce overfitting by
shrinking large coefficients.

Helps to reduce overfitting by
shrinking and selecting features with
less importance.

Number of
Features

Works well when there are a large
number of features.

Works well when there are a small
number of features.

Thresholding Performs “soft thresholding” of
coefficients.

Performs “hard thresholding” of
coefficients.

Convexity Always strictly convex. We are
guaranteed a unique ridge solution.

Not strictly convex when k > n. We
are not necessarily to have a unique
Lasso solution.

Figure 1.4: The “classical” illustration comparing lasso and ridge constraints. See Chap. 3.4 of Hastie et al.
(2009).
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1.12 Bias-Variance Tradeoff in Ridge Linear Regression

1.12.1 Least-squares in high dimensions.

When k/n approaches 1, we are essentially memorizing the observations yi (that is, for example when
k = n and X is a square invertible matrix, β = X−1Y leads to Y = Xβ, that is, ordinary least-squares will
lead to a perfect fit, which is typically not good for generalization to unseen data). Also when k > n, then
X>X is not invertible and the normal equations admit a linear subspace of solutions. These behaviors of
OLS in high dimension (k large) are often undesirable.

Several solutions exist to fix these issues. The most common is to regularize the least squares objective,
either by adding an `1-penalty ‖β‖1 to the empirical risk (leading to “Lasso” regression, see Chapter 8 of
First Principles by Bach) or ‖β‖22 (leading to ridge regression, as done in the following and also Chapter 7
of First Principles by Bach).

Definition 1.12.1 (Ridge least-squares regression). For a regularization parameter λ > 0, we define the
ridge least-squares estimator β̂ridge as the minimizer of

min
β

1

n
‖Y −Xβ‖22 + λ ‖β‖22 .

The ridge regression solution can be obtained in closed form,

β̂ridge =
(
X>X + nλI

)−1
X>Y.

As for the OLS estimator, we can analyze the statistical properties of this estimator under the linear
model and fixed design assumptions. See Chapter 7 of First Principles by Bach for an analysis for random
design and potentially infinite-dimensional features.

Proposition 1.12.2 Recall that Σ̂ := 1
nX
>X ∈ Rk×k. Under the linear model assumption (and for the fixed

design setting), the ridge least-squares estimator β̂ridge has the following excess risk

E[E(β̂ridge)]− E∗ = λ2β>∗ (Σ̂ + λI)−2Σ̂β∗ +
σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.

Proof. We use the risk decomposition of Proposition 1.9.1 into a bias term B and a variance term V . Since
we have

E[β̂ridge] =
1

n
(Σ̂ + λI)−1X>Xβ∗ = (Σ̂ + λI)−1Σ̂β∗ = β∗ − λ(Σ̂ + λI)−1β∗,

it follows,
B = ‖E[β̂ridge]− β∗‖2Σ̂︸ ︷︷ ︸

Bias

= λ2β>∗ (Σ̂ + λI)−2Σ̂β∗.
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For the variance term, using the fact that E[εε>] = σ2, we have

V = E
[
‖β̂ridge − E[β̂ridge]‖2Σ̂

]
︸ ︷︷ ︸

Variance

= E

[∥∥∥∥ 1

n
(Σ̂ + λI)−1X>ε

∥∥∥∥2

Σ̂

]

= E

[
1

n2
tr
(
ε>X(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1X>ε

)]
= E

[
1

n2
tr
(
X>εε>X(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1

)]
=
σ2

n
tr

(
1

n
X>X(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1

)
=

σ2

n
tr
(

Σ̂(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
)

=
σ2

n
tr
(

Σ̂(Σ̂ + λI)−1(Σ̂ + λI)−1Σ̂
)

=
σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
((Σ̂ + λI)−1Σ̂ = Σ̂(Σ̂ + λI)−1).

The proposition follows by summing the bias and variance terms.
We can make the following observations:

Remark 1.12.3
• The result above is also a bias / variance decomposition with the bias term equal to B = λ2β>∗ (Σ̂+λI)−2Σ̂β∗,

and the variance term equal to V = σ2

n tr
[
Σ̂2(Σ̂ + λI)−2

]
.

• The bias term is increasing in λ and equal to zero for λ = 0 if Σ̂ is invertible, while when λ goes to infinity,
the bias goes to β>∗ Σ̂β∗. It is independent of n and plays the role of the approximation error in the risk
decomposition.
• The variance term is decreasing in λ, and equal to σ2k/n for λ = 0 and Σ̂ invertible, and converging to zero
when λ goes to infinity. It depends on n and plays the role of the estimation error in the risk decomposition.
• The quantity tr[Σ̂2(Σ̂+λI)−2] is often called the “degrees of freedom”, and is often considered as an implicit
number of parameters. It can be expressed as where

∑k
j=1

λ2
j

(λj+λ)2 , where (λj)j∈{1,...,d} are the eigenvalues of
Σ̂. This quantity will be very important in the analysis of kernel methods in Chapter 7 of First Principles by
Bach.
• Observe how this converges to the OLS estimator (when it is defined) as λ→ 0.
• In most cases, λ = 0 is not the optimal choice, that is biased estimation (with controlled bias) is preferable
to unbiased estimation.

