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Chapter 1

Confidence Interval and Hypothesis
Test

1.1 Introduction to Statistical Inference and Learning

A typical statistical inference question is:
Given a sample X1,...,X,, ~ F, how do we infer F'? In some cases, we may want to infer only some feature

of F such as its mean.

1.1.1 Parametric and Nonparametric models

A statistical model § is a set of distributions (or densities or regression functions).
A parametric model is a set § that can be parameterized by a finite number of parameters. For

example, if we assume that the data come from a Normal distribution, then the model is

5= {f(QU;MaU)_V;—TUGXP{—%;@—M)Q},—OO<u<+oo,0<a<oo}. (1.1)

This is a two-parameter model. We have written the density as f(z;u,0) to show that z is a value of the

random variable whereas p and o are parameters. In general, a parametric model takes the form
§={f(z;0):0 €0}

where 6 is an unknown parameter (or vector of parameters) that can take values in the parameter space O.
If 6 is a vector but we are only interested in one component of 8, we call the remaining parameters nuisance

parameters.

Example 1.1.1 (Two-dimensional Parametric Estimation) Suppose that Xi,..., X, ~ F and we assume
that the pdf f € § where § is given in (1.1). The goal is to estimate the two parameters, u and o, from
the data. If we are only interested in estimating p, then u is the parameter of interest and o is a nuisance

parameter.

A nonparametric model is a set § that cannot be parameterized by a finite number of parameters
or parameterized by a large amount number of parameters such as Neural Networks. For example, §arL

= {all CDF’s} is nonparametric.



Example 1.1.2 (Nonparametric density Estimation) Let X1,...,X, be independent observations from a
CDF F and let f = F' be the pdf. Suppose we want to estimate the pdf f. It is not possible to estimate f
assuming only that F € Fapr,. We need to assume some smoothness on f. For example, we might assume

that f € §pens NSsos where §pens is the set of all probability density functions and

Ssos = {f : /(f”(x))2 dr < oo},

is the Sobolev space which is set of functions that are not “too wiggly”.

1.1.2 Regression

Example 1.1.3 (Regression, prediction, and classification). Suppose we observe pairs of data (X1,Y1),...,
(X,,Y,). Perhaps X; is the blood pressure of subject i and Y; is how long they live. X is called a predictor
or regressor or feature or independent variable. Y is called the outcome or the response variable or
the dependent variable. We call r(z) = E(Y|X = x) the regression function. If we assume that r € §
where § is finite dimensional — the set of straight lines for example — then we have a parametric regression
model. If we assume that r € § where § is not finite dimensional such as Neural Networks then we have a
nonparametric regression model. The goal of predicting Y for a new patient based on their X value is called
prediction. If Y is discrete (for example, live or die) then prediction is instead called classification. If
our goal is to estimate the function r, then we call this regression or curve estimation. Regression models
are sometimes written as
Y =rX)+e¢,

where EFe = 0.

1.1.3 Frequentists and Bayesians

Frequentists and Bayesians. There are many approaches to statistical inference. The two dominant
approaches are called frequentist inference and Bayesian inference.

Some Notation. If § = f(x;6): 60 € © is a parametric model, we write P(X € A) = [, f(x;60)dz and
E(r(X)) = [r(z)f(x;0)dz. The probability or expectation is with respect to f(z;6); it does not mean we

are averaging over 6. Similarly, we write Var for the variance.

1.2 Fundamental Concepts in Inference and Point Estimation

1.2.1 Introduction

Many inferential problems can be identified as being one of three types: point estimation, confidence
sets, or hypothesis testing. The basic idea is to use point estimation or confidence sets when we
know nothing about the parameters at the beginning. We can apply hypothesis tests when we
know something about the parameters but we have some doubts, suspicions, or requirements
for the parameters. In other words, we can understand hypothesis tests as a disproof approach in the sense
of probability view. Parametric hypothesis tests are designed for unknown parameters in parametric models.
Nonparametric hypothesis tests are designed for such as distributions and independence in nonparametric

models. Here, we give a brief introduction to the ideas.



Table 1.1: Comparison between frequentists and Bayesians.

frequentists Bayesians
Hypothesis testing | Set null and alternative hypotheses Consider prior beliefs when forming
and use statistical tests to assess hypotheses.

evidence against the null.

Probability Frame probability in terms of Interpret probabilities subjectively
interpretation objective, long-term frequencies. and update them as new data is
collected.
Sampling Emphasize random sampling and Can adapt well to varying sample
often require fixed sample sizes. sizes since Bayesians update their

beliefs as more (observed) data

comes in.

Assumption Parameters that you estimate are There is a probability distribution
fixed and are a single point while around both the parameters and the
samples are random variables samples.

The regime for Law of large number using a large Probability is degree of belief.

application amount of data. Applicable when one has limited

data, priors, and computing power.

1.2.2 Point Estimation

Point estimation refers to providing a single “best guess” of some quantity of interest. The quantity of
interest could be a parameter in a parametric model, a CDF F'| a probability density function f, a regression
function r, or a prediction for a future value Y of some random variable. Standard estimators include
moments estimator, maximum likelihood estimator (MLE), maximum a posteriori (MAP), etc.

By convention, we denote a point estimate of 6 by 9 or gn Remember that 0 is a fized, unknown
quantity. The estimate 0 depends on the data so 9 is a random variable.

More formally, let X1,..., X,, be n i.i.d. data points from some distribution F'. A point estimator §n of

a parameter 6 is some function of X1, ..., X,:

O = g(X1, ey X0).-
The bias of an estimator is defined by
bias(6,) = E(6,) — 0.

We say that 8, is unbiased if E (én) = 6. Unbiasedness used to receive much attention but these days is
considered less important; many of the estimators we will use are biased.
A reasonable requirement for an estimator is that it should converge to the true parameter value as we

collect more and more data. This requirement is quantified by the following definition:

Definition 1.2.1 A point estimator é\n of a parameter 0 is (weakly) consistent if é\n Py 0.



The distribution of §n is called the sampling distribution. The standard deviation of gn is called the

o= U(é\n) =4/ Vm’(gn).

Often, the standard error depends on the unknown F. In those cases, ¢ is an unknown quantity but we

standard error, denoted by o:

usually can estimate it. The estimated standard error is denoted by .

Example 1.2.2 Let Xi,...,X,, ~ Bernoulli(p) with unknown p and let p, = n='> . X; := X,,. Then
E(pn) = n~ 1Y, E(X;) = p so Py, is unbiased. The standard error is o = \/V(pn) = \/p(1 —p)/n. The

estimated standard error is ¢ = \/pn(l — Dn)/n.

The quality of a point estimate is sometimes assessed by the mean squared error, or MSE defined
by

MSE = E(6, — 6)>.

Keep in mind that E(-) refers to expectation with respect to the distribution

n

F@1, o2 0) = [ f(2i:0),

i=1

that generated the data.
Theorem 1.2.3 The MSE can be written as

MSE = bias® (@l) + Var(an).
Proof. Let ,, = E(6,). Then

E@, —0)2 = FE(0, —0,+0,—0)?
= EB, —0,)*+2(0, —0)E(6, —0,) + E@, — )
= (0, —0)>+E®@B,—0,)>
= bias® (§n) + Var(gn).
There is a bias-variance tradeoff. m

Theorem 1.2.4 [f bias — 0 and 0 — 0 as n — oo then é\n is consistent, that is, @, 0.

