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Chapter 1

Confidence Interval and Hypothesis

Test

1.1 Introduction to Statistical Inference and Learning

A typical statistical inference question is:
Given a sample X1, . . . , Xn ∼ F , how do we infer F? In some cases, we may want to infer only some feature
of F such as its mean.

1.1.1 Parametric and Nonparametric models

A statistical model F is a set of distributions (or densities or regression functions).
A parametric model is a set F that can be parameterized by a finite number of parameters. For

example, if we assume that the data come from a Normal distribution, then the model is

F =

{
f(x;µ, σ) =

1√
2πσ

exp

{
− 1

2σ2
(x− µ)2

}
,−∞ < µ < +∞, 0 < σ <∞

}
. (1.1)

This is a two-parameter model. We have written the density as f(x;µ, σ) to show that x is a value of the
random variable whereas µ and σ are parameters. In general, a parametric model takes the form

F = {f(x; θ) : θ ∈ Θ}

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ.
If θ is a vector but we are only interested in one component of θ, we call the remaining parameters nuisance
parameters.

Example 1.1.1 (Two-dimensional Parametric Estimation) Suppose that X1, . . . , Xn ∼ F and we assume
that the pdf f ∈ F where F is given in (1.1). The goal is to estimate the two parameters, µ and σ, from
the data. If we are only interested in estimating µ, then µ is the parameter of interest and σ is a nuisance
parameter.

A nonparametric model is a set F that cannot be parameterized by a finite number of parameters
or parameterized by a large amount number of parameters such as Neural Networks. For example, FALL

= {all CDF′s} is nonparametric.
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Example 1.1.2 (Nonparametric density Estimation) Let X1, . . . , Xn be independent observations from a
CDF F and let f = F ′ be the pdf. Suppose we want to estimate the pdf f . It is not possible to estimate f
assuming only that F ∈ FALL. We need to assume some smoothness on f . For example, we might assume
that f ∈ FDENS ∩ FSOB where FDENS is the set of all probability density functions and

FSOB =

{
f :

∫
(f ′′(x))

2
dx <∞

}
,

is the Sobolev space which is set of functions that are not “too wiggly”.

1.1.2 Regression

Example 1.1.3 (Regression, prediction, and classification). Suppose we observe pairs of data (X1, Y1), . . . ,

(Xn, Yn). Perhaps Xi is the blood pressure of subject i and Yi is how long they live. X is called a predictor
or regressor or feature or independent variable. Y is called the outcome or the response variable or
the dependent variable. We call r(x) = E(Y |X = x) the regression function. If we assume that r ∈ F

where F is finite dimensional — the set of straight lines for example — then we have a parametric regression
model. If we assume that r ∈ F where F is not finite dimensional such as Neural Networks then we have a
nonparametric regression model. The goal of predicting Y for a new patient based on their X value is called
prediction. If Y is discrete (for example, live or die) then prediction is instead called classification. If
our goal is to estimate the function r, then we call this regression or curve estimation. Regression models
are sometimes written as

Y = r(X) + ε,

where Eε = 0.

1.1.3 Frequentists and Bayesians

Frequentists and Bayesians. There are many approaches to statistical inference. The two dominant
approaches are called frequentist inference and Bayesian inference.

Some Notation. If F = f(x; θ) : θ ∈ Θ is a parametric model, we write P (X ∈ A) =
∫
A
f(x; θ)dx and

E(r(X)) =
∫
r(x)f(x; θ)dx. The probability or expectation is with respect to f(x; θ); it does not mean we

are averaging over θ. Similarly, we write V ar for the variance.

1.2 Fundamental Concepts in Inference and Point Estimation

1.2.1 Introduction

Many inferential problems can be identified as being one of three types: point estimation, confidence
sets, or hypothesis testing. The basic idea is to use point estimation or confidence sets when we
know nothing about the parameters at the beginning. We can apply hypothesis tests when we
know something about the parameters but we have some doubts, suspicions, or requirements
for the parameters. In other words, we can understand hypothesis tests as a disproof approach in the sense
of probability view. Parametric hypothesis tests are designed for unknown parameters in parametric models.
Nonparametric hypothesis tests are designed for such as distributions and independence in nonparametric
models. Here, we give a brief introduction to the ideas.
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Table 1.1: Comparison between frequentists and Bayesians.

frequentists Bayesians

Hypothesis testing Set null and alternative hypotheses
and use statistical tests to assess
evidence against the null.

