MATH1312: Lecture Note on Probability Theory and
Mathematical Statistics

Shixiao W. Jiang

Institute of Mathematical Sciences, ShanghaiTech University, Shanghai 201210, China

jiangshx@shanghaitech.edu.cn

2024 4F 11 A 29 H



Contents

1 Regression

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9

1.10

1.11

1.12

1.13
1.14

2
General Setup . . . . . . . e 2
Simple Linear Regression . . . . . . . . . .. L e 4
Least Squares and Maximum Likelihood . . . . . . .. .. ... ... ... ... 7
Properties of the Least Squares Estimators . . . . . . . . ... ... ... ... ........ 8
Hypothesis Test in a Simple Linear Regression . . . . . . . . ... ... ... ..... 9
Estimation for the Variance of Noises . . . . . . . . . . .. ... . o . 13
Prediction . . . . . . oL e 14
Multiple Regression . . . . . . . . .. L 16
1.8.1 Parameter estimation . . . . . . . .. L Lo L 16
1.8.2 Hypothesis Test for Multiple Regression . . . . . . . .. .. .. ... ... ... .... 22
Bias-Variance Decomposition for Ordinary Least Squares . . . . . .. ... .. ... .. ... 22
1.9.1 Risk decomposition for OLS . . . . . . . . . ... L 22
1.9.2 Statistical Properties of the OLS estimator . . . .. ... .. .. ... .. ....... 24
Different Model Setups . . . . . . . . . e 24
1.10.1 Both Variables Have Errors . . . . . . .. . .. .. . o 26
1.10.2 Ordinary Least Squares (OLS) Regression . . . . . . .. ... ... ... ... ..... 28
1.10.3 Orthogonal Regression (OR) . . . . . . . . . . . . i 29
1.10.4 The Connection Between OR and PCA . . . . . . . .. .. ... ... .. ... .... 29
Introduction to Comparison between Ridge Regression and Lasso Regression . . . .. . . .. 30
1.11.1 Ridge Regression . . . . . . . . . . . . L e 30
1.11.2 Lasso Regression . . . . . . . . . . . . e 31
1.11.3 Comparison in Short . . . . . . . . . . .. 33
Bias-Variance Tradeoff in Ridge Linear Regression . . . . . .. .. .. ... .. ... ... .. 35
1.12.1 Least-squares in high dimensions. . . . . . . . . .. .. ... L Lo 35
1.12.2 Choice of A . . . . . . . e e 36
Subset Selection . . . . . . . . 38
Logistic Regression . . . . . . . . . . L 39



Chapter 1

Regression

1.1 General Setup

See references in Cucker and Smale 2001, Bias_Var Ridge, Learning Theory from First Principles by
Francis Bach.

Since we want to study learning from random sampling, the primary object in our development is a
probability measure p governing the sampling and which is not known in advance (however, the goal is not
to reveal p).

Let X be a compact domain or a manifold in Euclidean space and Y = R*. For convenience we will take
k =1 for the time being. Let p be a Borel probability measure on Z = X x Y whose regularity properties
will be assumed as needed. In the following we try to utilize concepts formed naturally and solely from X, Y
and p.

A main concept is the error (or least squares error) of an arbitrary well-defined functoin f defined
by

&)= [ (f@) = vPdplay). for X 5V, (1.1)

For each input x € X and output y € Y, (f(z) —y)? is the error suffered from the use of f as a model for the
process producing y from z. By integrating over X X Y (w.r.t. p, of course) we average out the error over
all pairs (x,y). Hence the word “error” for £(f).

The problem is posed: What is the f which minimizes the error £(f)?

The error £(f) naturally decomposes as a sum. Let us see how. For every = € X, let p(y|z) be the
conditional (w.r.t. x) probability measure on Y and px be the marginal probability measure on X, i.e. the
measure on X defined by px(S) = p(7=1(S)) where 7 : X x Y — X is the projection. Notice that p, p(y|z)

and px are related as follows. For every integrable function ¢ : X x Y — R a version of Fubini’s Theorem

states that
/X><Y<p(x’y)dp = /X </Y SO(I,y)dp(ylx)) dpx.

This “breaking” of p into the measures p(y|z) and px corresponds to looking at Z as a product of an input

domain X and an output set Y. In what follows, unless otherwise specified, integrals are to be understood

over p, p(ylz) or px.



Regression is a method for studying the relationship between a response variable Y and a covariate
X. The covariate is also called a predictor variable or a feature. One way to summarize the relationship

between X and Y is through the regression function f, : X — Y]
@) = BYIX =) = [ vplyla).

For each € X, f.(z) is the average of the y coordinate of {x} x Y (in topological terms, the average of
y on the fiber of z). Regularity hypotheses on p will induce regularity properties on f.. We will assume
throughout this paper that f,. is bounded. Note that while p and f, are mainly “unknown”, px is known in
some situations and can even be the Lebesgue measure on X inherited from Euclidean space. Our goal is to

estimate the regression function f, from the data of the form
(Y17X1)7 ceey (Yn7X7L) ~ FX,Y-

Definition 1.1.1 (Model Assumption for General Setup). The model requires assumptions about how the
data are generated. We assume that

e there is a “true” function f. such that the relationship between input and output is for alli € {1,...,n},

¥ = f+(x) + €. (1.2)

The “true” function f. can be given as a parametric form such as f.(x) = x' 0, (linear regression), f.(x) =
o(z) 70, (feature regression), etc. This type of regression is referred to as a parametric regression. The
function can also be given in a specific form in some function space such as in Sobolev space. We then need
to choose a parameterized family of prediction functions fo : X — Y for 8 € © in some high dimensional
hypothesis space. This type of regression is referred to as a nonparametric regression. Note that in
most cases, the predictor f, does not belong to the class of functions {fg,0 € O}, that is, the model is said

misspecified. These terminologies are not rigorous.

o for alli€ {1,...,n}, € are independent such that
E(Q) = E(€z|xz) = 0,
Var(e;) = Var(elz;) = o>

Proposition 1.1.2 For every f: X — Y,

E(f) = /X (f(2) — f.(x))dpx + /Z (fo(x) — y)2dp(a.y) (1.3)

o2

The proof is easily followed by
E(f) = /Z (F(2) — 1)*dp(z,y) = / (F(2) — ful@) + fulz) — 9)2dpla, )
- / (F(2) — ful@))2dpla. ) + / (f(@) — v)%dp(z,y) + / 2f(@) — fu(@)(fulz) — y)dpla, )
Z Z 7Z
- / (F(2) — ful@))?dpx + / (f(2) — 1)%dp(z, ).
X Z

The first term in the right-hand side of Proposition 1.1.2 provides an average (over X) of the error suffered

from the use of f as a model for f.. In addition, since o2

is independent of f, Proposition 1.1.2 implies that
f+ has the smallest possible error among all functions f : X — Y. Thus o2 represents a lower bound on the
error £(f), and it is due solely to our primary object, the measure p. Thus, Proposition 1.1.2 supports: The

goal is to “learn” (i.e. to find a good approximation of ) f, from random samples on Z.



1.2 Simple Linear Regression

In this lecture note, we only consider the parametric regresssion. The simplest version of regression is

when X; is simple (one-dimensional) and f.(z) is assumed to be linear:

f*(l‘) = fo + Brz.

This model is called the the simple linear regression model. We will make the further simplifying
assumption that Var(e;|X = z) = 02 does not depend on x. We can thus write the linear regression model

as follows.
Definition 1.2.1 The Simple Linear Regression Model
Yi=Bo+ 51X + €,

where E(€;|X;) = 0 and Var(e;|X;) = 0. The variables By and By are called regression coefficients. In a
fixed designed setting, Y is an observable random variable, X is observable fized non-random variable, and €

18 unobservable random variables.

Remark 1.2.2 Warning! Pay attention to the model assumption and model derivation. In the model,
whether the distribution of the noise term is specified or only the mean and the variance of the noise term is

specified.

The unknown parameters in the model are the intercept 8y and the slope $; and the variance 2. Let
B\O and 31 denote estimates of Sy and SB;. The fitted line (or the hypothesis space) is
J?(l”) = 30 + 3133-
The predicted values or fitted values are }Aﬁ = f(XZ) and the residuals are defined to be
&=Y-Y, =Y, - (BO"‘B\IXi)-

The residual sums of squares or RSS, which measures how well the line fits the data, is defined by
RSS =" €.

=1 "1

Definition 1.2.3 The least squares estimates are the values By and By that minimize RSS = S e

i=1"7"
That is
~ o~ 2
GoB) = g min 302 —arg min 3° (% - (ot B0
(Bo.Br) = (Bo.Br) i

= arg min Q(Bo, 1)
(Bo,B1)

Theorem 1.2.4 The least squares estimates are given by

LG -X)(-T) y
ﬁl Z;l:l (XZ 7yn)2 ) ( . )
Bo = Y, BiXp. (1.5)

An unbiased estimate of o>




Proof. Here we only provide the derivation for the least squares estimates of BO, Bl and relegate the derivation

for the unbiased estimate of o2 to the end of the section. We find the minimum points of Q(ﬁm 31),

9Q _, 99 _

— =0, — =0,
0B 01
to obtain
00 " IO
e - 2 (Y= (Bo+ Bixi)) =0,
QL - -
37/31 = —2; (Yz‘ — (Bo + BlXi)) X; =0.

Collect the terms to form the normal equation,

nBo + B ZXi = ZYQ’
i—1

i=1
B\OZXZ'+B\12X¢2 ZXiYi,
i=1 i=1 i=1

to obtain

B _ Z?:l (Xl 7yn) (}/z *?n) — -~
L= n <~ \2
Ei:l (Xl - Xn)

) B\O:Yn_ﬁan~

(1.6)

(1.7)

This must be the minimum point since it is the only critical point of the convex optimization problem. m



13.6 Example (The 2001 Presidential Election). Figure 13.2 shows the plot of
votes for Buchanan (Y) versus votes for Bush (X) in Florida. The least squares
estimates (omitting Palm Beach County) and the standard errors are

B = 66.0991 &(F,) = 17.2926
B = 00035 (A1) = 0.0002.

The fitted line is
Buchanan = 66.0991 + 0.0035 Bush.