Proof. If bias — 0 and ¢ — 0 then, by above Theorem, MSE — 0. It follows that gn 4™ 9. Thus the result

follows. m

Example 1.2.5 Returning to the coin flipping example, we have that E(p,) = n~' ., E(X;) = p so by is

unbiased. The standard error is o = \/V(p,) = \/p(1 — p)/n — 0. Hence, p,, is a consistent estimator.
Many of the estimators we will encounter will turn out to have, approximately, a normal distribution.

Definition 1.2.6 An estimator is asymptotically normal if

bn=9 a, N(0,1). (1.2)

g



1.3 Confidence Sets

1.3.1 Definition
(BEEHL —aWEREFEXE)

Definition 1.3.1 A 1 — « confidence interval for a parameter 0 is an interval C, = (a,b) where a =
a(X1,....Xpn) and b = b(X4,...,X,,) are two functions or two statistics of the random samples X1,..., X,
from a distribution such that

POeCy)>1—a, foralfec®.

In words, (a,b) traps 6 with probability 1 — . We call 1 — « the coverage of the confidence interval.

Remark 1.3.2 Warning! C, is random and 0 is fized. There is much confusion about how to interpret a
confidence interval. A confidence interval is not a probability statement about 0 since 0 is a fixed quantity,

not a random variable.

Remark 1.3.3 Commonly, people use 95 percent confidence intervals, which corresponds to choosing o =

0.05. If 6 is a vector then we use a confidence set (such as a sphere or an ellipse) instead of an interval.
(X %& ) shu zhou

Definition 1.3.4 A function T = T (X1, X, ..., Xn,0) is called a pivotal quantity if it is bijective in 6 and

has a completely known distribution.

Usually, a pivotal quantity is not a statistic. However, besides the parameter 6 that we want to estimate,
a pivotal quantity T is not allowed to contain other unknown parameters.
The procedure for find the confidence interval is as follows:
(1) Find a suitable pivotal quantity T(X1, Xs, ..., X,,0).
(2) Given the coefficient «, find the corresponding quantile from the distribution of T' such that the probability
between two quantiles is 1 — a.

(3) Transform the inequality and calculate the confidence interval [a, b] for 6.

-

Appraximate
Nermal Distribution of £

Figure 1.1: The confidence interval for the normal distribution.



Example 1.3.5 (Z-distribution). Suppose that X ~ N(u,0?), where o® is a known constant but u is an
unknown parameter. Let X1, ..., X, be a random sample from X. Can we find a coefficient 1 — « confidence
interval for p?

Solution. Note that X is an unbiased estimator of u, and Z = f/\_/% ~ N(0,1). (Here o is a known

constant, and Z does not contain unknown parameters other than p.)

Note that the pdf of a standard normal distribution is an even function. We have
X —p

P(W zza/2>:2p(%2za/2):2~gza.

See Fig. 1.1. Thus a 1 — « confidence interval for p is

— g — g
(X Za/Q\/ﬁaX+Za/2\/ﬁ> .

Remark 1.3.6 A coefficient 1 — « confidence interval for 8 may be not unique. In above example, the
numbers z1_q 2 and zq 2 can be replaced by any numbers such that 0 < ag,ap <1 and o —as =1 - a.
Indeed,

P(za, < Z < zqp) =01 —a2=1—aq.

However, in this example, the choice of ax = 1 — /2 and as = «/2 gives the shortest coefficient 1 — «

confidence interval (which can be deduced from the symmetry of the pdf or seen from the graph).
Proof. Solution. Notice that
Plzg <Z<zi_q4p)=1l—a+p-B=1-q,

where § is not unique to be «a/2.

We want to find the shortest interval,
min (21-atp — 2) -

We have that
D(z) =B, P(z1—a4p8)=1—a+ 0.

where @ is the distribution function. We take the derivative w.r.t. g:

dZﬁ
@(Zﬂ)% = 1
2 = 1
7 o(z5)
Similarly,
2 N
10 o(21atp)
The minimization problem is equivalent to
1 1
2y —zp = - = 0.
et p(zmars)  el(28)
Hence
p(21-a+s) = ¢(28).
Since pdf ¢ is an even function, this gives 2145 = —25. Thus, B = § gives the shortest interval. m
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Figure 1.2: The confidence interval for the t-distribution.

Example 1.3.7 (t-distribution). Suppose that X ~ N(u,c?), where p and o® are both unknown parameters.

Let Xq,...,X, be a random sample from X. Can we find a coefficient 1 — a confidence interval for u?

Solution. See Fig. 1.2. Note that X is an unbiased estimator of p, and Z = f/?/% (0,1). We replace

o i Z by its unbiased estimator S). Note that
X —p X —pu
SiIvn  SufVn—1

Note that the pdf of t distribution is an even function. We have

P(‘S*/f 2 fj2{n ”) -
P(|5] <torsto-) = 1

Calculation reveals that a 1 — a confidence interval is

~t(n—1).

— Sy - S
(X _ta/Q(n_ l)ﬁvX_Fta/Q(n_ 1) \/%) .

=\
P
/

| [1=a)100%
[ of & values \,
=, |  areinthisinterval ek
¥

fant Yan r

a2

Figure 1.3: The confidence interval for the x? distribution.

Example 1.3.8 Suppose that X ~ N(u,0?), where u and o are both unknown parameters. Let Xy, ...

be a random sample from X. Can we find a coefficient 1 — a confidence interval for o2 ?

Solution. See Fig. 1.3. We consider the following:

n—1)S: nS?
T S

o o2

s Xn



We would like
2 nS?z 2
Pl Xi_q/p(n—1) <—(72 <Xapn—1))=1-a

So a confidence interval for o? is

nS? nS?
Xi/z(n_ 1)7 Xifa/g(n_ 1) .

n N2
Remark 1.3.9 In above example, if ju is a known constant, we can use x> = 211(07)2“)

, which has distri-

bution x2(n).

Example 1.3.10 We now estimate the 1 — a joint confidence sets of u and o for the normal distribution.
Since X and S;? (or S2) are independent, we construct two independent pivotal quantities containing only

two unknowns u and o2,

X—p o (n—1)832
dyv2= T )n
a/v/n anex o? ’

which have distributions of N(0,1) and x*(n—1), respectively. We woule like to find a, c1,ca in the following,

X - —1)8x2
P<—a< M<a,c1<(n2)”<@)=0.95.
a//n o

Due to the independence, we only need to solve

X —pu (n—1)8x?
Pl - P —_— = 0.95.
(a<g/\/ﬁ<a) (cl< o2 < e 0.95

This is equivalent to

Y — _ *2
P(—a<§/\/g<a>=ﬁ1, P<Cl<w<02):ﬁg,

where B1P82 = 0.95. There are infinitely many 51 and Bo satisfying the relation. For convenience, ignoring

the best approximation, we just take $1 = B2 = 0.975. Hence, with a = 0.025,

X —p
Pl - —_— =0.97
( Za )2 < U/\/ﬁ < Za/2> 0.975,

-1 5*2
P (x?a/z(n -1)< (na# < X5 a(n — 1)) = 0.975,

Notice that the confidence set is not a rectangle, which is shown by the shadow region in Fig. 1.4. We can

eventually obtain the result,

_ 0222 —1)9*2 —1)8*2
P<(X—u)2< o2 (n =15, <02<(")S”1) = 0.95.

n X —1) X ap(n =
Note that the confidence set is not unique determined in this example based on the choice of 81 and Bs.
For symmetric pdf, one can find the shortest confidence interval centered at the mean value. However, for

nonsymmetric pdf, it is not easy to find the shortest confidence interval.



Figure 1.4: Shown by the shadow is the joint confidence set for the parameter (u,o?).