Consider prior beliefs when forming
hypotheses.

Probability
interpretation

Frame probability in terms of
objective, long-term frequencies.

Interpret probabilities subjectively
and update them as new data is
collected.

Sampling Emphasize random sampling and
often require fixed sample sizes.

Can adapt well to varying sample
sizes since Bayesians update their
beliefs as more (observed) data
comes in.

Assumption Parameters that you estimate are
fixed and are a single point while
samples are random variables

There is a probability distribution
around both the parameters and the
samples.

The regime for
application

Law of large number using a large
amount of data.

Probability is degree of belief.
Applicable when one has limited
data, priors, and computing power.

1.2.2 Point Estimation

Point estimation refers to providing a single “best guess” of some quantity of interest. The quantity of
interest could be a parameter in a parametric model, a CDF F , a probability density function f , a regression
function r, or a prediction for a future value Y of some random variable. Standard estimators include
moments estimator, maximum likelihood estimator (MLE), maximum a posteriori (MAP), etc.

By convention, we denote a point estimate of θ by θ̂ or θ̂n. Remember that θ is a fixed, unknown
quantity. The estimate θ̂ depends on the data so θ̂ is a random variable.

More formally, let X1, ..., Xn be n i.i.d. data points from some distribution F . A point estimator θ̂n of
a parameter θ is some function of X1, ..., Xn:

θ̂n = g(X1, ..., Xn).

The bias of an estimator is defined by
bias(θ̂n) = E(θ̂n)− θ.

We say that θ̂n is unbiased if E(θ̂n) = θ. Unbiasedness used to receive much attention but these days is
considered less important; many of the estimators we will use are biased.

A reasonable requirement for an estimator is that it should converge to the true parameter value as we
collect more and more data. This requirement is quantified by the following definition:

Definition 1.2.1 A point estimator θ̂n of a parameter θ is (weakly) consistent if θ̂n
P−→ θ.
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The distribution of θ̂n is called the sampling distribution. The standard deviation of θ̂n is called the
standard error, denoted by σ:

σ = σ(θ̂n) =

√
V ar(θ̂n).

Often, the standard error depends on the unknown F . In those cases, σ is an unknown quantity but we
usually can estimate it. The estimated standard error is denoted by σ̂.

Example 1.2.2 Let X1, ..., Xn ∼ Bernoulli(p) with unknown p and let p̂n = n−1
∑
iXi := Xn. Then

E(p̂n) = n−1
∑
iE(Xi) = p so p̂n is unbiased. The standard error is σ =

√
V (p̂n) =

√
p(1− p)/n. The

estimated standard error is σ̂ =
√
p̂n(1− p̂n)/n.

The quality of a point estimate is sometimes assessed by the mean squared error, or MSE defined
by

MSE = E(θ̂n − θ)2.

Keep in mind that E(·) refers to expectation with respect to the distribution

f(x1, ..., xn; θ) =

n∏
i=1

f(xi; θ),

that generated the data.

Theorem 1.2.3 The MSE can be written as

MSE = bias2(θ̂n) + V ar(θ̂n).

Proof. Let θn = E(θ̂n). Then

E(θ̂n − θ)2 = E(θ̂n − θn + θn − θ)2

= E(θ̂n − θn)2 + 2(θn − θ)E(θ̂n − θn) + E(θn − θ)2

= (θn − θ)2 + E(θ̂n − θn)2

= bias2(θ̂n) + V ar(θ̂n).

There is a bias-variance tradeoff.

Theorem 1.2.4 If bias→ 0 and σ → 0 as n→∞ then θ̂n is consistent, that is, θ̂n
P−→ θ.