(We will see later how the standard errors were computed.) Figure 13.2 also
shows the residuals. The inferences from linear regression are most accurate
when the residuals behave like random normal numbers. Based on the residual
plot, this is not the case in this example. If we repeat the analysis replacing
votes with log(votes) we get

Bo = —2.3298 se(fy) = 0.3529
B = 0.730300 (1) = 0.0358.
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FIGURE 13.2. Voting Data for Election 2000. See example 13.6.
This gives the fit
log(Buchanan) = —2.3298 + 0.7303 log(Bush).

The residuals look much healthier. Later, we shall address the following ques-
tion: how do we see if Palm Beach County has a statistically plausible out-

come? m

Figure 1.1:



1.3 Least Squares and Maximum Likelihood
Suppose we add the assumption that ¢;|X; ~ N(0,02), that is,
Y| X; ~ N(pi, %)

where p; = By + £1X;. The likelihood function is

n n

[Trxiv) = ] fxX)fyvix(¥ilX0)

i=1 =1

= HfX(Xi) < [[ fvix (VilXi) = Ly x Lo,
i=1 i=1

where L; = [] fx(X;) and
i=1

Ly, = H fyx (Yi] Xq).

i=1
The term L; does not involve the parameters 5y and ;. We shall focus on the second term Lo which is

called the conditional likelihood, given by
= 1
Ly=1L = Yi| X, —n - Y — 1) b .
2 = L(Bo, 1, 0) ng\X( [ Xi) xo exp{ 552 Zl:( ) }
The conditional log-likelihood is
1 n
(Bo, B1,0) = —nlogo — 257 ;(Yv — (Bo + 1 Xy))?

We find the MLS estimator,
(30731,3) = arg max £(Bo, B1,0).

0,P1,0

For Bo; 31, we see that maximizing the likelihood is the same as minimizing the RSS.

Theorem 1.3.1 Under the assumption of Normality, the least squares estima tor is also the mazimum

likelihood estimator.

We can also maximize £(f3y, 51,0) over o, yielding the MLE

We take derivative w.r.t. o<,

o? % > (Vi = (Bo+ B X))*.
i=1

Note that MLE estimator 52 is a biased estimator. The unbiased estimator is given by 6% = —L- 3" | €2

which will be proved in the following.



1.4 Properties of the Least Squares Estimators

We now record the standard errors and limiting distribution of the least squares estimator. In regression

problems, we usually focus on the proper ties of the estimators conditional on
X=01,.,1;X,.,X,)".
Thus, we can also state the means and variances as conditional means and variances.

Theorem 1.4.1 Let ,@T = (Eo,ﬁl)T denote the least squares estimators. Then 5 is linear estimator of

Yi,...,Y, such that

E(B) E@E(?),

~ o? s X2 -X -1
Var = Var(B|X)= —— | ==l "l =02(XTX) 7, 1.8
I (E A BTl 19)
where the sample variance sxx =n "' S (X — X,)? and

nox. _ 1 X2 =3r X,
XTX —_ ( nn Z;:l ; > , (XTX) 1 —_ - . ~ 5 ( Zl:nl [ Z'LZI g ) .
i Xi i X ny i X — (2 Xi) =i Xi n

Example 1.4.2 Before proving the above theorem, we first write the solution in (1.7) in a compact matriz
form. Define

Then

Z?:l Xi Z?:l Xi,z Z?:l XY

The normal equation (1.6) can be written as

(X™X)B=X"Y.

Thus, the solution to B 18 given by
B=(X"X)" (XTY). (1.9)

Proof. (1) From (1.4) or (1.9), we see that B is a linear estimator of Y = (Yy,...,Y,).
(2) We now see from (1.9) that 3 is unbiased since

-~

E@) = E|(XTX)" (XTY)] = (XX) " (XTE(Y)) = (XTX) " (XTXB) = 8.

(3) We can compute the covariance matrix as

-~

Var(B)

1

Var(XTX) T (XTY) = (XX) T X Var(V)(XTX) ' XT)T
- X'X) X (@)X (X'X) =02 (X'X)



The other equalities in (1.8) can be easily verified. In general, all components of 3 are not pairwisely

independent or pairwisely uncorrelated as can be seen from

var) = () = o ER ),

3
NSy x -X, 1

Only when X,, = 0, we have the uncorrelation between 30 and B\l. ]

The estimated standard errors of Bo and Bl are obtained by taking the square roots of the corresponding

-~

diagonal terms of Var(3) and inserting the estimate & for o. Thus,

We can also write these as 3(30|X) and G(Bl\X) but we will use the shorter notation E(ZB’\O) and 8(51).

Theorem 1.4.3 Under appropriate conditions we have:
1. (Consistency): BO it Bo and Bl i B1. (proved using Chebyshev’s inequality)
2. (Asymptotic Normality):
53150 ~4 N(0,1)  and ”31151 ~4 N(0,1).
a(Bo) a(b1)

3. Approximate 1 — a confidence intervals for By and B1 are

Bo % 2a/20(Bo) and Bi % za/25(B1).

4. The Wald test for testing Hy : B1 = 0 versus Hy : B1 # 0 is: reject Ho if |[W| > z4/0 where W =
(B\l - 0)/3(31). (Recall that the Wald satistic for testing Ho : 1 = Bi1,0 versus Hy : B1 # B1o is W =
(B1—B10)/a(B1))-

1.5 Hypothesis Test in a Simple Linear Regression

In fact, for any observation data (X;,Y;) (¢ = 1,2,...,n), one can apply the least squares method to
find the regression equation no matter if there is a linear correlation between Y and X. When Y and X are
not linearly correlated, it becomes meaningless to compute the linear regression equation. Hence, we need to
determine if Y and X are linearly correlated based on our observation data.

If p1 =0, then Y and X are NOT linearly correlated which means that the linear model and the linear
regression are not valid. On the other hand, if 5; # 0 then Y and X are linearly correlated which means

that the linear model and the regression are both valid. Thus the hypothesis test is
Hy: By =0 versus Hy : B # 0.

To test the above hypothesis, we need the following decomposition formula.



Definition 1.5.1 Define the total sum of squares (TSS) as

n

TSS =) (V;-Y)>. (1.10)
i=1
The explained sum of squares (ESS) is
ESS =) (¥, -Y)2 (1.11)
i=1
The residual sum of squares (RSS) is
RSS =) (Vi — V)2 (1.12)
i=1

TSSE w2z -F 75 f1, ESSE JF-F75 1, RSSixZF 70
Theorem 1.5.2 The decomposition formula holds true,

TSS = ESS + RSS.

Proof. We compute

1SS = Y (N-TVR- Y (i-TiA TV

=1 =1 =1
The second term vanishes,
YV -Y)Vi-Y) = > (¥i—Bo—BiXi)(Bo+BX, —Y)

= B Z<Yz—Y><X1—X)+312(X—Xi)(xi—X)]
=1 i=1
= B Z(Yi—Y)(Xi—X)—BlZ(Xi_Xf] _o,

where made use of the definition of ,73’\1. Thus, the conclusion is verified. m
From the above, we see that the value of T'SS (the sample variance of Y') reveals the diversity of Y7,..., Y.
The value of ESS reveals the diversity of ffl, ceey f’n since
ESS =) (Vi-7V)? =) (V- V)%,
i=1 =1

where

=
|

| NN lems & N
—> V== Bo+bXi=B+BX =Y -BX+HX
n < n

i=1

Il
=l

10



Moreover, since 1/}2 = Bo + Ble- (i =1,...,n) all lying on the regression line, the diversity of }71, ceey ?n
revealed by ESS in fact depends on the diversity of Xi,...,X,,. The value of RSS reveals the other factors
(such as the noise) which affect the fluctuation of Y besides the factor by linear dependence on X.

The larger ESS corresponding to the smaller RSS will give us a “better” regression equation. Obviously

we have BSS
0< — < 1.
- TSS —
The following states the relationship between the ratio and the linear relation of Y and X.
ratio linear dependence relation between Y and X
1 completely linear dependence
close to 1 strongly linear dependence
close to 0 weakly linear dependence
0 completely no linear dependence

Definition 1.5.3 The correlation between X and Y is defined as
Z?:l XZY; — ny ?

r= ,

VL X2 =X v - Y

which is a statistic.

Theorem 1.5.4 There is the following relation among TSS, ESS, and the correlation r,
RSS ESS 9

1— = 1.13
TSS ~ TSS (1.13)
where the quantity r? is called R-squared.
Proof. We compute
n n
ESS = Y (Y, -Y) =) (Bo+AXi-Y)
i=1 i=1
= Y V-BX+5X;-Y)?? =B (X - X), (1.14)

i=1 i=1
where we see that ESS is a rank 1 quantity. Substituting the expression of //3\1 in (1.7) into above, we arrive
at the resulting relation. m

Using the above theorem, we have 0 <r <1,

the value of r linear dependence relation between Y and X

r=1 completely linear dependence
r is close to 1 strongly linear dependence
r is close to 0 weakly linear dependence
r=0 completely no linear dependence

Moreover, we can have the following hierarchy,

the value of r linear dependence relation between Y and X

r> 0.8 significantly linear dependence
0.5 <r<0.8 strongly linear dependence
0.3<r <05 weakly linear dependence

r<0.3 nearly no linear dependence

11



There are several direct testing methods for the validity of linear regressions. The first approach is
based on the locations of scattering points. If the points are scattered near one straight line, then the linear
regression equation is thought to be valid. The second approach is based on correlation coefficient r. When
r > 0.8, the linear regression equation is thought to be valid. In the following, we introduce a delicate
approach for testing the validity of the linear regression equation. The approach can also be generalized to
multivariate linear regression regime. For this testing approach, we need a stronger assumption for the linear

regression model.

Definition 1.5.5 For the linear regression model, Y; = Bo + f1X; + €, (i =1,...,n), if the noises {¢;} are

i.i.d. normally distributed with N(0,0?), then the model is called a normal linear regression model.

Let the hypothesis test be
Hy: By =0 versus Hy : B #0.

We take the statistic

ESS
F x RSS'

Based on the result in (1.13), we see that when ESS is large and RSS is small (corresponding to large r?),
there is a significantly linear dependence between Y and X, in which we should reject Hy. Thus, the rejection
region is F' > C for some constant C'.