1.3.2 Different Ways to Construct Confidence Intervals

Let X3, ..., X,, ~ Bernoulli(p). This has wide applications in qualification rate of products, passage rate

in exams, market satisfaction, etc.
Example 1.3.11 In the coin flipping setting, let X1, ..., X,, ~ Bernoulli(p). Let Cy, = (Dn, — €n, P+ €n). We
saw that Chebyshev’s inequality yielded

_ E|X, —pl? n
P(|Xn —p|l>e€n) < | 3 7 :pqé = Q.
En en

en = | 2L = 0.2236.
no

Example 1.3.12 In the coin flipping setting, let Cy, = (Pn — €n,Pn + €n). Using Hoeffding’s inequality (see

Take p=10.5,n = 100 and o = 0.05. Then

details in the following Appendix)

2

P(|X, —p| > en) < 22",
it follows that €2 = % and

P(Pecn)Zl—Ot,

for every p. Hence, Cy, is a 1 — « confidence interval. Take o = 0.05 and n = 100, then €, = 4/ % =
0.1358. (More comments here. Hoeffding’s inequality gives us a simple way to create a confidence interval

for a binomial parameter p. Fix o > 0 and let
[log(2/c)
€n =1 ———.
2n

P(I X, —p|>en) < 2e2m0 = q.

By Hoeffding’s inequality,

Let Cp, = (Dy, — €y P + €) where Py, = X .. Then, P(p ¢ C,,) = P(|X,, — p| > €,) < a. Hence, P(p € C,,) >
1 — «, that is, the random interval C,, traps the true parameter value p with probability 1 — o; we call Cy, a

1 — « confidence interval.)

10



As mentioned earlier, point estimators often have a limiting normal distribution based on Central Limit
Theorem, meaning that equation (1.2) holds, that is, 0, ~ (6,52). In this case we can construct (approxi-

mate) confidence intervals as follows.

Theorem 1.3.13 (Normal-based Confidence Interval). Suppose that b, ~ (0,52). Let ® be the CDF
of a standard Normal and let z /o = =11 — (a/2)), that is, P(Z > Zas2) = /2 and P(—z4/0 < Z <
Zas2) =1 —a where Z ~ N(0,1). Let

-~

Cn = (91'7, — Za/237 é\n + ZQ/Q/O'\).

Then
POeC,) —»1—a,

converges in distribution.
Proof. Let Z, = (8, — #)/5. By assumption Z, L 7 where Z ~ N(0,1). Hence

PO e C,) =P@®,— Zay20 <0 < 0, + 20/20)
0, — 0
= P(—Za/g < = < Zoc/2)

— P(—Za/2<Z<Za/2):1—Oé.
| ]

Remark 1.3.14 For 95 percent confidence intervals, o = 0.05 and z,/2 = 1.96 ~ 2 leading to the approxi-

mate 95 percent confidence interval §n +20.

Remark 1.3.15 Our definition of confidence interval requires that P(0 € C,) > 1 — « for all € ©. A

pointwise asymptotic confidence interval requires that

lim inf P e Cy) >1—a,

n—oo

for all 0 € ©. A uniform asymptotic confidence interval requires that

lim inf inf PO Cp)>1—a.

n—o00 0O

The approximate Normal-based interval is a pointwise asymptotic confidence interval.

Example 1.3.16 Let Xi,..., X,, ~ Bernoulli(p) with unknown p and let p,, = n='> ., X;. Then E(p,) =
n~t3  E(X;) = p so Py is unbiased. The standard error is o = \/V(p,) = \/p(1 —p)/n. The estimat-
ed standard error is ¢ = \/pn(1 — pn)/n. By the Central Limit Theorem, p, ~ N(p,52). Therefore, an

approzimate 1 — « confidence interval is

~ ~ ~ ﬁn 1- lb\n

pniza/QJ:pniza/Q %
Take o = 0.05, p, =~ 0.5, and n = 100, then ZQ/Q\/M ~ 0.1. Compare this with the confidence
interval in Fxample 1.3.11 and Ezample 1.3.12. The Normal-based interval is shorter but it only
has approxzimately (large sample) correct coverage. When n > 30, the application of normal-based

Confidence Interval is pretty good.

11



Example 1.3.17 Here is another way to compute based on the central limit theorem. We have
y'n — D

—r P4, N(0,1).
p(1—p)

Vvn

This reveals that -
Xn - P
p(1—p)

from which we can solve the approzimate 1 — « confidence interval,

P (Za/z <vn < Zla/2> ~l-a

wnX, + 22— \/24 +4nX 22 — 4nY222 onX, + 22+ \/24 +4nX, 22 — 4ny72122
2(n + 22) ’ 2(n + 22) ’

where 2 = 21_q /2. Take o = 0.05, n = 100, X, = Py ~ 0.5, we obtain the confidence interval
[0.4038,0.5962].

The interval (1.3) is called the Wilson interval approzimation, which can be applied to the cases that the

number of samples n is greater than 30.

Example 1.3.18 Agresti and Coull (1998) proposed another interval approximation for p,

[ﬁza/2~/1,m#jaﬁ+ Zoc/2\) ﬁ(lﬁfi)‘| ) (14)

where n =n + 23/2 and p = % (Z?:l X; + %zim) . Take oo = 0.05, n = 100, X,, = p, =~ 0.5, we obtain
[0.4038, 0.5962].

This interval is called Agresti and Coull interval approximation. Numerical results show that the coverage of
(1.4) is a little bit larger than that of (1.8). When n > 30, both (1.3) and (1.4) are suggested. When n < 30,

both can be used for interval approximations as a reference.

1.3.3 Appendix Probability Inequalities

Hoeffding’s inequality is similar in spirit to Markov’s inequality and Chebyshev’s inequality but it is

a sharper inequality. We present the result here in two parts.

Theorem 1.3.19 (Hoeffding’s Inequality). Let Y1,...,Y, be independent observations such that E(Y;) = 0
and a; <Y; < b; (The boundedness is important). Let € > 0. Then, for anyt >0,

n

! (Zn > ) = | (15)
=1

i=1

Devroye et al. (1996) is a good reference on probability inequalities and their use in statistics and pattern
recognition. The following proof of Hoeffding’s inequality is from that text.
Proof. Proof of Hoeffding’s Inequality. We will make use of the exact form of Taylor’s theorem: if g is a

smooth function, then there is a number £ € (0,u) such that g(u) = g(0) + ug’(0) + “729”(5).

12



Proof of Theorem 1.3.19. For any ¢ > 0, we have, from Markov’s inequality, that

n n
P(ZK&) - P(tZYQte):P(etZ?l“ze“)
=1 =1

=1

Since a; <'Y; < b;, we can write Y; as a convex combination of a; and b;, namely, Y; = ab; + (1 — a)a;

where a = (Y; — a;)/(b; — a;). So, by the convexity of et¥ we have

- Yi—a; .. b;-Y .
ty; o Li i th, i i ptas

- bl — a; bz — a;
Take expectations of both sides and use the fact that E(Y;) = 0 to get

a; etbi + bi et — eg(u)7

EetYi < —
P — Q; b; — a;

where u = t(b; — a;), g(u) = —yu +log(1 — v + ve*) and v = —a;/(b; — a;).
Note that ¢(0) = ¢’(0) = 0. Also, ¢"(u) < 1/4 for all u > 0. By Taylor’s theorem, there is a £ € (0,u)
such that

g(w) = 9(0)+ug'(0) + 5-¢" (&)
u? u2 2 i — a; 2
- Lyt =T

Hence,

The result follows from (1.6). m

Theorem 1.3.20 Let Xq,..., X,, ~ Bernoulli(p). Then, for any ¢ > 0,

2

P(|X, —pl >€) <277,
where X, =n~ 'Y " | X;.
Proof. Proof of Theorem 1.3.20. Let Y; = (1/n)(X; — p). Then E(Y;) =0 and a <Y; < b where a = —p/n

and b = (1 — p)/n. Also, (b —a)? = 1/n?. Applying Theorem 1.3.19 we get

P(Yn —p> 6) =P <ZY'Z Z E) S efteetz/(g’n)'

=1

The above holds for any ¢ > 0. In particular, take t = 4ne and we get P(X, —p > ¢€) < e~2ne”, By a similar
argument we can show that P(X,, —p < —e¢) < e~2ne’, Putting these together we get

2

P(|X, —p|>e) < 2e 2,
The following inequality is useful for bounding probability statements about Normal random variables.