Proof. If bias→ 0 and σ → 0 then, by above Theorem, MSE→ 0. It follows that θ̂n
qm−→ θ. Thus the result

follows.

Example 1.2.5 Returning to the coin flipping example, we have that E(p̂n) = n−1
∑
iE(Xi) = p so p̂n is

unbiased. The standard error is σ =
√
V (p̂n) =

√
p(1− p)/n→ 0. Hence, p̂n is a consistent estimator.

Many of the estimators we will encounter will turn out to have, approximately, a normal distribution.

Definition 1.2.6 An estimator is asymptotically normal if

θ̂n − θ
σ

d−→ N(0, 1). (1.2)
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1.3 Confidence Sets

1.3.1 Definition

（置信度为1− α的置信区间）

Definition 1.3.1 A 1 − α confidence interval for a parameter θ is an interval Cn = (a, b) where a =

a(X1, ..., Xn) and b = b(X1, ..., Xn) are two functions or two statistics of the random samples X1, . . . , Xn

from a distribution such that
P (θ ∈ Cn) ≥ 1− α, for all θ ∈ Θ.

In words, (a, b) traps θ with probability 1− α. We call 1− α the coverage of the confidence interval.

Remark 1.3.2 Warning! Cn is random and θ is fixed. There is much confusion about how to interpret a
confidence interval. A confidence interval is not a probability statement about θ since θ is a fixed quantity,
not a random variable.

Remark 1.3.3 Commonly, people use 95 percent confidence intervals, which corresponds to choosing α =

0.05. If θ is a vector then we use a confidence set (such as a sphere or an ellipse) instead of an interval.

（枢轴量）shu zhou

Definition 1.3.4 A function T = T (X1, X2, . . . , Xn, θ) is called a pivotal quantity if it is bijective in θ and
has a completely known distribution.

Usually, a pivotal quantity is not a statistic. However, besides the parameter θ that we want to estimate,
a pivotal quantity T is not allowed to contain other unknown parameters.
The procedure for find the confidence interval is as follows:
(1) Find a suitable pivotal quantity T (X1, X2, . . . , Xn, θ).
(2) Given the coefficient α, find the corresponding quantile from the distribution of T such that the probability
between two quantiles is 1− α.
(3) Transform the inequality and calculate the confidence interval [a, b] for θ.

Figure 1.1: The confidence interval for the normal distribution.
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Example 1.3.5 (Z-distribution). Suppose that X ∼ N(µ, σ2), where σ2 is a known constant but µ is an
unknown parameter. Let X1, . . . , Xn be a random sample from X. Can we find a coefficient 1−α confidence
interval for µ?

Solution. Note that X is an unbiased estimator of µ, and Z = X−µ
σ/
√
n
∼ N(0, 1). (Here σ is a known

constant, and Z does not contain unknown parameters other than µ.)
Note that the pdf of a standard normal distribution is an even function. We have

P

(∣∣∣∣X − µσ/
√
n

∣∣∣∣ ≥ zα/2) = 2P

(
X − µ
σ/
√
n
≥ zα/2

)
= 2 · α

2
= α.

See Fig. 1.1. Thus a 1− α confidence interval for µ is(
X − zα/2

σ√
n
,X + zα/2

σ√
n

)
.

Remark 1.3.6 A coefficient 1 − α confidence interval for θ may be not unique. In above example, the
numbers z1−α/2 and zα/2 can be replaced by any numbers such that 0 < α1, α2 < 1 and α1 − α2 = 1 − α.
Indeed,

P (zα1 < Z < zα2) = α1 − α2 = 1− α.

However, in this example, the choice of α1 = 1 − α/2 and α2 = α/2 gives the shortest coefficient 1 − α

confidence interval (which can be deduced from the symmetry of the pdf or seen from the graph).

Proof. Solution. Notice that

P (zβ ≤ Z ≤ z1−α+β) = 1− α+ β − β = 1− α,

where β is not unique to be α/2.
We want to find the shortest interval,

min
β

(z1−α+β − zβ) .