We now derive the distribution of the statistic F'. Based on the definition of T'SS in (1.10), we see that

Based on equation (1.14), we see that El is normally distributed and ESS has rank of 1 for the quadratic
form. For the quadratic form of Yi,...,Y,,

n n

RSS = (Y, - V;)> =Y (Bo+ B X, — V)7,

i=1 i=1
its rank is of n — 2 since By and f3; are constraint to (1.4) and (1.5). Notice that

TSS ESS RSS
5 = 3 t—

g (o

Since the ranks of TSS, ESS, RSS satisfy n — 1 =1+ (n — 2), we arrive at the result that
ESS RSS

2
= o "X =),
and they are independent of each other based on the conclusion of Cochran’s Theorem. Hence, we construct

the statistic
ESS/1 ESS

TRSS/m-2) " YRsS T

when Hj is true. We take the significance level «, then the rejection region is

F F(l,n—2),
F>F,(1,n-2).

Moreover, the statistic ' can be computed by

ESS ESS r2
RSS (n_2)TSS—ESS - ("_2)1—r2'

F=(n-2)

12



In summary, the validity of a linear regression equation can be tested as follows:
(1) Propose the hypothesis test Hy : 81 = 0 versus Hy : 81 # 0.
(2) Compute the statistic F = (n — 2)%
)

(3) If F > F,(1,n — 2), then we reject the null Hy and the linear regression equation is valid. If F <

F,(1,n —2), then we accept the null Hy and the linear regression equation is invalid.

Example 1.5.6 In a regression problem for weight Y and height X, the number of samples is 10 and the
correlation coefficient is r = 0.91. We ask whether the linear dependence is significant between Y and X.
Solution. We compute

r2 0.912
1—72 (8) 1—-0.912

F = (?’L - 2) =379>5.32= F0.05(1,8).

Hence we reject the null hypothesis and believe that there is a significantly linear dependence between weight
and height.

A e

Theorem 1.5.7 (Cochran’s Theorem) A theorem, given by Cochran in 1934, concerning sum of chi-squared
variables. LetY represent an nx1 vector of independent standard normal random variables and let A1, ..., Ay
be non-zero symmetric matrices such that Zle Aj = 1. Write Q; = Y T A;Y. Cochran’s theorem, published
in 1934, state that, if any one of the following three conditionis true, then so are the other two.

(1) The ranks of A1, ..., Ax sum to n which is the rank of Y.

(2) Each of Q1,...,Qr has a chi-squared distribution of degrees of freedom of the ranks of As,..., Ag.

(8) Each of Q1, ..., Qy is independent of all the others.

1.6 Estimation for the Variance of Noises

The value of o2 reflects the well fitness of linear regression. In most cases, o2 is unknown so that we
need to estimate it. One general idea is to estimate o2 by 52 = % . €2. However, the values of ¢; are still

not observable. We can estimate them by € = Y; — BO - BlXi. Therefore,

1 1 « ~ o~ 1
2=-N"a&=2 _ 3 _ N2 L
0?=—> &= (¥i—fo—Fi1X;)®? = —RSS.

i=1 i=1

However, this estimator is biased and we need to correct it to obtain the unbiased estimator.

Theorem 1.6.1 For the linear regression model, Y; = Bo+ /1 X; +¢€;, (i =1,...,n), the noises {€;} are pair-
wise uncorrelated and all have the same expected value 0 and variance o2 (no assumption for the distribution

of the noises). Then 62 = ﬁRSS is an unbiased estimator of o2.

Proof. We compute that

E[(n —2)5?] E[RSS] = E[TSS — ESS]

n

_ B|Y oo BY x-X

i=1

13



where the formula for ESS follows from (1.14). For the first term, we have
E(Y;-Y)? = Var(Y;=Y)+ [E(Y; — ?)}

= Var (1—) % Z Vil + | 0+61Xi_60_ﬁly]2

Jj=1,j#1i
1\, (—-1c* 2
= <1’I’L) U+T+51(X17X)
1 -\ 2
= (1-=2)?+3%(X;-X)".
(- o osnm
For the second term, we use the following result,

Vg = ) 5 (R )

nS?XX _Xn 1
Then
2 2 282 o’ 2
Epy = Var(pi)+ (Epf1)" = —— + 5]
nsy x
_ 02 + ﬁQ
= ~ — 7.
Zi:l (Xi - X)

Therefore, we can compute the final results,

Eln-2)5") = Y B -Y) - (BB)Y (X -X

- i[(l_;%uaﬂxﬁ_x)ﬂ—(zﬁ <;_X)2+ﬂf>é(X—

= (n—1)o ZXX—U— ZXX

= (n-2)o%

Thus, E [RSS] = (n — 2)o? which means that 52 = —L-RSS is an unbiased estimator of o%. m

1.7 Prediction

Suppose we have estimated a regression model f(m) = Bo + le from data (X1,Y7), ..., (Xn,Ys). We
observe the value X = z, of the covariate for a new subject and we want to predict their outcome Y,. An

estimate of Y, is
Y, = Bo + Br.. (1.15)

14



Using the formula for the variance of the sum of two random variables,
Var(f/*) = Var(go + 3133*) = Var(go) + :EQVar(31) + 2$*COU(B\0, B\l)

= ( ZXQ 2 —Qx*Xn>

TLSXX

o? 1 9
— mn (ZX —|—mc —21‘*ZX>

i=1 i=1

LA )
ny i, (X — X)?

The estimated standard error 3(?*) is the square root of this variance, with 2 in place of ¢2. However,

the confidence interval for Y, is NOT of the usual form 37* + z, /23(}7*). The reason for this is explained in

Exercise 10 of Larry book. The correct form of the confidence interval is given in the following theorem.

Theorem 1.7.1 (Prediction Interval). Under the assumption for the normal distribution for the noises, we

have a 1 — « prediction interval for Yy,

Z;L:l(Xi - X*)2

Yok toya(n —2)a |1 4 == sl
ny i (Xi—X)?

- . 1 X, —X)?
no i (X - X)
where 5% = —L-RSS is unbiased and Y, = Bo + B1X, is given in (1.15). If there is no assumption for the

normal distribution of the noises, then an approximate 1 — a prediction interval for Y, is

Zz 1(X X)
nZz 1(X X)

i}* + ZQ/QZT\

when the number of data n is large enough.

Proof. We know based on the model assumption that

Y —Bo— X

~ N(0,1).
. (0,1)

However, Sy, 81, o are all unknown in the model so that they need to be replaced. For the denominator, we can
use the unbiased 62 = —5RSS, which is (asymptotically) x? distributed. For the numerator, ¥ — Bo — i X

is (asymptotically) normally distributed with mean
E(Y — By~ BiX)=EBo+ X +e—Po— 5 X)=0.

We can construct the following pivot quantity,

Y —Bo-B1 X
\/V(lT(Y*EO*BlX) N(0,

1_RSS X2(n—2) 2)
n—2 o2 n—2

where the only unknown is Y. Using the result

(- (5 1)
B1 B1 NSy x -X, 1
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we can compute

Var(Y —Bo—BiX) = Var(Bo—Bo+ X —BiX +e)
= o2+ Var(By — Bo) + X2Var(B, — B1) + 2XCov(Bo — Bo, B — 1)

1 n n
= |1+ —; — X2 +nX?-2X) X;
L ny i (X — X)? 1:21 z:zl

_ [ Z?:1(Xi—X)2
- ”nz:;l_l(Xi—X)z}

ZZ‘L:1 Xzz — ny2 + RYQ —mXX + nXZ]

= o° |1+

nyi (X — X)?
- 1 (X -x)?
= o2 _1+’I’L+W:| .

Thus the pivot quantity can be simplified,

L Y —Bo—Bi X
Y—Bo—B1X L i (X X)? ~ ~
VVar(Y—Bo-AiX) _ “\'Tasr o7 Y - By — /1 X
1_RSS a ~ ST (X X)2
— 2 o =l
n2o ”\/“r Y (X X)?

The prediction 1 — « confidence interval for Y, at X = X, is

Z?=1(Xi - X*)2
ny i (Xi = X)?

Y, £ tya(n—2)5,/1+

1.8 Multiple Regression

1.8.1 Parameter estimation

Now suppose that the covariate is a vector of length k. The data are of the form

(}/17X1)7 seey (Y;a X’L)a ceey (Yna Xn)a
where
Xi = (X1, .o, Xig).

Here, X; is the vector of k covariate values for the ith observation. The linear regression model is

k
Y, = Zﬁinj + €,
j=1
for i =1,...,n, where E(e;|X14, ..., Xii) = 0. Usually we want to include an intercept in the model which we

can do by setting X;; = 1 for i = 1,...,n. At this point it will be more convenient to express the model in

matrix notation. The outcomes will be denoted by

Y



and the covariates will be denoted by

X - X
X — SR e R"*k,
an Xnk

Each row is one observation; the columns correspond to the k covariates. Thus, X is a (n X k) matrix. Let

B1 €1
B = and € = :
Bk €n
Then we can write the true model as

Y =XB+e.

The form of the least squares estimate is given in the following theorem.

Theorem 1.8.1 Assuming that the (k x k) matriz XX is invertible,

B = X'X)'xTY, (1.16)
Var(BX) = o*(X'X)7!,
B ~ N(B,o*(XTX)™), (1.17)

where 3 s a linear unbiased estimator of 3.
The first result can be easily found by
B = argmin|[Y — X413

Then the solution can be derived by taking the derivative w.r.t. B. The second and third results can be

followed from the previous sections. The estimate regression function is f(x) = Z?zl Bjxj. An unbiased

7= () o - () Iy el - 5%

where e=Y — Xa is the vector of residuals. An approximate 1 — o confidence interval for §; is

estimate of o2 is

Bj =+ Za/Qa(B\j)v

where 5(f;) is the jth diagonal element of the matrix 52(X X)L,

We now prove that 52 is the unbiased estimate of o2.
Theorem 1.8.2 Assume that X is full rank with rank of k. E[6?] = E[S—ESC] = o2
Proof. We compute and denote
E,=Y-Y=Y-X3=(L, -XX'X)"'X")Y.

Then
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E(RSS) = E HE

Since the expected value is zeros,

2 ~ o~ ~ o~
= E(ETTTE"’T) = E(tr[E:rErr])
2

= E(&[E,E])) =tr(E[E,E])).