13



Theorem 1.3.21 (Mill’s Inequality). Let Z ~ N(0,1). Then,

267t2/2
P(lZ| >t) <4/— .
(121> 1) </ 2

Proof. Intuitively, this kind of tail bound is useful because we can get exponentially-fast decay without

calculating the distribution function directly. The broad strokes of the proof follow Aliyah Ahmed’s response
to a post on StackExchange. We begin by observing that density of Z is symmetric about the origin, therefore:

P{|Z| > t} = 2P{Z > t}

We then observe that by playing with distribution functions and expectations, we get the following upper
bound:

L P{Z > t}:t/oodF(x)

/t 2dF(z)

IN

|
o\
3
8
EH
-« 3
@D
M
ko]
T
M‘Hw

I
5~
3

o
o]
o]
T
o
—

In the process using sneaky way to introduce a quantity that has a nice, clean closed-form integral. Closer
examination shows that this is in fact a tighter version of Markov’s Inequality; rather than taking EX, we
take E[X - 1{X > t}]. This implies that:

Pz > s leply
Lo By
= ant p D)

21 2
<4 /== -1
P{z| > t}_\fﬂexp{ 5

Remark 1.3.22 Let Z ~ N(0,02). Then,

20 2 2
P(|Z] > t) < | ==t/
(12]>1) <[ —~e

Remark 1.3.23 This result can be extended to the maximum of m Gaussian random variables by way of the

union bound. Suppose {Z;};~, ~ N(0,0%). Then the union bound implies:
2 ag —t2/(202)
P( max |Z;| >t) <m-4/——e .
1<i<m Tt
Example 1.3.24 Let X;,..., X,, ~ Bernoulli(p). Let p = 0.5,n = 100 and ¢ = 0.2. We saw that Chebyshev’s
iequality yielded
= 0.0625.

E|X, —p|*  pg/n
-

P(‘Yn_p|>6)§ 2

According to Hoeffding’s inequality,

P(IX, — p| > €) < 2e-2010002% — 0 00067,
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By the Central Limit Theorem,

_ ol e 0.2 s
P(| X, —p|>¢€) <P )RP|Z|>+5=4)<6x1077,
\/pq/n ~ pain %

where Z ~ N(0,1). By the table for ®, we know that the probability is smaller at least than 0.0004 since 4
18 too large for a standard normal. By Mill’s inequality, we can see that the probability is not greater than
6 x 1075, One can see CLT is most tight bound, however, CLT only provides an estimation of the probability.
This CLT bound is valid only when n is really large. In contrast, the other two bounds are reliable for any
number of samples n. Moreover, Hoeffding’s bound is tighter than Chebyshev’s. As I know, when n is large

one can use Hoeffding’s bound whereas when n is small one can use Chebyshev’s bound.

1.3.4 More Topics about Confidence Interval
unknown variances for both subsamples

If both ¢} and o3 are unknown and also we do not know whether they are equal, then the problem
to estimate the confidence interval of the difference mean p; — o is the famous Behren-Fisher problem in
statistics. If both o} and o3 were known, we could use the confidence interval,

)
X =Y 42 a2 *1

X-Y - Zl1—a/2

\w

o2
72
m’

3 \HM

Now since o2 and o35 are unknown, we can replace them with unbiased S 1 and S 2 and also replace 21_q /2

with t;_o/2(l) (with [ degrees of freedom) to obtain

Sz

5*22 5*21 5*22
L I () LY e

X =Y —tioapa)) 2t + 2 b

where [ is the closest integer to the following [*,

(s;?l 4 Sih ) :

n m

* 2 * 2°
1 (SHh 41 532
n—1 n m—1 m

Here are two issues to construct the pivotal quantity. First, the sum of x? distributions with different non-

r =

integer variances may not give rise to a x? distribution since the exponential indices may be different. Second,

it is hard to cancel out both o7 and 03 in constructing the pivotal quantity.

EMERR

one-sided confidence interval

So far we only discuss the two-sided confidence interval. In practice, we only interested in the unknown
parameter not smaller than or not greater than some value. For instance, we hope the lifespan of some
products as long as possible, the standard deviation of the size of some products as small as possible, etc.

We now need the concept for one-sided confidence interval.

15



Definition 1.3.25 Let § be a parameter and let a = a(Xq,...,X,) and b = b(Xq, ..., X,,) be two functions
or two statistics of the random samples X1, ..., X, from a distribution. Then a is said to be a 1 — « lower

one-sided confidence interval for 0 if
P@>a)>1—a, foralfe®O.

In words, (a,00) traps 6 with probability 1 — «. On the other hand, b is said to be a 1 — o upper one-sided
confidence interval for 6 if
PO<b)>1-—a, forallbecO.

In words, (—o0,b) traps 6 with probability 1 — a.
BEEAFAL—at BMEEF TR (LR

Example 1.3.26 Suppose that X ~ N(u,0?), where p and o are both unknown parameters. Let X1,..., X,

be a random sample from X. Can we find a coefficient 1 — « lower one-sided confidence interval for p?

Solution. Note that X is an unbiased estimator of u, and Z = f/?/% ~ N(0,1). We replace o in Z by its

unbiased estimator S}. Note that

X-u X-up
Sy/vn S /yn—1

P<%<ta(n—l)):1—a.

Calculation reveals that a 1 — a lower one-sided confidence interval is

t(n—1).

Then we have

[X —ta(n — 1)5’%&00).

relationship between confidence interval and hypothesis test for standard problems

For the problems of estimating means, variances, and differences of means, ratios of variances for normal
distributions, the construction of pivotal quantities for confidence intervals is similar to the application of
test statistics in hypothesis tests. In the following section, we will discuss more about this topic.

This is not hard to understand since there are close relations between confidence interval approximaitons
and hypothesis tests. Let us consider the example for X ~ N(u,0?), where p is unknown and o2 is known.
Then the statement that po belongs to the 1 — a confidence interval of u is equivalent to the statement that
we cannot reject the null hypothesis at the level « for the hypothesis test problem Hy:p = po, Hy:pe # po.

The reason is given as follows. The 1 — o confidence interval is

— g — g
(X Za/Q\/ﬁaX+Za/2\/ﬁ> .

Y—/l‘o

If this set constains pg, then we have |Y— ,u0| < za/gﬁ. This means that N < Zgy2- Thus at the

significance level «, the subsampling po is NOT located in the rejection region of the test. Therefore, for the

hypothesis test problem, we cannot reject the null hypothesis at the significance level of «.

16



1.4 Hypothesis Testing

1.4.1 Definition

Keywords: Parametric Hypothesis Test (£ 4% %), significance level (% K F), p-value
(pfE)

In general, let us consider a statistical problem involving a population X whose distribution has a
unknown parameter 6. The value of # is unknown but must lie in a certain parameter space ©. Suppose now

that © can be partitioned into two disjoint subsets Oy and O, i.e.,
©=0pUB;, N6, =0.