We have that
Φ(zβ) = β, Φ(z1−α+β) = 1− α+ β.

where Φ is the distribution function. We take the derivative w.r.t. β:

ϕ(zβ)
dzβ
dβ

= 1,

z′β =
1

ϕ(zβ)
.

Similarly,
z′1−α+β =

1

ϕ(z1−α+β)
.

The minimization problem is equivalent to

z′1−α+β − z′β =
1

ϕ(z1−α+β)
− 1

ϕ(zβ)
= 0.

Hence
ϕ(z1−α+β) = ϕ(zβ).

Since pdf ϕ is an even function, this gives z1−α+β = −zβ . Thus, β = α
2 gives the shortest interval.
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Figure 1.2: The confidence interval for the t-distribution.

Example 1.3.7 (t-distribution). Suppose that X ∼ N(µ, σ2), where µ and σ2 are both unknown parameters.
Let X1, . . . , Xn be a random sample from X. Can we find a coefficient 1− α confidence interval for µ?

Solution. See Fig. 1.2. Note that X is an unbiased estimator of µ, and Z = X−µ
σ/
√
n
∼ N(0, 1). We replace

σ in Z by its unbiased estimator S∗n. Note that

X − µ
S∗n/
√
n

=
X − µ

Sn/
√
n− 1

∼ t(n− 1).

Note that the pdf of t distribution is an even function. We have

P

(∣∣∣∣ X − µS∗n/
√
n

∣∣∣∣ ≥ tα/2(n− 1)

)
= α,

P

(∣∣∣∣ X − µS∗n/
√
n

∣∣∣∣ < tα/2(n− 1)

)
= 1− α.

Calculation reveals that a 1− α confidence interval is(
X − tα/2(n− 1)

S∗n√
n
,X + tα/2(n− 1)

S∗n√
n

)
.

Figure 1.3: The confidence interval for the χ2 distribution.

Example 1.3.8 Suppose that X ∼ N(µ, σ2), where µ and σ2 are both unknown parameters. Let X1, . . . , Xn

be a random sample from X. Can we find a coefficient 1− α confidence interval for σ2?
Solution. See Fig. 1.3. We consider the following:

(n− 1)S∗2n
σ2

=
nS2

n

σ2
∼ χ2(n− 1).
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We would like
P

(
χ2

1−α/2(n− 1) <
nS2

n

σ2
< χ2

α/2(n− 1)

)
= 1− α.

So a confidence interval for σ2 is (
nS2

n

χ2
α/2(n− 1)

,
nS2

n

χ2
1−α/2(n− 1)

)
.

Remark 1.3.9 In above example, if µ is a known constant, we can use χ2 =
∑n

i=1(Xi−µ)2

σ2 , which has distri-
bution χ2(n).

Example 1.3.10 We now estimate the 1− α joint confidence sets of µ and σ2 for the normal distribution.
Since X and S∗2n (or S2

n) are independent, we construct two independent pivotal quantities containing only
two unknowns µ and σ2,

U =
X − µ
σ/
√
n

and χ2 =
(n− 1)S∗2n

σ2
,

which have distributions of N(0, 1) and χ2(n−1), respectively. We woule like to find a, c1, c2 in the following,

P

(
−a < X − µ

σ/
√
n
< a, c1 <

(n− 1)S∗2n
σ2

< c2

)
= 0.95.

Due to the independence, we only need to solve

P

(
−a < X − µ

σ/
√
n
< a

)
P

(
c1 <

(n− 1)S∗2n
σ2

< c2

)
= 0.95.

This is equivalent to

P

(
−a < X − µ

σ/
√
n
< a

)
= β1, P

(
c1 <

(n− 1)S∗2n
σ2

< c2

)
= β2,

where β1β2 = 0.95. There are infinitely many β1 and β2 satisfying the relation. For convenience, ignoring
the best approximation, we just take β1 = β2 = 0.975. Hence, with α = 0.025,

P

(
−zα/2 <

X − µ
σ/
√
n
< zα/2

)
= 0.975,

P

(
χ2

1−α/2(n− 1) <
(n− 1)S∗2n

σ2
< χ2

α/2(n− 1)

)
= 0.975,

Notice that the confidence set is not a rectangle, which is shown by the shadow region in Fig. 1.4. We can
eventually obtain the result,

P

((
X − µ

)2
<
σ2z2

α/2

n
,

(n− 1)S∗2n
χ2
α/2(n− 1)

< σ2 <
(n− 1)S∗2n

χ2
1−α/2(n− 1)

)
= 0.95.