Experiments
With the same polynomial regression set-up as in Bach book, with k = 11 (degree 10), we can plot the

various quantities above as a function of λ. We can see the monotonicity of bias and variance with respect
to λ as well as the presence of an optimal choice of λ. See Figure 1.5.

1.12.2 Choice of λ

Based on the expression for the risk, we can tune the regularization parameter λ to obtain a potentially
better bound than with the OLS (which corresponds to λ = 0 and the excess risk σ2k/n).

Proposition 1.12.4 (Choice of Regularization Parameter) With the choice λ∗ =
σ
√

tr[Σ̂]

‖β∗‖2
√
n
, we have

E[E(β̂ridge)]− E∗ ≤
σ

√
tr[Σ̂]‖β∗‖2
√
n

.
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Figure 1.5: Bias-variance trade-offs for ridge regression.

Proof. We have, using the fact that the eigenvalues of (Σ̂ + λI)−2λΣ̂ are less than 1/2 (which is a simple
consequence of (µ+ λ)−2µλ ≤ 1/2⇔ (µ+ λ)2 ≥ 2µλ for all eigenvalues µ of Σ̂):

B = λ2β>∗ (Σ̂ + λI)−2Σ̂β∗ = λβ>∗ (Σ̂ + λI)−2λΣ̂β∗ ≤
λ

2
‖β∗‖22.

Similarly, we have

V =
σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
=
σ2

λn
tr
[
Σ̂λΣ̂(Σ̂ + λI)−2

]
≤ σ2tr[Σ̂]

2λn
.

Plugging in λ∗ (which was chosen to minimize the upper bound on B + V ) gives the result.
We can make the following observations:

Remark 1.12.5
• Observe that if we write R = maxi∈{1,...,n} ‖Xi‖2, then we have

tr[Σ̂] =
∑
j≥1

Σ̂jj =
1

n

n∑
i=1

∑
j≥1

x2
ij =

1

n

n∑
i=1

‖Xi‖22 ≤ R
2.

Thus in the excess risk bound, the dimension k plays no role and it could even be infinite (given that R and
‖β∗‖2 remain finite). This type of bounds are called dimension-free bounds. Notice that the number of
parameters is not the only way to measure the generalization capabilities of a learning method
• Comparing this bound with that of the OLS estimator, we see that it converges slower to 0 as a function of
n (from n−1 to n−1/2) but it has a milder dependence on the noise (from σ2 to σ). The presence of a “fast”
rate in O(n−1) with a potentially large constant, and of “slow” rate O(n−1/2) with a smaller constant will
appear several times. Notice that depending on n and the constants, the “fast” rate result is not always the
best.
• The value of λ∗ involves quantities which we typically do not know in practice (such as σ and ‖β∗‖2). This is
still useful to highlight the existence of some λ with good predictions (which can be found by cross-validation).

• Note here that the choice of λ∗ =
σ
√

tr[Σ̂]

‖β∗‖2
√
n
is optimizing the upper-bound λ

2 ‖β∗‖
2
2 + σ2tr[Σ̂]

2λn , and is thus
typically not optimal for the true expected risk.

Choosing λ in practice. The regularization λ is an example of a hyper-parameter. This term refers
broadly to any quantity that influences the behavior of a machine learning algorithm and that is left to choose
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by the practitioner. While theory often offers guidelines and qualitative understanding on how to best choose
the hyper-parameters, their precise numerical value depends on quantities which are often difficult to know
or even guess. In practice, we typically resort to validation and cross-validation.

1.13 Subset Selection

Due to the time constraint, I have not enough time to well-organize the following section. In this section,
I just copy-paste the content from the book “an introduction to statistical learning” by James, Witten, Hastie,
Tibshirani, and the book “the elements of statistical learning” by Hastie, Tibshirani, Friedman. In the future,
these contents need to be understood and typed in using latex.
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1.14 Logistic Regression

Due to the time constraint, I have not enough time to well-organize the following section. In this section,
I just copy-paste the content from the book “All of Statistics - A Concise Course in Statistical Inference” by
Larry Wasserman, and the website “Logistic Regression” by Zhihu. In the future, these contents need to be
understood and typed in using latex.

Notice that logistic regression is intrinsically regression during the computation procedure while its goal
is for classification. On the other hand, support vector machine is completely for classification.
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46



Figure 1.13:
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