And the statistician is interested in whether 6 lies in ©¢ or in ©;. Denote by H; the hypothesis that 6 € ©;
(i =0,1). The statistician must decide which of the hypotheses Hy or H; appears to be true. A problem of
this type is called a problem of testing hypotheses.

FTB&k, #FRE

In hypothesis testing, we start with some default theory — called a null hypothesis Hy — and we
ask if the data provide sufficient evidence to reject the theory. If not we retain the null hypothesis. The term
“retaining the null hypothesis” is due to Chris Genovese. Other terminology is “accepting the null” or “failing

to reject the null.” In other words, for hypothesis testing, we wish to test
Hy:0€ 0y versus Hp:0 € 0.

Then Hj is the null hypothesis and H; is the alternative hypothesis. if we decide that 6 lies in ©1, then
we reject the null hypothesis Hy. If we decide that 6 lies in O, then we do not reject Hy.

Example 1.4.1 (Testing if a Coin is Fair). Let
X1, ..., X, ~ Bernoulli(p)

be n independent coin flips. Suppose we want to test if the coin is fair. Let Hy denote the hypothesis that the
coin is fair and let Hy denote the hypothesis that the coin is not fair. Hy is called the null hypothesis and
H, is called the alternative hypothesis. We can write the hypotheses as

Hy:p=1/2 wersus Hp:p#1/2.

It seems reasonable to reject Hy if T = |p, — (1/2)| is large. When we discuss hypothesis testing in detail, we

will be more precise about how large T should be to reject Hy.

Remark 1.4.2 Statistical inference is covered in many texts. Elementary texts include DeGroot and Schervish
(2002) and Larsen and Marz (1986). At the intermediate level Larry recommends Casella and Berger (2002),
Bickel and Doksum (2000), and Rice (1995). At the advanced level, Cox and Hinkley (2000), Lehmann and
Casella (1998), Lehmann (1986), and van der Vaart (1998).

HErE, ZaEk

Definition 1.4.3 If ©; (i = 0,1) contains just a single value of 0, then H; is called a simple hypothesis. If

the set ©; (i =0,1) contains more than one value of 8, then H; is called a composite hypothesis.

17



BHEE, NABX

Definition 1.4.4 Moreover, one-sided null hypotheses are of the form Hy : 8 < 6y or Hy : 8 > 6y. The
corresponding one-sided alternative hypotheses being Hy : 0 > 0y or Hy : 6 < 6y. When the null hypothesis is

sitmple, the alternative hypothesis is usually two-sided.
YA HFERHEERE AT B R ARR

Remark 1.4.5 Warning! There is a tendency to use hypothesis testing methods even when they are not
appropriate. Often, estimation and confidence intervals are better tools. Use hypothesis testing only when

you want to test a well-defined hypothesis.
BB GiTE, ELRK

Definition 1.4.6 Let Xy,...,X, be a random sample from the population X. Let Z = Z(X4,...,X,) be a
statistic and R be a subset of R. Suppose that we will reject Hy if Z € R. Then we call Z a test statistic
and R the rejection region of the test. If Z € R we reject the null hypothesis, otherwise, we do not reject the
null hypothesis:

Z € R = reject Hy
Z ¢ R = retain (do not reject) Hy.

Remark 1.4.7 Here, we use “rejection” instead of “acception”. Because we can not use data to prove

something. But it is reasonable to use data to disproof something.

F—R#IR (ER), B K%k (), RFEATF

No matter how we do the test, mistakes can not always be avoided. An erroneous decision to reject a
true null hypothesis is called a type I error (a false positive conclusion). An erroneous decision not to
reject a false null hypothesis is called a type II error (a false negative conclusion).

HERNIRIE — KRR W ART, REERDEMLRE (significance test)

The objective of a statistical test of Hy is not to explicitly determine whether or not Hy is true but
rather to determine if its validity is consistent with the resultant data. Hence, with this objective it seems
reasonable that H; should only be rejected if the resultant data are very unlikely. The classical way of
accomplishing this is to fix a level of significance a and then require that the test have the property that the

probability of a type I error occurring can never be greater than «, i.e.,
P(Z € R) < a.

(Type II error is not considered in this note.)

Retain Null  Reject Null
Hy true | / type I error
Hy true | type 1l error 4/

Figure 1.5: Summary of outcomes of hypothesis testing.
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The procedure of testing hypothesis is as follows:

(1) Construct the hypotheses Hy and H; from the problem. (We propose the null hypothesis Hy.) # H & 1%
(2) Choose a suitable test statistic such that its sampling distribution does not contain unknown pa-
rameters. &/ MEEFE M, GIRELE

(3) Given level of significant «, find the corresponding rejection region (based on H;?).

(4) Calculate the value of the statistic from observed sample values, determine whether it is in the reject

region (reject Hy) or not (not to reject Hy).

1.4.2 Examples for Simple Hypothesis

Example 1.4.8 (Z Test) Let us consider the population satisfying X ~ N(u,0?), where o? is known but p

18 unknown. To carry out a test of the following hypothesis at the significance level of significant a:

Ho:p=po, Hi:p# po,

we have chosen the test statistic 7 = X410 If Hy is true, then

y—Mo
Z:
a/yn’

has standard normal distribution. Here po comes from the hypothesis and o2 is known, so Z does not contain

unknown parameters. Let us choose the significant level to be . Recall that the pdf is even. Then we have
that
a= P(|Z| > z4/2) = P(|Z] € R).
So a rejection region of significance level o is (—00, =2 /2] U [2a/2, +00). X Gpoir ZR KB, HE @ IF5
BB oy Edfte, Mg/ MERENH, GIRELS
In this example, if we take a = 0.05, then zg.9o5 = 1.96. Andn =9,0 = 0.015,7 = 0.511. It follows that

=2.2>1.96.

|Z| — j_/1‘0
a/\/n

Then we reject Hy.

Remark 1.4.9 Consider the test: Hy : p # po, Hiy:p = po. Assume that Hy is true. If we use Z = UY/?/%,

then Z ~ N(0,1). But this random variable involves u, which is unknown and can not appear in the expression

of R. One may consider Z = ff\%) instead. It does mot contain unknown parameters. But, its distribution

is unknown since its mean involving the unknown p. We are not able to handle this test in a similar way as

in above example. So, people need to construct suitable hypothesis Hy and Hy for a concrete problem.

Example 1.4.10 (T Test) Suppose that the two independent populations X andY satisfy that X ~ N(uy,0?)
and Y ~ N(uz,0?), where o is unknown (we require that they have same variance). Let us carry out a test

of the following hypothesis at level a:

Ho:pn = p2, Hiy:py # pa,

Let X1, ..., X, be a random sample from X, and Y1, ...,Y,, be a random sample from Y. Take

X-Y
R e R e VR
\/ 7;ryL—Q—n—Q = (E + H)
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Here S:fl and S;';?Q are the unbiased sample variances of X and Y |, respectively. If Hy is true, then T ~

t(n+m —2). Similar as previous, we have
P(|T| > ta/2(n+m—2)) = .
The rejection region for T is

(—o0, 7ta/2(77, +m—2)]U [ta/Q(n +m —2),+00).

Example 1.4.11 (x? Test) Suppose that the population satisfies X ~ N(u,0?), where neither p nor o? is

known. Let us carry out a test of the following hypothesis at level c:
Hozcrz:a(z), Hl:oz#ag,

Let X4,..., X, be a random sample from X. In this example, we should consider the test statistic

X2 _ (n — 12)57*12
o]

When Hy is true, we have x? ~ x%(n — 1). Assume that the rejection region has the form
P({X2 < cl} U {X2 > 02}) =q.