E(E,) = E[Y-X8]=E]Y -XX'X)"'X"Y]

= XB-XX'X)"'X'"X3 =0,

then the second order moment can be computed by

E [Errﬁ;rr] =

Therefore,

E (RSS)

Theorem 1.8.3 One has

Proof. We compute

Cov(E,, B)

Var(E,,) = Var((I, - X(X'X)"'XT)Y)

(I, - X(X"X)'XT) Var(Y) (I, - X(X X)"!XT)
(L, - X(X'X)"'X") (¢’I) (I, - X(XTX)"'XT)

o® (I, - X(XTX)7'XT).

= t(EE.E]]) =% (I, - X(X'X)'X")
= o’tr(I,) — tr(X(XTX)'XT)
= o (n—tr(X'X)'XTX) =0? (n—k).

CO’U(EM«,B) =0.

= Cov(Y — XB, E) = Cov(Y,B) — XCO@(B, B)
= Cov(Y,(X"X)'XTY) - XVar(B)

= Var(Y)[(X™X)7'XT]T - Xo?(XTX)™!

= 2XX'X)' - o2X(XTX)t =0.

In above derivations, we only assume the mean and variance of noises but have not assumed the distribution

of noises or Y. In the following, we further assume that e ~ N(0,02). =m

Theorem 1.8.4 Let Y ~N,(X83,021,). Then (1) B and RSS are independent. (2) RSS/o? ~ x*(n — q),

where q is the rank of the matriz X.

Proof. (1) Since EM and B are uncorrelated and they are both normally distributed, they are independent
with each other. Since RSS is a function of EM, then B and RSS are independent.

(2) We have the RSS,

RSS

[Y - X(X"X)"'XTY]' [Y - X(X'X)"'XTY]
Y [I-XX'X)'X']Y.

18



We would like to write RSS as the sum of squares of n — ¢ random variables with normal distributions. Let
G=XX"X)"'x",

which is a symmetric non-negative definite matrix having the same rank with X. Then there exists an

orthogonal matrix C such that

A\ 0
A
CGC' = ?
0
0 0
Since G? = G, thus
A2 0
)\2
CGC' =CcG*’c"=cGe'cae’ = a
0
0 . 0
Therefore,
Moo=\,
)\z = 17 1= 17 »d
I, O
CGC' = !
0 0
We take the transformation
Z=C(Y-Xp3).
Then Z is still normally distributed with
E(Z) = CE(Y-XB)=0,
Var(Z) = CVar(Y -XB)C" = Co’IC" = ¢1,,.
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This means that each component of Z is independent and normally distributed with N(0,0?). We compute

RSS = Y'[I-XX'X)"'X"]Y
— (Z'C+BTX ) [I-X(X'X)"'X"] (CTZ +Xp)
= (Z7CcH-XX'X)"'X"]+8'X' -87X") (CTZ+Xp)
= Z'C[I-XX"X)"'X"] (C"Z +Xp)
= Z'CI-XX'X)"'X"|C'2=2"CI-G|C'Z
- z2'cc'z-2"cGC'z2=2"72-7" ( I, 0 ) v
0 0
= Zato4a
Thus, RSS is the sum of squares of n — ¢ random variables (2441, - ,2,) with normal distributions. Thus,
%?N’%n—m

In the following, we always assume that among the k components, the first one corresponds to the

constant term and the others correspond to dimensions of variables. We let
k=p+1,
so that p is dimension of variables.

Theorem 1.8.5 Let ESS be defined in (1.11). Let X be full rank with rank of k = p+ 1. Then

Proof. Denote ,@ (Bo, Bl, e ,Bp). We first write BO in terms of all the other 31:,) = (Bl, e ,Bp) in order

to show that ? =Y,
B = argmin |[Y — X2 = arg min ||Y — 18 — X1.,81,]5-
B Bo,B1:p
Taking derivative w.r.t. 3y, we obtain
- o N\T
-2 (Y - 1ﬁ0 - Xl:pﬁl:p) 1

n n p
DY) BiXey = nbo.
i=1

k=1j=1
ﬁo Y — Z jy‘j'

|
[=)

Thus,

P 1
Y=
n

=)
[
3l

Z(Bo + B X+ + ByXip)
i=1

p
= Bo+PXa+ +BX, =Y =) BX;+HXa+ - +BX,
=1



Then we can compute ESS as,

n n

ESS = Y (V=Y =) (Vi-Y)P=) (ho+ BiXy—Bo—)> BX,)
j=1 j=1

i=1 i=1 i=1

i=1 | j=1 i=1 | j=1 k=1
P n p

= 3 3 BB | D (X — X )Xae — X )| =D BibBAk,
j=1k=1 i=1 §=1k=1

where we see that Ajj is the covariance matrix of X;.,, which is symmetric positive definite. Therefore,
ESS is the sum of squares of normal random variables 31, e ,Bp with rank of p. Since the rank of RSS is

n —p—1=n —k as proved before, and hence the sum of the rank of RSS and the rank of ESS is
n—-p—1+p=n-—1,

which is the same as the rank of
TSS 9
o

We can easily examine the following equality in (1.18). By Cochran’s Theorem, we conclude that % and

RSS
o2

are independent with each other, and moreover,

Theorem 1.8.6 Let TSS be defined in (1.10), ESS be defined in (1.11), and RSS be defined in (1.12). We
still have

TSS = ESS + RSS. (1.18)

Theorem 1.8.7 In summary, let TSS be defined in (1.10), ESS be defined in (1.11), and RSS be defined in
(1.12). Let X be full rank with rank of k =p+ 1. Then

RSS
—7 ~X=1), =5~ X0, -~ p =) =X (n— k),
Q: Here I leave one question to the reader. What are the distributions for ESS and RSS if
there is a linear dependence among the data X (that is, X is not full rank)?
For the 2 distribution, independence assumption is very important. We can numerically and analytically
check that 2x*(1) # x*(2), that is, poez () # pezez(x) for iid. & and & with standard normal distribution

N(0,1).
Example 1.8.8 Let us derive the centralizing and normalizing regression model. Sometimes we need to first
centralize and also normalize the data before constructing the regression model,
— p J—
Y;—Y:ﬂo—FZﬂj (XU—XJ) —|—€Z‘, z:l,,n
j=1
Then we follow the formula in (1.16) to estimate the regression coefficients which are similar to those as

introduced above.
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1.8.2 Hypothesis Test for Multiple Regression

We now focus on hypothesis testing and significance testing problem for the multiple regression. The
first problem is if there is a linear dependence relation between Y and Xi,...,X,. If there is no linear
relation between them, then all the 8; (j =1,...,p) should be zero. Then the null hypothesis is

Hy:p1=p=---=05,=0. (1.19)
Based on the above results, 32 ~ y?(p),
When (1.19) is true, we test the hypothesis based on the statistic

ESS/p
RSS/(n—p—1) ~Flpn—p=1).

% ~ x%(n —p — 1), we set our testing procedure as follows.

F =

Given the significance level «, we reject the null hypothesis (1.19) when F > Fi_,(p,n — p — 1) and then
there is a linear dependence relation between Y and X;,..., X,,.

The second problem is if each variate X is significant to Y under the condition that Y is linearly
dependent on X,...,X,,. If X, is not significantly important to Y, then §; should be zero. Then the null
hypothesis is set to be

HY) g, =0, forj=1,...,p. (1.20)

Based on the result in (1.17) that Bj ~ N(B;,cj;0%), where c;; is the (j+1)th diagonal component of (X X) 1
(constant 1 vector is included in the first column of X). In addition, Ej is independent of 52 = nﬁizsﬁl based

on Theorem 1.8.4. When the null hypothesis (1.20) is true, we can construct the statistic for testing,

Bi—B; ~ ~
Tj: Cjjo — 5] /?\] — ﬁj/\ Nt(n—p—l)
RSS 1 Cj;0 Cj;0
02 n—p—1

Given the significance level a, we reject the null hypothesis (1.20) when |T}| > t;_,/2(n —p — 1) and then
there is a significantly linear dependence relation between Y and X;. We can repeat the above procedure for

allj=1,...,p.

1.9 Bias-Variance Decomposition for Ordinary Least Squares

One can always play with kernel trick to generalize the simple linear regression to the
feature space regression. The techniques are all the same but the choices of the features are
sometimes tricky.

See references in
(1) Bias_ Var_Ridge.pdf,

(2) Benyamin Ghojogh - Elements of Dimensionality Reduction and Manifold Learning,
(3) Learning Theory from First Principles by Francis Bach, etc.

1.9.1 Risk decomposition for OLS

We now go back to Proposition 1.3 to do error analysis for Ordinary Least Squares (OLS) problem.
Recall that

E(f) = /X (F(2) — fu(2)dpx + 0%,
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In our current linear regression setup, we have the following generalization error,

o~

1 ~
£(7) - £ = | 11x5. - XBI3]. (1.21)
where &, = o2 is the minimum of £, the true model is assumed to be

Y*:f*(X)+€:BO*+/Bl*X1++ﬁp*Xp+€:X,6*+€,

~

and the estimator of f,(X) is given by a linear regression function f(X),
f(X) :BO"’B\le +"'+/§po :Xa
The following proposition shows that the minimum can be attained at 3., and that is equal to o2.

Proposition 1.9.1 (Risk decomposition for OLS - fizxed design). Under the linear model and fixed design

assumptions above, for any B € RPT, we have £, = 02 and

~

E(f) — & = E|B - B2,

where 3 1= %XTX 18 the input covariance matriz and ||,8||2§ = ,[)'Ti@. Ifﬁ is now a random variable (such

as an estimator of B, ), then

~

E(f) = & = ||E[B) - B.|I% + ElIB - EIB]]1%].

Bias Variance

Proof. We see from equation (1.21) that

EN)~€ = BL(XB-Xp.) (XB-Xp.)
= BB~ BT XTX(F - 8.) = BB - 5.)TS(B - )]

~

If S = %XTX is invertible, then this shows that 3. is the unique global minimizer of £(f), and that the
minimum value &, is equal to o2. This shows the first claim.