Note that the confidence set is not unique determined in this example based on the choice of β1 and β2.
For symmetric pdf, one can find the shortest confidence interval centered at the mean value. However, for
nonsymmetric pdf, it is not easy to find the shortest confidence interval.
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Figure 1.4: Shown by the shadow is the joint confidence set for the parameter (µ, σ2).

1.3.2 Different Ways to Construct Confidence Intervals

Let X1, ..., Xn ∼ Bernoulli(p). This has wide applications in qualification rate of products, passage rate
in exams, market satisfaction, etc.

Example 1.3.11 In the coin flipping setting, let X1, ..., Xn ∼ Bernoulli(p). Let Cn = (p̂n− εn, p̂n + εn). We
saw that Chebyshev’s inequality yielded

P (|Xn − p| > εn) ≤ E|Xn − p|2

ε2n
=
pq/n

ε2n
= α.

Take p = 0.5, n = 100 and α = 0.05. Then

εn =

√
pq

nα
= 0.2236.

Example 1.3.12 In the coin flipping setting, let Cn = (p̂n − εn, p̂n + εn). Using Hoeffding’s inequality (see
details in the following Appendix)

P (|Xn − p| > εn) ≤ 2e−2nε2n ,

it follows that ε2n = log(2/α)
2n and

P (p ∈ Cn) ≥ 1− α,

for every p. Hence, Cn is a 1 − α confidence interval. Take α = 0.05 and n = 100, then εn =
√

log(2/α)
2n =

0.1358. (More comments here. Hoeffding’s inequality gives us a simple way to create a confidence interval
for a binomial parameter p. Fix α > 0 and let

εn =

√
log(2/α)

2n
.

By Hoeffding’s inequality,
P (|Xn − p| > εn) ≤ 2e−2nε2n = α.

Let Cn = (p̂n − εn, p̂n + εn) where p̂n = Xn.Then, P (p /∈ Cn) = P (|Xn − p| > εn) ≤ α. Hence, P (p ∈ Cn) ≥
1− α, that is, the random interval Cn traps the true parameter value p with probability 1− α; we call Cn a
1− α confidence interval.)
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As mentioned earlier, point estimators often have a limiting normal distribution based on Central Limit
Theorem, meaning that equation (1.2) holds, that is, θ̂n ≈ N(θ, σ̂2). In this case we can construct (approxi-
mate) confidence intervals as follows.

Theorem 1.3.13 (Normal-based Confidence Interval). Suppose that θ̂n ≈ N(θ, σ̂2). Let Φ be the CDF
of a standard Normal and let zα/2 = Φ−1(1 − (α/2)), that is, P (Z > zα/2) = α/2 and P (−zα/2 < Z <

zα/2) = 1− α where Z ∼ N(0, 1). Let

Cn = (θ̂n − zα/2σ̂, θ̂n + zα/2σ̂).

Then
P (θ ∈ Cn)→ 1− α,

converges in distribution.

Proof. Let Zn = (θ̂n − θ)/σ̂. By assumption Zn
d−→ Z where Z ∼ N(0, 1). Hence

P (θ ∈ Cn) = P (θ̂n − zα/2σ̂ < θ < θ̂n + zα/2σ̂)

= P (−zα/2 <
θ̂n − θ
σ̂

< zα/2)

→ P (−zα/2 < Z < zα/2) = 1− α.

Remark 1.3.14 For 95 percent confidence intervals, α = 0.05 and zα/2 = 1.96 ≈ 2 leading to the approxi-
mate 95 percent confidence interval θ̂n ± 2σ̂.