For convenience, let

Q
P(X*<a)=P(x*>c) = 3

Then ¢; = X%—a/z(” —1),¢c0 = X§/2(n —1). The rejection region is
(*OO»X%_OZ/Q(” - 1Ju [Xi/2(n — 1), +0o0).

Remark 1.4.12 If, in above example, the mean p is known, then one can use the test statistic x> =

M, which has distribution x?(n). The rejection region can be (—oo, x2_ 2(n)]U [X2/2(n), +00).
O'O « (0%

Example 1.4.13 (F Test) Let X and Y be two independent population such that X ~ N(u1,0%) and Y ~
N(uz,02), where py and po are unknown parameters. Let us carry out a test of the following hypothesis at
level a:

Hy:0? =03, Hy:0% # 03,
Let X1, X2, ..., X, and Y1,Ya, ..., Yy, be random samples from X and Y, with unbiased sample variance S3¢
and S%?, respectively. If the hypothesis Hy is true, then the statistic
_ 5%

F ==X
S;‘?’

has distribution F(n — 1,m — 1). Similar as previous, we may take use of the facts that

P(F<Fy_apn—1,m—1))=P(F > Fypn—1,m—1)) = =.

N}

So the rejection region for F' is

(7OOaF1—o¢/2(n - 17m - 1)] U [Fa/Q(n - 17m - 1)7+OO)
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1.4.3 A Two-step Test Example

Example 1.4.14 We compare the therapeutic effects of two somnifacients (sleeping pills). We separate 20
patients into two groups with each one 10 persons. The extended sleep time after taking medication is normally
distributed. The data are

A: 55 46 34 19 16 1.1 08 01 —-01 44
B: 37 34 20 20 08 07 0 -01 -02 -16

Then is there any significant difference for the therapeutic effects between the two somnifacients at the level
a = 0.057
Solution. Suppose that X ~ N(u1,0%) and Y ~ N(uz,02), and we compute that

X =233, Y =075 S¥=4.01, S;*=32.

We first test the null hypothesis o3 = o3 to write as

Hy:0? =02 wversus Hy:o? # o3.

The test statistic F = S32/S3? = 1.25. We see that

1 1
F0_025(979) - 535, F1_0_025(9,9) - m - ﬁ - 0187

Since F = 1.25 € (0.187,5.35) , we accept the null hypothesis o3 = 03.
Under the condition that o3 = o2, we then test the null hypothesis py = 2,

Hy:p1 = po versus Hy @y # po.

The test statistic is

Y _ Vv o *2 _ *2
o XV wz‘tth;—\/(n DSP + (m — 1)
m+n—2

By computation we see

4.01 2 2.33 — 0.
st = \/(9)( 0 )1+ 062 _ 599 andt— 2339 _ .
8 1.899/ 35 + 1
Since |t| = 1.86 < 2.101 = t.025(18), we still accept the null hypothesis Hy : p11 = pa. There is NO significant

difference for the therapeutic effects between the two somnifacients.

Remark 1.4.15 One can also do not test Hy : 0 = o3 at first; but directly replace 03,035 with S32, S5 in

a normal distribution instead (see Sec. 1.5.4).

Remark 1.4.16 One can see that the test statistic 1.86 is very close to the quantile 2.101 while still |t| =
1.86 < 2.101 = tg.025(18). In the next section, we will introduce the concept for the p-value to further discuss

the “quality” of a hypothesis test.
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1.4.4 The Wald Test

The test is named after Abraham Wald (1902-1950), who was a very influential mathematical statistician.
Wald died in a plane crash in India in 1950. Let 6 be a scalar parameter, let 0 be an estimate of 6 and let &

be the estimated standard error of .
Definition 1.4.17 (The Wald Test) Consider testing
Hy:0=0y wversus Hi:0+#6.
Assume that 0 is asymptotically normal:
0 — 6y

_ 0 4y N(0,1).
ag

The size o Wald test is: reject Hy when |W| > z4/9 where
o0
W=

Theorem 1.4.18 Asymptotically, the Wald test has size «, that is,
P(|W| > z4/2) —

as n — oQ.

Proof. Under 6 = 6y, we have 5%0“ N N(0,1). Hence, the probability of rejecting when the null § = 6y is

> Za/2>

— P(lZ| > zq)2) = a,

true is

0— 0,

~

P(W|> zap2) = P(

where Z ~ N(0,1). m

Remark 1.4.19 An alternative version of the Wald test statistic is W = (57 00) /o0 where o is the standard

error computed at 8 = 0y. Both versions of the test are valid.

Example 1.4.20 (Comparing Two Prediction Algorithms). We test a prediction algorithm on a test set of
size m and we test a second prediction algorithm on a second test set of size n. Let X be the number of
incorrect predictions for algorithm 1 and let'Y be the number of incorrect predictions for algorithm 2. Then

X ~Binomial(m,p1) and Y ~Binomial(n,ps). To test the null hypothesis that py = pa write
Hy:0=0 wersus H;:0#0.

where 6 = p1 — pa. The MLE is 5= D1 — Do with estimated standard error

~1_% ~1_5
5 \/pl( pl) +p2( pz)

m n

The size o Wald test is to reject Hy when |W| > z4/0 where

5—0 _ D1 — P2
o \/ﬁl(l—m | B2(1=p2)

m n

The power of this test will be largest when py is far from ps and when the sample sizes are large.
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Example 1.4.21 (Comparing Two Means). Let X1, ..., X, and Y1,...,Y,, be two independent samples from
populations with means p1 and ps, respectively. Let’s test the null hypothesis that py = po. Write this as
Hy: 0 =0 versus Hy : 6 # 0 where 6 = pu1 — po. Recall that the nonparametric plug-in estimate of § is

8 = X — Y with estimated standard error

2 2

S S

G =1/2+2,
m n

where s3 and s3 are the sample variances. The size « Wald test rejects Ho when |W| > z, /o where

=l

0o X-

5

W:

T 2 Pl
g 514 5

1.4.5 Examples for Composite Hypothesis

For such types of problems, if the null and alternative hypotheses are already given, the subsequent
computational procedure is standard technique. However, at least for me, the difficulty is to design the null

and alternative hypotheses.

Example 1.4.22 The population of all verbal GRE scores are known to have a standard deviation of 8.5. A
university hopes to receive applicants with a verbal GRE scores over 210. This year, the mean verbal GRE
scores for the 42 applicants was 212.79. Conduct a test at the level of significance 0.05 to see whether this
new mean is significantly greater than the desired mean of 210.

The test of hypothesis can be as follows:
Hy:p <210 wersus Hy:p > 210.

The test statistic is _
_ X — o

2=l

212.79 — 210
8.5/v/12

The rejection region constructed based on Hy is

~ N(Oa 1)7

and its value is

= 2.1272.

[20,05, +OO) = [1.64, +OO)

We see that z is located in rejection region so that we reject the null hypothesis Hy and states that the verbal

GRE scores of the applicants is significantly greater than 210.

Remark 1.4.23 In my view, rejection is persuasive so that we’d better put the conclusion we hope to verify

in the alternative hypothesis.