Now if 3 is random, we perform the usual bias/variance decomposition:

Ef)—& = ElB-E@)+EPB) - B}
— EIB-E@)%+2E (8- EB)S (EB) - 8.)| + EIEB) - B.12
= E[IB-EBIE]+EB) - B.13.
[
Remark 1.9.2 The quantity || - ||s is called the Mahalanobis distance norm (it is a “true” norm whenever s

is positive definite). It is the norm on the parameter space induced by the input data.
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1.9.2 Statistical Properties of the OLS estimator

We can now analyze the properties of the OLS estimator, which has a closed form ﬁ =(XTX)"'XTY,
with the model Y = X3, + e¢. The only randomness comes from ¢ and we thus need to compute expectation

of linear and quadratic forms in €. As stated before, the properties of OLS are repeated as follows.

Proposition 1.9.3 (Estimation properties of OLS). The OLS estimator B = (XTX)"!XTY has the follow-
g properties:

(1) it is unbiased, that is, E[,@] = B..

(2) its variance is Var(ﬁ) = E[(B—ﬁ*)(é—ﬁ*)—r] =}(XTX)"l = %22_1; S~ is often called the precision

matriz.
We can now put back the expression of the variance in the risk.

Proposition 1.9.4 (Risk of OLS). The excess risk of the OLS estimator is equal to

-~ o2k

Ef) - =

’
n

where we assume that X is full rank of k.

Proof. Note here that the expectation is over € only as we are in the fixed design setting. Using the risk

decomposition of Proposition 1.9.1 and the fact that E[B] = B., we have

E(f) - & = E[IB - E@B)|).

~—

Then we have

= (
- ule(s[p-26) [p-20) )]
- méE(@—E@)W—E@ﬂj}:“EWW@H

1.10 Different Model Setups

There are various relations among many machine learning tools like Ordinary Least Squares (OL-
S), Ridge Linear Regression, Principle Component Analysis (PCA), Independent Component Analysis (I-
CA), Partial Least Squares (PLS), L; regression (see robust regression.pdf), Quantile Regression (see ro-
bust_regression.pdf), etc. Every tool has its own advantage depending on how one uses them.

e Ordinary Least Squares (OLS) is used for regression problem when the covariate X is full rank.

e Ridge Linear Regression is used for regression when the covariate X is high dimensional and X is NOT
but close to full rank (there are linear dependences among dimensions of X). In my view, ridge regression is

good for the case that the number of feature is less than but close to the number of regression coefficients.
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PCA Y A

Figure 1.2: PCA vs. ICA.

e LASSO regression stands for Least Absolute Shrinkage and Selection Operator, which is used when
the number of feature is much less than the number of regression coefficients (the rank of X is much smaller
than the full rank).

e Principle Component Analysis (PCA) is used for dimension reduction and principle orthogonal com-
ponent detection.

e Independent Component Analysis (ICA) is used for separating different types of signals (see Fig. 1.2).

e The idea behind Principal Component Regression (PCR) is to first perform a principal component
analysis (PCA) on the design matrix X and then use only the first principal components to do the regression.

e Partial Least Squares (PLS) combines PCA and multiple regression to regress when X is far away from
full rank or very low rank. (see PLS simple explanation.pdf) The idea behind PLS is to decompose both
the design matrix X and response matrix Y (the general case of multiple responses is often considered) like
in principle component analysis.

Here I only know a little about these methodologies and I only study them a little bit by myself.

See references in my local computers file folders, 2018.04.22 DM _ICA _PCA, 2018.05.29 REU Program,
2018.06.04 Regression. huiguifenxi regression.

See references in my local computers, OLS OR_MLE PCA.pdf, linear regression model two noises
76-1-141.pdf, OLS _PCA.pdf, PLS_simple explanation.pdf, lasso high-dimensional regression.pdf,
12.Robust.pdf, PLS-pretty-Abdi.pdf, robust regression.pdf, Intro_to PCA and ICA.pdf,

Robustness Multivariate  Orthogonal.pdf, PCA ICA compare.pdf.

See website on What is LASSO Regression Definition, Examples and Techniques.html, Lasso regression —
Introduction to Regression Models.html, https://stat151a.berkeley.edu/spring-2024 /lectures/Lecture23.html
(local is [Good] Lasso or ‘L1’ regression.html), Visually differentiating PCA and Linear Regression _ Know
Thy Data.html.

See codes in regression.mw.

See more in my original hand-writing notes.

25



1.10.1 Both Variables Have Errors

Suppose both X and Y contain some random errors, ex and €y, which may come from measurement or

other resources. A suitable model is as follows,

X = §+6X7 EXNN<OaO-§(>7
Y

O[+B§+6Y7 GYNN(()?J)Q/)a

where ex and ey are independent random measurement errors. There are two analysis approaches concerning
this model: the functional and the structural. The basic difference between the two approaches is whether
to consider ¢ as a non-random variable or a random variable following normal distribution with mean g and

variance 72,
2
§~ N(,LL, T )7

and independent to both random errors. Since the latter approach is more general, in the discussion below,
we will follow the structural model where X and Y follow a bivariate normal distribution with mean and

covariance structure as follows:
X N L 2+ 0% B2
Y a+pu )\ B2 Britod )

Cov(X,Y)

where

(EXY) — (EX)(BY) = B(ag + B€?) — p(a+ fp)
= au+B(r*+u*) —ula+ pu) = Br°.

Given a random sample of observed X'’s and Y’s, we can obtain the MLE of the slope of the regression. Its

value, however, depends on the ratio of the two error variances

v =0v/0%,

to have

5= Syy —vSxx + v/ (Syy —vSxx)? + 4v5%,
2Sxy ’
where
1 & 1 « 1 &
Sxx = o Z(% —-7)%, Sxy = o Z(xz —T)(yi —¥), Syy = n Z(yl -7

=1 =1 i=1

We now derive the MLE of 5. The computation is extremely complicated so I used Maple for help.

X
7= ( ; ) ~ N(m,%),

m = K 3 Y= T2+U§( 67—2 .
o+ Bu prr BPr% + oy

The likelihood for one data is

Denote

where

1 1
p(X,Y‘Oé,B,M,T, 02 702 ) = —5; €Xp (_(Z — m)TZ_l(z — ’I’)’L>> .
BT onm 2
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Since (z;,y;) are i.i.d., the log likelihood for all the data is

n

e 1
lan(xi,yi) = —nln(27) — gln|§]| - Z i(zl —m) "2z —m),

i=1
where
—— 1(6%%% ~pr )

13 —B72 2 +0%

B = p*rlo% + 720 +o%ol.

We first assume 0% and o% are given and denote v = 02 /0% in order to find «, 3, u, 7 as functions of 0%

and o2 (or equivalently 03 and 7). We change the variables
Xo=p, M=a+Bu, A= +9m° +q0%, B=5,

to obtain that

Z| = 0% (6777 +97° +70%) = Aok,
51 1 Bt +oi  —pr? _ 1 B2 +~20%  —B(Aa —y0%)
22 —pr? %+ 0% A20% (6% +7) —B(A2 —v0%) Ao + B20% .

We write the log likelihood function in the new parameterization as

l()\07)\15)‘275|xi7yi70-§(70-§/) (122)
n n
= —nln(27) — 51na§( ~3 In Ay

n n

- l(ﬁQ)\z +920%) D (i — X0)? = 282 —v0%) D (@i — Xo)(yi — M)

+ (A +8%0%) D (v - Al)ﬂ / (2X20% (82 + 7)) -
=1

First we compute A\g and Aq,

3

ﬁ _ _; 2 2 2 e _ 2 S L _
Mo 2X20% (8% +7) (6 S UX) i=1 2o =)+ 200 = a0x) ;(yl W=
ﬂ — _; Qﬁ()\Q—’yo'Q)zn:(x‘—Ao /\2—|—,@2 ZH:Q /\1_9 =0.
8>\1 2)\20§((52 + ’Y) * i=1 ' i=1 '

Thus we can easily observe that

MN=T, M=7.

Substituting above back into (1.22) and replacing with Sxx, Sxy, Syy, we obtain the log likelihood,

l<)\2a/leiayiao-g(70-)2/7A07)\l)
= -—nln(27) — gan§< — gh’l)\g

- [nSXX (52>\2 + 720§() - 25()\2 — ’703()715’)(}/ + (/\2 + ﬁ20'§() ’rLSyy] / (2)\20'3((52 + ’V)) .
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Taking derivative w.r.t. Ag,

Ol n(Sxxy?+28xy By + Syy B2 = BPh —Xe) :
02 2X5(8% + ) 7
\ Sxx7? +2Sxy By + Syy S
? B+~ '
Taking derivative w.r.t. 3,
al
BT [Sxx B0k + SxyB*vok — SxvyPok — SyyByok
n
—SxxByA2 — SxxB*A2 + Sxy A2 + SyyBAe] X —5———5 =0

Aok (B2 +7)%
Substituting Ag, then we obtain

B (SxxBy+ SxvB? — Sxyy — SyvB) (—B%v0% — 0% + Sxx7? +2Sxv By + Syv5?) 0

(B2 +7)

Numerically, only the following solution makes sense,

Sxy B+ SxxBy— SyyB— Sxyy =0,
G- Syy —vSxx +/(Syy —vSxx)% + 4v5%,
- 25 .

(1.23)

One possibly further get estimators for «, B, u, 7(0%, 0% ) from Ao, A1, A2, 3. Finally one can get estimators
for 0%, 0% or 0%, from the likelihood.

Inference (hypothesis test, confidence interval) on the slope parameter can be carried out similarly using
the maximum likelihood approach. We consider this the general and correct approach when both variables
are random. Since it is a parametric model, the readers are reminded that normality transformation should

be performed prior to the regression analysis if a variable is found not normal.

1.10.2 Ordinary Least Squares (OLS) Regression

M

Figure 1.3: The OLS regression (a) and (b) and the OR (c).

v

As illustrated in Figure 1.3(a), the ordinary least square (OLS) estimate of Y on X will minimize the
squared vertical distance Y . | (y; — a — 5%)2 from the points to the regression line. The OLS estimate of
the slope is B = Sxvy/Sxx. This is the case when v = oo in the general structural modelling approach
(equation (1.23)). Similarly, the OLS estimate of X on Y would minimize the horizontal distance to the
regression line Y (z; —a — By;)? (see Fig. 1.3(b)). The OLS estimate of the slope is B = Sxy/Syy
which corresponds the inverse of the result (1.23) when v = 0. The latter is also called the reverse regression.