Remark 1.3.15 Our definition of confidence interval requires that P (θ ∈ Cn) ≥ 1 − α for all θ ∈ Θ. A
pointwise asymptotic confidence interval requires that

lim inf
n→∞

P (θ ∈ Cn) ≥ 1− α,

for all θ ∈ Θ. A uniform asymptotic confidence interval requires that

lim inf
n→∞

inf
θ∈Θ

P (θ ∈ Cn) ≥ 1− α.

The approximate Normal-based interval is a pointwise asymptotic confidence interval.

Example 1.3.16 Let X1, ..., Xn ∼ Bernoulli(p) with unknown p and let p̂n = n−1
∑
iXi. Then E(p̂n) =

n−1
∑
iE(Xi) = p so p̂n is unbiased. The standard error is σ =

√
V (p̂n) =

√
p(1− p)/n. The estimat-

ed standard error is σ̂ =
√
p̂n(1− p̂n)/n. By the Central Limit Theorem, p̂n ≈ N(p, σ̂2). Therefore, an

approximate 1− α confidence interval is

p̂n ± zα/2σ̂ = p̂n ± zα/2

√
p̂n(1− p̂n)

n
.

Take α = 0.05, p̂n ≈ 0.5, and n = 100, then zα/2

√
p̂n(1−p̂n)

n ≈ 0.1. Compare this with the confidence
interval in Example 1.3.11 and Example 1.3.12. The Normal-based interval is shorter but it only
has approximately (large sample) correct coverage. When n ≥ 30, the application of normal-based
Confidence Interval is pretty good.
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Example 1.3.17 Here is another way to compute based on the central limit theorem. We have

√
n

Xn − p√
p(1− p)

d−→ N(0, 1).

This reveals that

P

(
zα/2 ≤

√
n

Xn − p√
p(1− p)

≤ z1−α/2

)
≈ 1− α,

from which we can solve the approximate 1− α confidence interval,2nXn + z2 −
√
z4 + 4nXnz2 − 4nX

2

nz
2

2(n+ z2)
,

2nXn + z2 +

√
z4 + 4nXnz2 − 4nX

2

nz
2

2(n+ z2)

 , (1.3)

where z = z1−α/2. Take α = 0.05, n = 100, Xn = p̂n ≈ 0.5, we obtain the confidence interval

[0.4038, 0.5962].

The interval (1.3) is called the Wilson interval approximation, which can be applied to the cases that the
number of samples n is greater than 30.

Example 1.3.18 Agresti and Coull (1998) proposed another interval approximation for p,[
p̃− zα/2

√
p̃(1− p̃)

ñ
, p̃+ zα/2

√
p̃(1− p̃)

ñ

]
, (1.4)

where ñ = n+ z2
α/2 and p̃ = 1

ñ

(∑n
i=1Xi + 1

2z
2
α/2

)
. Take α = 0.05, n = 100, Xn = p̂n ≈ 0.5, we obtain

[0.4038, 0.5962].

This interval is called Agresti and Coull interval approximation. Numerical results show that the coverage of
(1.4) is a little bit larger than that of (1.3). When n ≥ 30, both (1.3) and (1.4) are suggested. When n < 30,
both can be used for interval approximations as a reference.

1.3.3 Appendix Probability Inequalities

Hoeffding’s inequality is similar in spirit to Markov’s inequality and Chebyshev’s inequality but it is
a sharper inequality. We present the result here in two parts.

Theorem 1.3.19 (Hoeffding’s Inequality). Let Y1, ..., Yn be independent observations such that E(Yi) = 0

and ai ≤ Yi ≤ bi (The boundedness is important). Let ε > 0. Then, for any t > 0,

P

(
n∑
i=1

Yi ≥ ε

)
≤ e−tε

n∏
i=1

et
2(bi−ai)2/8. (1.5)

Devroye et al. (1996) is a good reference on probability inequalities and their use in statistics and pattern
recognition. The following proof of Hoeffding’s inequality is from that text.
Proof. Proof of Hoeffding’s Inequality. We will make use of the exact form of Taylor’s theorem: if g is a
smooth function, then there is a number ξ ∈ (0, u) such that g(u) = g(0) + ug′(0) + u2