Example 1.4.24 A manufacture claims that taking a new technique the lifespan of their light bulbs can be

extended much over 1000 hours. We can take
Hy:p <1000 wersus Hy :p > 1000. (1.7)

For another problem, a manufacture claims that the lifespan of their light bulbs can be not less than 1000
hours. We can take

Hy:p> 1000 wversus Hip:p < 1000. (1.8)
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The sample mean is 1005 for n = 16 number of random samples. The standard deviation is 40 hours. The

test statistic is

X - 1005 — 1000

o/yn  40/4

The rejection region for problem (1.7) is [1.64,+00). We see that the statistic is not in rejection region so

that we accept the null p < 1000 and then we claim that the lifespan is not much over 1000 hours. For the
second problem (1.8) the rejection region is (—oo, —1.64]. We see that the statistic is not in rejection region
so that we accept the null p > 1000 and then we claim that the lifespan is not less than 1000 hours. Here is
the charm of statistics. One may arrive at completely opposite conclusions for the same problem depending
on how you choose the hypothesis, the number of samples, the quality of samples, the significance level, etc.
For this problem, their claims indeed are different while they seems no difference. Let’s see the following

example for the appropriate way to deal with such situation.

Example 1.4.25 There are two ways A and B to make the same type of products with standard deviations
of tensile strength 6 kg and 8 kg, respectively. Now 12 and 16 numbers of products are random selected from
A and B with respective sample means 34 and 40 kg. The question is if the products by A have less tensile
strength than the products by B?
Solution. First, let

Hy:py < po versus Hy iy > po.
The test statistic is

U= XY :3L40:fmm&

62 82
e 2t

The rejection region is [1.64,00). Thus we accept Hy : p1 < po. Second, let
Hy:py > po versus Hy iy < po.

The rejection region is (—oo, —1.64]. Thus we reject Hy : p1 > po. Both results agree to conclude that the
products by A have less tensile strength than the products by B.

Remark 1.4.26 Rejection to the null hypothesis is persuasive whereas acception is not persuisive. In prac-
tice, we should keep on hypothesis test until rejection. Sometimes we may have the contradictory situation,
which means we accept Hy : p1 < po and we also accept Hy : uy > pa. At this time, we should increase the

significance level o and keep on hypothesis test until we arrive at the consistent conclusion.

1.4.6 p-Values

Reporting “reject Hy” or “retain Hy” is not very informative. Instead, we could ask, for every «,
whether the test rejects at that level. Generally, if the test rejects at level v it will also reject at level o > «.

Hence, there is a smallest o at which the test rejects and we call this number the p-value. See Figure 1.6.

Definition 1.4.27 Suppose that for every a € (0,1) we have a size v test with rejection region R, (the size

of Ra, in general, is monotonically increasing w.r.t. o). Then,
p-value = inf {a T(X™) € Ra}.

That is, the p-value is the smallest level at which we can reject Hy.
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Reject?

No

p-value

Figure 1.6: p-values explained. For each a we can ask: does our test reject Hy at level a? The p-value is the

smallest « at which we do reject Hy. If the evidence against Hj is strong, the p-value will be small.

Informally, the p-value is a measure of the evidence against Hy: the smaller the p-value, the stronger

the evidence against Hy. Typically, researchers use the evidence scale as shown in Figure 1.7.

p-value evidence

< .01 very strong evidence against Hy
.01 - .05 strong evidence against Hy

.05 - .10 weak evidence against Hy

> .1 little or no evidence against Hy

Figure 1.7: Table for p-values versus evidence.

Remark 1.4.28 Warning! A large p-value is not strong evidence in favor of Hy. A large p-value

can occur for two reasons: (i) Hy is true or (ii) Hy is false but the test has low power.

Remark 1.4.29 Warning! Do not confuse the p-value with P(Hy|Data). The p-value is not the probability
that the null hypothesis is true.

Theorem 1.4.30 Let w = (5— 00)/c denote the observed value of the Wald statistic W. The p-value is
given by
pvalue = P(IW| > [w]) ~ P(Z] > Ju]) = 28(—|ul),

where Z ~ N(0,1).

To understand this last theorem, look at Figure 1.8.

Here is an important property of p-values.

Theorem 1.4.31 If the test statistic has a continuous distribution, then under Hy : 6 = 6y, the p-value has
a Uniform (0,1) distribution. Therefore, if we reject Hy when the p-value is less than o, the probability of a

type I error is .
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=l [w]

Figure 1.8: The p-value is the smallest o at which you would reject Hy. To find the p-value for the Wald
test, we find a such that |w| and —|w| are just at the boundary of the rejection region. Here, w is the observed
value of the Wald statistic: w = (6 —6y)/&. This implies that the p-value is the tail area P(|Z| > |w|) where
Z ~ N(0,1).

Remark 1.4.32 In other words, if Hy is true, the p-value is like a random draw from a Unif(0,1) distribu-

tion. If Hy is true, the distribution of the p-value will tend to concentrate closer to 0.

Example 1.4.33 Two groups of cholesterol data with respective means of 216.19 and 195.27. Fach of the
groups has 16 persons. The estimated standard deviations are 20.0 and 9.6, respectively. We ask if the means
are different.

Solution. The Wald statistic is

5-0 (X-Y)-0 21619 —195.27

¢ [, 2 202 | 9.62
atm T6 T 56

To compute the p-value, let Z ~ N(0,1) denote a standard normal random variable. Then,

W = =3.78.

p-value = P(|Z] > 3.78) = 2P(Z < —3.78) = 0.0002,

which is very strong evidence against the null hypothesis.
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Figure 1.9:
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1.4.7 Concept for the Best Test
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1.4.8 Nonparametric Hypothesis Test (Pearson’s x? Test)
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Figure 1.13:

We have ignored the probability fitting method, (#EZE E4{#%) in which one can neither obtain high
accuracy nor control the probability of making errors. In this section, we only focus on the Pearson’s x? test,

in which one can control the probability of making the type I error like aforementioned significance tests.

Test for Multinomial Data and Discrete Distributions

Pearson’s x? test is used for multinomial data. Recall that if X = (X1, ..., X)) has a multinomial (n, p)
distribution, then the MLE of p is p = (p1, ..., px) = (X1/n, ..., Xi/n).
Let po = (po1, ---, Pox) be some fixed vector and suppose we want to test

Hy:p=py versus Hy : p # po.

Definition 1.4.34 Pearson’s x? statistic is

T =

k
)

2 k 2
(Xj = npoj)” _ 3 (X; — Ej)
nPo; — E;

j=1 Jj=1

where E; = E(X;) = npo; is the expected value of X; under Hy.

Theorem 1.4.35 Under Hy, T 4, X2(k —1). Hence the test: reject Hy if T > x%(k — 1) has asymptotic
level ae. The p-value is P(x?(k — 1) > t) where t is the observed value of the test statistic.
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10.18 Example (Mendel’s peas). Mendel bred peas with round yellow seeds
and wrinkled green seeds. There are four types of progeny: round yellow,
wrinkled yellow, round green, and wrinkled green. The number of each type
is multinomial with probability p = (p1, p2,p3, pa). His theory of inheritance
predicts that p is equal to

(233 1
Po=1\16"16"16"16 )
In n = 556 trials he observed X = (315,101,108, 32). We will test Hy : p = po

versus Hi : p # po. Since, npg1 = 312.75, npp2 = npoz = 104.25, and npyy =
34.75, the test statistic is

»  (315—312.75)% (101 — 104.25)*
B 312.75 N 104.25
(108 — 104.25)2 (32 — 34.75)?
104.25 MY

X

= 0.47.

The a = .05 value for a x3 is 7.815. Since 0.47 is not larger than 7.815 we do
not reject the null. The p-value is

p-value = P(x2 > 47) = .93

which is not evidence against Hp. Hence, the data do not contradict Mendel’s
theory.’m

In the previous example, one could argue that hypothesis testing is not the
right tool. Hypothesis testing is useful to see if there is evidence to reject Hy.
This is appropriate when Hj corresponds to the status quo. It is not useful for
proving that Hy is true. Failure to reject Hy might occur because Hy is true,
but it might occur just because the test has low power. Perhaps a confidence
set for the distance between p and py might be more useful in this example.