Notice that the OLS is suitable when only one of the two variables is random.
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1.10.3 Orthogonal Regression (OR)

Instead of minimizing the vertical (or horizontal) distance as in the OLS, the orthogonal regression
(OR) takes the middle ground by minimizing the orthogonal distance from the observed data points to the

regression line as illustrated in Figure 1.3(c). The resulting OR estimate of 3 is:

Syy — Sxx +/(Syy — Sxx)? +45%

b= 2Sxy

This is the same as the MLE in the general structural modelling approach when v = 1. It means that the

orthogonal regression is suitable when the error variances are equal. Let us now minimize the orthogonal

distance to the fitted line, y — a — Bz = 0,

2
. ol a—Br] | = (g — o — Bry)?
min (@ ) -—Z<¢m> =2 " mEr

i=1 =1

Taking derivative w.r.t. «, 9l/0a = 0, we obtain that

Taking derivative w.r.t. 3,

ol "
5=

i=1

20+ Br; —y)z: (yi —a — Pug)? _
1 (B2 +1)° 26] -0

We simplify above,
(82 +1) (52%2 +ad - Zivzyz)
(D ur+B2Y at+na® =20y~ 28wy +208) ai) = 0.
Using Maple to substitute in a =3 — 8%, and also denoting Dxx = >. 2%, Dxy = Y. x:%i, Dyy = > 2,

(Dxy —n7y) B>+ (Dxx — Dyy — nZ> +ny*)B+n7y — Dxy = O,
SxyB%+ (Sxx — Syy)B—Sxy = 0.

We finally obtain

Syy — Sxx +1/(Syy — Sxx)? + 45%,
25xy '

B=

1.10.4 The Connection Between OR and PCA

There is a close relationship between the Principle Component Analysis (PCA) and the Orthogonal
Regression. For the sample covariance matrix of the random variables (X,Y), [Sxx,Sxvy;Sxy,Syy], its

highest eigenvalue (or equivalently the SVD of the centralized data) is

(SXXfX)(SYY*X)*ngY = 0,
A2 (Sxx + Syy):\\-F SxxSyy —Sky = 0.

3= Sxx + Syy +/(Sxx + Syy)? — 4(SxxSyy — S%y)
5 .
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And the eigenvector (first principal component) corresponding to this eigenvalue is

(S Syy — Sxx +/(Syy — Sxx)? + 4S§(Y>
XY, 5 )

Therefore, the slope of the first principal component is

Syy — Sxx +/(Syy — Sxx)? +45%y
2Sxy ’

which is the same as the slope estimator from the orthogonal regression.

B=

Intuitively, the first principal component is the line passing through the greatest dimension of the con-
centration ellipse, which coincides with the orthogonal regression line. Therefore, existing statistical inference

techniques for the PCA can be applied directly to the inference of the slope parameter from the OR approach

1.11 Introduction to Comparison between Ridge Regression and

Lasso Regression

OLS is not robust to outliers. It can produce misleading results if unusual cases go undetected
— even a single case can have a significant impact on the fit of the regression surface. We first define the
canonical regularizers: (y,/;,¢s. In regression, arguably the three canonical choices for regularizers are

the lg, {1, 5 norms:

k

& & 1/2
18llo = > _1{8; # 0}, 118l = D181, 18], = (Z B?) :
i=1 i=1

j=1
Critically, |||, is not convex, while ||-||, and |||, are convex. This makes best subset selection
a nonconvex problem, and one that is generally very hard to solve in practice except for very

small k£ (dimension of parameters). On the other hand, the lasso and ridge regression problems

are convex, and many efficient algorithms exist for them.

1.11.1 Ridge Regression

Experimental and theoretical studies show that PLS (see PLS _simple explanation.pdf), Principal Com-
ponent Regression (PCR) (see PLS simple explanation.pdf), and ridge regression tend to behave similarly.
Ridge regression maybe preferred for its relative interpretational and computational simplicity for low di-
mensional paramaters.

Ridge regression is a popular form of regularised linear regression, in which we change the objective

function from the standard least squares formulation to the following,
1 2 2
mﬁln n 1Y = X85+ A8z
for a given value of A\. The solution can be shown to be
/aridge = (XTX + n)\I) ! XTY

The “right” value of A for a given problem is usually obtained through cross validation. One problem with

this might be that the solution Bridge is still “dense”, meaning that, in general, every entry of it is nonzero, and
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we still have to invert a dense k X k matrix. In my opinion, ridge regression is good for a degenerate
but close to a full rank XX matrix whereas it is not good for a very low rank XX matrix
when the dimension of parameters k is large.

For example, consider our highly correlated regressor example. The ridge regression will still include
both regressors, and their coefficient estimates will still be highly negatively correlated, but both will be
shrunk towards zero. Maybe it would make more sense to select only one variable to include. Let us try to
think of how we can change the penalty term to achieve this.

A “sparse” solution is an estimator ,@ in which many of the entries are zero — that is, an estimated
regression line that does not use many of the available regressors. In a word — ridge regression estimates
are not sparse. Let’s try to derive one that is by changing the penalty. A very intuitive way to produce a

sparse estimate is as follows:

1 1 a
mjn (1Y = XI5+ A8l ) = | 1Y = XI5+ A3 145, 20} |
j=1

however, this is practically difficult since the problem is nonconvex. This finds a tradeoff between
the best fit to the data, but with a penalty for using more regressors. This makes sense, but is very difficult
to compute. In particular, this objective is very non-convex. Bayesian statisticians do attempt to estimate
models with a similar kind of penalty (they are called “spike and slab” models), but they are extremeley

computationally intensive and beyond the scope of this course.

1.11.2 Lasso Regression

A convex approximation to the preceding loss is the L' or Lasso loss, leading to Lasso or L' regression.

The popular form of regularised linear regression is lasso, which solves the following problem:
in = Y — ||2 A8l
min Y — X35+ |8
B n 2 L

where ||B]|; = >_, |8 . This loss is convex (beacuse it is the sum of two convex functions), and so is much
easier to minimize. Furthermore, as A\ grows, it does produce sparser and sparser solutions — though
it may not be obvious at first.
What is Lasso Regression?

LASSO regression, also known as L' regularization, is a popular technique used in statistical modeling
and machine learning to estimate the relationships between variables and make predictions. LASSO stands
for Least Absolute Shrinkage and Selection Operator. The primary goal of LASSO regression is to find a
balance between model simplicity and accuracy. It achieves this by adding a penalty term to the traditional
linear regression model, which encourages sparse solutions where some coefficients are forced to be exactly
zero. This feature makes LASSO particularly useful for feature selection, as it can automatically identify
and discard irrelevant or redundant variables.

Lasso regression is a regularization technique. It is used over regression methods for a more accurate
prediction. This model uses shrinkage. Shrinkage is where data values are shrunk towards a central point
as the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters).
This particular type of regression is well-suited for models showing high levels of multicollinearity or when

you want to automate certain parts of model selection, like variable selection/parameter elimination. Lasso
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Regression uses L' regularization technique (will be discussed later in this article). It is used when we have
more features because it automatically performs feature selection.
L' Regularization

Regularization is an important concept that is used to avoid overfitting of the data, especially when the
trained and test data are much varying. Regularization is implemented by adding a “penalty” term to the
best fit derived from the trained data, to achieve a lesser variance with the tested data and also restricts the
influence of predictor variables over the output variable by compressing their coefficients. In regularization,
what we do is normally we keep the same number of features but reduce the magnitude of the coefficients.
We can reduce the magnitude of the coefficients by using different types of regression techniques which uses
regularization to overcome this problem. So, let us discuss them.

LASSO regression introduces an additional penalty term based on the absolute values of the coefficients.

The L! regularization term is the sum of the absolute values of the coefficients multiplied by a tuning

L' = )\ZWH

where ) is the regularization parameter that controls the amount of regularization applied and 5; (i = 1, ..., k)

parameter \:

are the regression coefficients.
Shrinking Coefficients

By adding the L' regularization term, LASSO regression can shrink the coefficients towards zero. When
A is sufficiently large, some coefficients are driven to exactly zero. This property of LASSO makes it useful
for feature selection, as the variables with zero coefficients are effectively removed from the model.

Tuning parameter \

The choice of the regularization parameter X is crucial in LASSO regression. A larger A\ value increases
the amount of regularization, leading to more coeflicients being pushed towards zero. Conversely, a smaller
A value reduces the regularization effect, allowing more variables to have non-zero coeflicients.

e )\ denotes the amount of shrinkage.

e )\ = 0 implies all features are considered and it is equivalent to the linear regression where only the
residual sum of squares is considered to build a predictive model

e )\ = oo implies no feature is considered i.e, as A closes to infinity it eliminates more and more features

e The bias increases with increase in A

e The variance increases with decrease in A
Model Fitting

To estimate the coefficients in LASSO regression, an optimization algorithm is used to minimize the
objective function. Coordinate Descent is commonly employed, which iteratively updates each coefficient
while holding the others fixed.

By striking a balance between simplicity and accuracy, LASSO can provide interpretable models while
effectively managing the risk of overfitting. It’s worth noting that LASSO is just one type of regularization
technique, and there are other variants such as Ridge regression (L? regularization) and Elastic Net.

Lasso Meaning
LASSO regression offers a powerful framework for both prediction and feature selection, especially when

dealing with high-dimensional datasets where the number of features is large. The word “LASSO” stands for
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Least Absolute Shrinkage and Selection Operator. It is a statistical formula for the regularisation of
data models and feature selection.
Standardization

Lasso performs best when all numerical features are centered around 0 and have variance in the same
order. If a feature has a variance that is orders of magnitude larger than others, it might dominate the
objective function and make the estimator unable to learn from other features correctly as expected.

This means it is important to standardize our features. We do this by subtracting the mean from our
observations and then dividing the standard deviation. This so called standard score Z for an observation X
is calculated as: _

X -X

Z ;
S

where X = (X1,..., X,,) is an observation in one feature, X is the mean of that feature, and s is the standard
deviation of that feature.
The Lasso Produces Sparse Solutions (Intuition)

One way to see that the Lasso produces sparse solutions is to start with a very large A and see what
happens as it is slowly decreased.

Start at A very large, so that Blasso()\) = 0. If we take small step of size € in a particular direction away

from zero in entry j3;, then Al B8 l1 increases by €A, and the RSS changes by the gradient of the squared error,

n n n
EZ(yi - B(/\)xi.)xij = Ezaxij = EZyimij, (because B(A) = 0).
i=1 i=1 i=1

Aslong as | Y., yiwij] < A for all j € {1,...,k}, we cannot improve the loss by moving away from 0. Since
the loss is convex, that means 0 is the minimum.

Eventually, we decrease A until " | y;z;; = A for some j (greedy variable selection). At that point,
B; moves away from zero as A decreases, and the &; also change. However, until Z?:l €ixig = A for some
other g # j, only 3; will be nonzero. As A decreases more and more, variables tend to get added to the
model, until A\ = 0, when of course ,@1%50(0) = ,@OLS, the OLS solution.
Conclusion

LASSO regression emerges as a crucial technique for statistical modeling and machine learning, striking
a balance between model simplicity and accuracy.

With its ability to promote sparsity through feature selection, LASSO regression aids in identifying
relevant variables and managing overfitting, particularly in high-dimensional datasets.

See more details about Lasso regression in Learning from First Principles by Bach.

1.11.3 Comparison in Short

In short, Ridge is a shrinkage model, and Lasso is a feature selection model. Ridge tries to balance the
bias-variance trade-off by shrinking the coefficients, but it does not select any feature and keeps all of them.
Lasso tries to balance the bias-variance trade-off by shrinking some coefficients to zero. In this way, Lasso
can be seen as an optimizer for feature selection. See Table 1.1 for more comparisons. Also see Fig.

1.4 for illustration.
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Table 1.1: Comparison between Ridge Regression and LASSO Regression.

Ridge Regression LASSO Regression

Penalty Term The penalty term is the sum of the The penalty term is the sum of the
squares of the coefficients (L> absolute values of the coefficients
regularization). (L' regularization).

Shrinkage Shrinks the coefficients but does not | Can shrink some coefficients to zero,
set any coefficient to zero. effectively performing feature

selection.

Overfitting Helps to reduce overfitting by Helps to reduce overfitting by

shrinking large coefficients. shrinking and selecting features with

less importance.

Number of Works well when there are a large Works well when there are a small

Features number of features. number of features.

Thresholding Performs “soft thresholding” of Performs “hard thresholding” of
coefficients. coefficients.

Convexity Always strictly convex. We are Not strictly convex when k& > n. We
guaranteed a unique ridge solution. are not necessarily to have a unique

Lasso solution.

Figure 1.4: The “classical” illustration comparing lasso and ridge constraints. See Chap. 3.4 of Hastie et al.
(2009).
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1.12 Bias-Variance Tradeoff in Ridge Linear Regression

1.12.1 Least-squares in high dimensions.

When k/n approaches 1, we are essentially memorizing the observations y; (that is, for example when
k =n and X is a square invertible matrix, 8 = X 1Y leads to Y = X3, that is, ordinary least-squares will
lead to a perfect fit, which is typically not good for generalization to unseen data). Also when k > n, then
X TX is not invertible and the normal equations admit a linear subspace of solutions. These behaviors of
OLS in high dimension (k large) are often undesirable.

Several solutions exist to fix these issues. The most common is to regularize the least squares objective,
either by adding an ¢;-penalty ||3|1 to the empirical risk (leading to “Lasso” regression, see Chapter 8 of
First Principles by Bach) or ||3||3 (leading to ridge regression, as done in the following and also Chapter 7
of First Principles by Bach).

Definition 1.12.1 (Ridge least-squares regression). For a regularization parameter X > 0, we define the

ridge least-squares estimator ,é\m-dge as the minimizer of
min — [[Y - XBJ3+ A[|]2.
5 n 2 2
The ridge regression solution can be obtained in closed form,
~ —1
Bridge = (XTX +nAI)  XTY.

As for the OLS estimator, we can analyze the statistical properties of this estimator under the linear
model and fixed design assumptions. See Chapter 7 of First Principles by Bach for an analysis for random

design and potentially infinite-dimensional features.

Proposition 1.12.2 Recall that S = %XTX € REXE. Under the linear model assumption (and for the fized

design setting), the ridge least-squares estimator ,é'\”-dge has the following excess risk

o~ o~ o~ 2 o~ o~
ElE(Brigge)] — & = N2BT (5 + A1) 258, + %tr 28+ /\I)‘Q} :

Proof. We use the risk decomposition of Proposition 1.9.1 into a bias term B and a variance term V. Since

we have

1

E[Bridge] = E@ +ADT'XTXB, = (S +A)7IE6, = 8, — AE + A8,

it follows,
_ 2 2 _ 22T /¥ —2%
B = HE[/@ridge] - /B*Hi =A /6* (Z + )\I> 218*

Bias
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2

For the variance term, using the fact that Elee'] = 02, we have

o o 1 R _ 2
V. = F H/Bridge _E[ﬁridge]||%:| =F Hn(z—i_)‘l) 1XT€ A‘|
- >
Variance
[ 1 T~ (9 1
= Bl (e X(E 4+ D) IS(E + A" }
- E %tr (xTeeTX(i FAD)TIS(E 4+ M) } ( XTX((E+AD)IS(E + /\I)l)
n
2
_ 9 (S IR %
- ntr(E(ZJr)\I) S5 4 AL~ )*n S(E 4+ AD)HE + A1) )

2 ~ ~ ~ ~ A~ A~
= T [22(2 + AI)*Q} (B +AD)7IS = SE + D)D),
n
The proposition follows by summing the bias and variance terms. m

We can make the following observations:

Remark 1.12.3

e The result above is also a bias / variance decomposition with the bias term equal to B = \23] (§]+)\I)72§3,6*,
and the variance term equal to V = %Ztr $2(8 + /\I)*ﬂ .

o The bias term is increasing in X and equal to zero for A =0 szl is invertible, while when A goes to infinity,
the bias goes to ﬁjiﬁ*. It is independent of n and plays the role of the approximation error in the risk
decomposition.

e The variance term is decreasing in \, and equal to o*k/n for A = 0 and 5 invertible, and converging to zero
when X\ goes to infinity. It depends on n and plays the role of the estimation error in the risk decomposition.
e The quantity tr[i2 (i—&—)\I)_ | is often called the “degrees offreedom and is often considered as an implicit
number of parameters. It can be expressed as where Z] 1 m, where (\j)jeq1,....qy are the eigenvalues of
. This quantity will be very important in the analysis of kernel methods in Chapter 7 of First Principles by
Bach.

e Observe how this converges to the OLS estimator (when it is defined) as A — 0.

e In most cases, A = 0 is not the optimal choice, that is biased estimation (with controlled bias) is preferable

to unbiased estimation.

Experiments
With the same polynomial regression set-up as in Bach book, with & = 11 (degree 10), we can plot the
various quantities above as a function of \. We can see the monotonicity of bias and variance with respect

to A as well as the presence of an optimal choice of A. See Figure 1.5.

1.12.2 Choice of )\

Based on the expression for the risk, we can tune the regularization parameter A to obtain a potentially
better bound than with the OLS (which corresponds to A = 0 and the excess risk o%k/n).

Proposition 1.12.4 (Choice of Regularization Parameter) With the choice \* = = tri2]

BT v e have

o/ tr[Z][18x Iz

E[g(ﬁridge)] - 5* S \/ﬁ
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Figure 1.5: Bias-variance trade-offs for ridge regression.

Proof. We have, using the fact that the eigenvalues of (3 + AI)~2AZ are less than 1/2 (which is a simple
consequence of (1 + X)"2uA < 1/2 & (u+ A)2 > 2u) for all eigenvalues u of 32):

B=X8](E+ )28, = \8] (E+ \I) 2288, < %nﬁ*ng.
Similarly, we have

2 2
o S92, 9 o PPN 9
e + <

v o2tr[S)] '
2\n
Plugging in A\* (which was chosen to minimize the upper bound on B + V) gives the result. m

We can make the following observations:

Remark 1.12.5

e Observe that if we write R = max;c1,.. ny [|Xilly, then we have

n n
alf] =3 8= SNl = S KE < B
§>1 i=1j>1 i=1

Thus in the excess risk bound, the dimension k plays no role and it could even be infinite (given that R and
|B«ll2 remain finite). This type of bounds are called dimension-free bounds. Notice that the number of
parameters is not the only way to measure the generalization capabilities of a learning method

e Comparing this bound with that of the OLS estimator, we see that it converges slower to 0 as a function of
n (from n=' to n=/?) but it has a milder dependence on the noise (from o to o). The presence of a “fast”
rate in O(n~") with a potentially large constant, and of “slow” rate O(n="/?) with a smaller constant will
appear several times. Notice that depending on n and the constants, the “fast” rate result is not always the
best.

o The value of \* involves quantities which we typically do not know in practice (such as o and ||Bs||2). This is
still useful to highlight the existence of some A with good predictions (which can be found by cross-validation).
e Note here that the choice of \* = oy/tx{5] is optimizing the upper-bound %|B.[3 + 0 ond is thus

= Bsllzvn PRV
typically not optimal for the true expected risk.

Choosing )\ in practice. The regularization A is an example of a hyper-parameter. This term refers

broadly to any quantity that influences the behavior of a machine learning algorithm and that is left to choose
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by the practitioner. While theory often offers guidelines and qualitative understanding on how to best choose
the hyper-parameters, their precise numerical value depends on quantities which are often difficult to know

or even guess. In practice, we typically resort to validation and cross-validation.

1.13 Subset Selection

Due to the time constraint, I have not enough time to well-organize the following section. In this section,
I just copy-paste the content from the book “an introduction to statistical learning” by James, Witten, Hastie,
Tibshirani, and the book “the elements of statistical learning” by Hastie, Tibshirani, Friedman. In the future,

these contents need to be understood and typed in using latex.
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1.14 Logistic Regression

Due to the time constraint, I have not enough time to well-organize the following section. In this section,
I just copy-paste the content from the book “All of Statistics - A Concise Course in Statistical Inference” by
Larry Wasserman, and the website “Logistic Regression” by Zhihu. In the future, these contents need to be
understood and typed in using latex.

Notice that logistic regression is intrinsically regression during the computation procedure while its goal

is for classification. On the other hand, support vector machine is completely for classification.
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6.1 Subset Selection

In this section we consider some methods for selecting subsets of predictors.
These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection

Algorithm 6.1 Best subset selection

1. Let My denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2, Fork=1.2,...p:

(a) Fit all (}) models that contain exactly k predictors.