Figure 1.14:
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Figure 1.15:
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Test for Continuous Distribution Function

Let the population X have the distribution function F(z) (such as normal distribution, exponential
distribution, binomial distribution, Poisson distribution, etc). Let us separate the range (R,) of the random
variable X into k disjoint intervals Ay = (ag,a1], A2 = (a1,as],...,Ax = (ag—1,ax], where the length of
each interval a; —a;—1 (j = 1,...,k) may be different. Here, 4;A4,, = @ (j # m,j,m = 1,...,k) and
U;?:lAj = R,. Let x1,...,x, be n observations of the population X and n; is the number of observations in
the set A; such that Zle n; = n. Hence among the n observations, the frequency for observing a data in
Ay is T2

We now test the null hypothesis Hy : F(x) = Fy(x). If Hy is true, the probability for the random
variable X € A; is p;, where

Di :P(Al) :Fo(ai) —Fo(ai,l), 1= 17...,]6. (19)
Moreover, the probability, for n; observations in A, no observations in As, ..., n; observations in Ay, is
n!

71,12 (N
71) p .. .p .
nllngl---nk! 12 ko

which is a multinomial distribution. According to the law of large numbers, when Hj is true, the frequency
“+ and the probability p; should not have too much deviations. As a result, Pearson constructed a test

statistic

v=3 (ni —npi)” (1.10)

i=1 "pi
which is called Pearson’s x? statistic. In the following, we will see that its limit distribution is an asymptotic
x? distribution with k& — 1 degrees of freedom.

For our ease, we first discuss the simple situation for k = 2. When Hj is true,
P(Al) = P1, P(AQ) = p2,
where p; + p2 = 1. We also have n; + ne = n. We now examine the quantity

2 _ (n1 - np1)2 + (ng — np2)2
npi np2

Let

Y1 =n; —np1, Yo =mnz—nps,

and then we see that

Y1 +Ys=n1 —npy +no —npz =n —n(p1 +p2) =0.

Hence, Y7 and Y5 are not independent. Let Yo = —Y7, then we find that

2
, YE Y? & (ny —npy)? < ny — np1 )
X + == = = i)

T onpi npa npip2 npips np1 (1 —p1

We treat ny as a random variable with a binomial distribution B(n,p;). According to the de Moivre-Laplace
ni—npi

np1(l—p1)
sufficiently large. Thus the Pearson’s x? statistic is asymptotically x?(1) distributed with 1 degree of freedom

Theorem in Section ??7, the random variable has asymptotically normal distribution when n is

when n is sufficiently large as k = 2. For general cases, we have the following theorem.
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Theorem 1.4.36 When Hy is true, i.e., p1,...,px are the true probabilities of the population, the Pearson’s
x? statistic defined by (1.10) has an asymptotic x? distribution with k —1 degrees of freedom. Its pdf is given

by

oot 2 e 2, x>0,
fl@y=4 27 (%)
0, <0
Proof. The probability, for n; observations in A;, no observations in As, ..., n; observations in Ay, is
PNy = nte o, N = ) = —— e e
1 — Nlyeeey Vg — Tk *n1!n2! nk!pl Do pk )
where ny + -+ - + ni = n. The Ch.f. of (Ny,..., Ng) is
!
_ it-N __ it-n n: 1, N2 Nk
on(t, .. ty) = Ee* = Z e il 'pl Ds Dy
M1, Nk
ni+-F+ng=n
n
k
= | e
j=1
Let
y, =BTk (1.11)
np;
Then we obviously have the relations
b —-n
Syl sy
=1
with the constraint i
> Yiv/pi = 0.
i=1
Thus all random variables (Y7, ...,Y%) are not linearly independent. From the relation between Y; and N; in

(1.11), the Ch.f. of (Y3,...,Y}) is

n

o(t1,...,t,) = exp 1tj/Np; D; exp( )
( Z J Z J \/@

where the first term comes from the translation and the second term comes from the scaling multiplication.
Take the logarithm on both sides,

(47
Inp(ty,..., t) = fz\th\/p? +nln Zmexp(\/@)
j

We now Taylor expand the exponential and logarithm function at ¢; = 0,

it it t2 1
exp(\/“ ) “1= (),
np; np;  2np; n
22
In(l+2z) = x— 74—0(352).
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Then

k [ & ) 2
. it t5 1
Inp(ty,... . t) = —z\/HE ti/D; +nln Epj <1+ J . +o(n)>
=1

= np;  2np;

k . k k
. v 1 1
j=1 7j=1 Jj=1

k i 1 < 10 & C
_ ; . - v . - 2_ | 2 . - —
2
1< 1 &
2 .
- —§Zt] — [ tivp | +o(1)
j=1 j=1
Asn — oo,
1 1< 2
2
mp(ty, ... t) — —§th +3 > tivpi |
Jj=1 Jj=1
which is equivalent to
2
1| k
. _ 2
nhﬁngo ©(t1,... tg) = exp —3 th - th,/pj . (1.12)
Jj=1 j=1
We now take an orthogonal transformation:
Zl all DR ... alk Yl
Zr—1 Ap—1,1 0t Qk—1k Y1

2y VPt NP2 o Dk Yie

where the transformation matrix A satisfies ATA = AAT = I. Correspondingly, the variables for the Ch.f.s

have the linear transformation,

uq a1 e e a1k tl
Up_1 ag—1,1 0 Gp_1k te—1
Uk Vb1 /P2 Dk g
where (uq,--- ,uk)T corresponds to (Zy,- - ,Zk)T and (t1,--- ,tk)T corresponds to (Y7,--- ,Yk)T. In the

equation (1.12), we can compute the enclosed quantity,

2

k k k k—1
2 2 2 2
Yot D tive Yol —up =)

=1 = =1 =

Thus, as n — oo, The Ch.f. of (Z3,---,Z)) becomes
lim @(ty,...,tx) =exp | —

1
n— oo 2
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This means that each of Zy,---, Zx_1 has weak convergence of distribution to pairwisely independent
normal distribution N(0,1) (corresponding to the Ch.f. ¢(t;) — exp (—7u ) for j =1,...,k — 1) whereas
7, has convergence in probability to a constant 0 (corresponding to the Ch.f. p(t;) — 1). Hence7

k k
=) VP=Y'Y=Y'ATAY=2"2=> "7}
= i=1

has an asymptotic x? distribution with k& — 1 degrees of freedom. m

Remark 1.4.37 If in the null hypothesis Hy only the the type of the distribution of the population is given
(such as Gaussian, exponential, Poisson, etc) but with unknown parameters 61, ..., 60, in the distribution,
we cannot directly apply the above theorem to test the null hypothesis. Fisher proved the following theorem to

resolve the hypothesis test problem for a distribution with unknown parameters.

Theorem 1.4.38 Let F(x;01,...,0.,,) be the true distribution of the population, where 01, ...,0,, are m un-
known parameters. Replace (01, ...,0m) in F(x;01,...,0,) with their mazimum likelihood estimates (MLEs)
(61,...,0m), and futher replace F(x) in (1.9) with F(x;61,...,0,,) to obtain

Pi=Flai;01,....00m) — Flai—1;01,...,0,). (1.13)
Substitute the above into (1.10) to obtain the test statistic,

eyt
K3

=1

Then the statistic x> has an asymptotic x> distribution with k —m — 1 degrees of freedom as n — co.

FFFHFFE R E 1966

Proof. The proof can be found in one of H. Cramér’s book. m
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Figure 1.18: This is the 1st example using x? test for a continuous distribution.
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Figure 1.20: This is the 2nd example using x? test for a continuous distribution.
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