(b) Pick the best among these (}) models, and call it M. Here best
is defined as having the smallest RSS, or equivalently largest R?.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C,, (AIC), BIC, or adjusted R

10
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FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R* are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R*. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.

Figure 1.6:
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# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income rating, income,
student, limit student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but

the fourth models differ.

6.1.3 Choosing the Optimal Model

Best subset selection, forward selection, and backward selection result in
the creation of a set of models, each of which contains a subset of the p pre-
dictors. In order to implement these methods, we need a way to determine
which of these models is best. As we discussed in Section 6.1.1. the model
containing all of the predictors will always have the smallest RSS and the
largest R?, since these quantities are related to the training error. Instead,
we wish to choose a model with a low test error. As is evident here, and as
we show in Chapter 2, the training error can be a poor estimate of the test
error. Therefore, RSS and R? are not suitable for selecting the best model
among a collection of models with different numbers of predictors.

In order to select the best model with respect to test error, we need to
estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting.

2. We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

Figure 1.7:
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Cp, AIC, BIC, and Adjusted R?

We show in Chapter 2 that the training set MSE is generally an under-
estimate of the test MSE. (Recall that MSE = RSS/n.) This is because
when we fit a model to the training data using least squares, we specifi-
cally estimate the regression coefficients such that the training RSS (but
not the test RSS) is as small as possible. In particular, the training error
will decrease as more variables are included in the model, but the test error
may not. Therefore, training set RSS and training set R? cannot be used
to select from among a set of models with different numbers of variables.
However, a number of techniques for adjusting the training error for the
model size are available. These approaches can be used to select among a set

of models with different numbers of variables. We now consider four such
approaches: C},, Akaike information criterion (AIC), Bayesian information
criterion (BIC), and adjusted R?. Figure 6.2 displays C,, BIC, and adjusted
R? for the best model of each size produced by best subset selection on the

Credit data set.
For a fitted least squares model containing d predictors, the C), estimate

of test MSE is computed using the equation

1 .
Cp = — (RSS +2d°), (6.2)
é‘ \ é_ | §- e e
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FIGURE 6.2. C,, BIC, and adjusted R* are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

Figure 1.8:
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where 2 is an estimate of the variance of the error € associated with each

response measurement in (6.1).% Essentially, the C,, statistic adds a penalty
of 2dé? to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error. Clearly, the penalty increases as
the number of predictors in the model increases; this is intended to adjust
for the corresponding decrease in training RSS. Though it is beyond the
scope of this book, one can show that if 42 is an unbiased estimate of o2 in
(6.2), then C), is an unbiased estimate of test MSE. As a consequence, the
C), statistic tends to take on a small value for models with a low test error,
so when determining which of a set of models is best, we choose the model
with the lowest €, value. In Figure 6.2, C}, selects the six-variable model
containing the predictors income, limit, rating, cards, age and student.

The AIC criterion is defined for a large class of models fit by maximum
likelihood. In the case of the model (6.1) with Gaussian errors, maximum
likelihood and least squares are the same thing. In this case AIC is given by

1 .
AIC = — (RSS + 2d6?) ,

where, for simplicity, we have omitted an additive constant. Hence for least
squares models, C}, and AIC are proportional to each other, and so only
C), is displayed in Figure 6.2.

BIC is derived from a Bayesian point of view, but ends up looking similar
to C), (and AIC) as well. For the least squares model with d predictors, the
BIC is, up to irrelevant constants, given by

BIC = — (RSS + log(n)ds?) . (6.3)

T

Like €, the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the lowest
BIC value. Notice that BIC replaces the 2da? used by C, with a log(n)da?
term, where n is the number of observations. Since logn > 2 for any n > 7,
the BIC statistic generally places a heavier penalty on models with many
variables, and hence results in the selection of smaller models than C).
In Figure 6.2, we see that this is indeed the case for the Credit data set:
BIC chooses a model that contains only the four predictors income, limit,
cards, and student. In this case the curves are very flat and so there does
not appear to be much difference in accuracy between the four-variable and
six-variable models.

Figure 1.9:
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The adjusted R? statistic is another popular approach for selecting among
a set of models that contain different numbers of variables. Recall from
Chapter 3 that the usual R? is defined as 1 — RSS/TSS, where TSS =
S (yi — 7)? is the total sum of squares for the response. Since RSS always
decreases as more variables are added to the model, the R? always increases
as more variables are added. For a least squares model with d variables,
the adjusted R? statistic is calculated as

_RSS/(n—d-1)

C 2 _
Adjusted R =1 TSS/(n = 1)

(6.4)

Unlike C),, AIC, and BIC, for which a small value indicates a model with
a low test error, a large value of adjusted R? indicates a model with a
small test error. Maximizing the adjusted R? is equivalent to minimizing

RSS_ yWhile RSS always decreases as the number of variables in the model

n—d—1"°
RSS
d—1

increases, ——
denominator.

The intuition behind the adjusted R? is that once all of the correct
variables have been included in the model, adding additional neise variables

may increase or decrease, due to the presence of d in the

will lead to only a very small decrease in RSS. Since adding noise variables
leads to an increase in d, such variables will lead to an increase in HRT§§1~
and consequently a decrease in the adjusted R?. Therefore, in theory, the
model with the largest adjusted R? will have only correct variables and
no noise variables. Unlike the R? statistic, the adjusted R? statistic pays
a price for the inclusion of unnecessary variables in the model. Figure 6.2
displays the adjusted R? for the Credit data set. Using this statistic results
in the selection of a model that contains seven variables, adding gender to

the model selected by C), and AIC.

C,, AIC, and BIC all have rigorous theoretical justifications that are
beyond the scope of this book. These justifications rely on asymptotic ar-
guments (scenarios where the sample size n is very large). Despite its pop-
ularity, and even though it is quite intuitive, the adjusted R? is not as well
motivated in statistical theory as AIC, BIC, and C),. All of these measures
are simple to use and compute. Here we have presented the formulas for
AIC, BIC, and C, in the case of a linear model fit using least squares;
however, these quantities can also be defined for more general types of
models.

Figure 1.10:
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Validation and Cross-Validation

As an alternative to the approaches just discussed, we can directly esti-
mate the test error using the validation set and cross-validation methods
discussed in Chapter 5. We can compute the validation set error or the
cross-validation error for each model under consideration, and then select
the model for which the resulting estimated test error is smallest. This pro-
cedure has an advantage relative to AIC, BIC, C,,, and adjusted R?, in that
it provides a direct estimate of the test error, and makes fewer assumptions
about the true underlying model. It can also be used in a wider range of
model selection tasks, even in cases where it is hard to pinpoint the model
degrees of freedom (e.g. the number of predictors in the model) or hard to
estimate the error variance o2.

In the past, performing cross-validation was computationally prohibitive
for many problems with large p and/or large n, and so AIC, BIC, C,,
and adjusted R? were more attractive approaches for choosing among a
set of models. However, nowadays with fast computers, the computations
required to perform cross-validation are hardly ever an issue. Thus, cross-
validation is a very attractive approach for selecting from among a number
of models under consideration.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and
cross-validation errors on the Credit data, for the best d-variable model.
The validation errors were calculated by randomly selecting three-quarters
of the observations as the training set, and the remainder as the valida-
tion set. The cross-validation errors were computed using £ = 10 folds.
In this case, the validation and cross-validation methods both result in a

six-variable model. However, all three approaches suggest that the four-,
five-, and six-variable models are roughly equivalent in terms of their test
eITOoTS.

Figure 1.11:
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In fact, the estimated test error curves displayed in the center and right-
hand panels of Figure 6.3 are quite flat. While a three-variable model clearly
has lower estimated test error than a two-variable model, the estimated test
errors of the 3- to 11-variable models are quite similar. Furthermore, if we
repeated the validation set approach using a different split of the data into
a training set and a validation set, or if we repeated cross-validation using
a different set of cross-validation folds, then the precise model with the
lowest estimated test error would surely change. In this setting, we can
select a model using the one-standard-error rule. We first calculate the
standard error of the estimated test MSE for each model size, and then
select the smallest model for which the estimated test error is within one

standard error of the lowest point on the curve. The rationale here is that
if a set of models appear to be more or less equally good, then we might
as well choose the simplest model—that is, the model with the smallest
number of predictors. In this case, applying the one-standard-error rule
to the validation set or cross-validation approach leads to selection of the
three-variable model.
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FIGURE 6.3. For the Credit data sel, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square

root of BIC. Center: Validation set errors. Right: Cross-validation errors.
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FIGURE 13.3. The logistic function p = e /(1 + €%).
13.7 Logistic Regression

So far we have assumed that Y; is real valued. Logistic regression is a para-

metric method for regression when Y; € {0, 1} is binary. For a k-dimensional
covariate X, the model is

(;;30—{-25‘:1 ,ﬂjrij

pi=pi(B)=PY;, =1X =2) = S (13.32)
or, equivalently,
k
logit(pl-) = ﬂ() + Z [33'.’1‘,']' (1333)
j=1
where
logit (p) = log (1 fp) : (13.34)
Figure 1.13:
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The name “logistic regression” comes from the fact that e*/(1+ e”) is called
the logistic function. A plot of the logistic for a one-dimensional covariate is
shown in Figure 13.3.

Because the Y;’s are binary, the data are Bernoulli:

Y;|X; = x; ~ Bernoulli(p;).

Hence the (conditional) likelihood function is

L(B) = Hpi(ﬁ)"ﬂ(l —pi(B)' (13.35)

The MLE E has to be obtained by maximizing £(3) numerically. There is
a fast numerical algorithm called reweighted least squares. The steps are as

follows:

Reweighted Least Squares Algorithm
Choose starting values 3° = (39, ..., 3}) and compute p{ using equation
(13.32), for i = 1,...,n. Set s = 0 and iterate the following steps until
convergence.
1. Set

Z; = logit(p;) + Yi —pr i=1 n

i H pf(l—pf)’ N B

2. Let W be a diagonal matrix with (7,7) element equal to p{(1 — p;).

3. Set
3 = (xXTwx) ' xTwy.

This corresponds to doing a (weighted) linear regression of Z on Y.

4. Set s = s+ 1 and go back to the first step.

Figure 1.14:
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