2 g
′′(ξ).
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Proof of Theorem 1.3.19. For any t > 0, we have, from Markov’s inequality, that

P

(
n∑
i=1

Yi ≥ ε

)
= P

(
t

n∑
i=1

Yi ≥ tε

)
= P

(
et

∑n
i=1 Yi ≥ etε

)
≤ e−tεE

(
et

∑n
i=1 Yi

)
= e−tε

n∏
i=1

E(etYi). (1.6)

Since ai ≤ Yi ≤ bi, we can write Yi as a convex combination of ai and bi, namely, Yi = αbi + (1− α)ai

where α = (Yi − ai)/(bi − ai). So, by the convexity of ety we have

etYi ≤ Yi − ai
bi − ai

etbi +
bi − Yi
bi − ai

etai .

Take expectations of both sides and use the fact that E(Yi) = 0 to get

EetYi ≤ − ai
bi − ai

etbi +
bi

bi − ai
etai = eg(u),

where u = t(bi − ai), g(u) = −γu+ log(1− γ + γeu) and γ = −ai/(bi − ai).
Note that g(0) = g′(0) = 0. Also, g′′(u) ≤ 1/4 for all u > 0. By Taylor’s theorem, there is a ξ ∈ (0, u)

such that

g(u) = g(0) + ug′(0) +
u2

2
g′′(ξ)

=
u2

2
g′′(ξ) ≤ u2

8
=
t2(bi − ai)2

8
.

Hence,
EetYi ≤ eg(u) ≤ et

2(bi−ai)2/8.

The result follows from (1.6).

Theorem 1.3.20 Let X1, ..., Xn ∼ Bernoulli(p). Then, for any ε > 0,

P (|Xn − p| > ε) ≤ 2e−2nε2 ,

where Xn = n−1
∑n
i=1Xi.

Proof. Proof of Theorem 1.3.20. Let Yi = (1/n)(Xi − p). Then E(Yi) = 0 and a ≤ Yi ≤ b where a = −p/n
and b = (1− p)/n. Also, (b− a)2 = 1/n2. Applying Theorem 1.3.19 we get

P (Xn − p > ε) = P

(
n∑
i=1

Yi ≥ ε

)
≤ e−tεet

2/(8n).

The above holds for any t > 0. In particular, take t = 4nε and we get P (Xn − p > ε) ≤ e−2nε2 . By a similar
argument we can show that P (Xn − p < −ε) ≤ e−2nε2 . Putting these together we get

P (
∣∣Xn − p

∣∣ > ε) ≤ 2e−2nε2 .

The following inequality is useful for bounding probability statements about Normal random variables.

13



Theorem 1.3.21 (Mill’s Inequality). Let Z ∼ N(0, 1). Then,

P (|Z| > t) ≤
√

2

π

e−t
2/2

t
.

Proof. Intuitively, this kind of tail bound is useful because we can get exponentially-fast decay without
calculating the distribution function directly. The broad strokes of the proof follow Aliyah Ahmed’s response
to a post on StackExchange. We begin by observing that density of Z is symmetric about the origin, therefore:

P{|Z| > t} = 2P{Z > t}

We then observe that by playing with distribution functions and expectations, we get the following upper
bound:

t · P{Z > t} = t

∫ ∞
t

dF (x)

≤
∫ ∞
t

xdF (x)

=

∫ ∞
t

x · 1√
2π

exp{−x
2

2
}

=
1√
2π

exp{− t
2

2
}.

In the process using sneaky way to introduce a quantity that has a nice, clean closed-form integral. Closer
examination shows that this is in fact a tighter version of Markov’s Inequality; rather than taking EX, we
take E[X · 1{X > t}]. This implies that:

P{Z > t} ≤ 1√
2π

1

t
exp{− t

2

2
},

P{|Z| > t} ≤
√

2

π

1

t
exp{− t

2

2
}.

Remark 1.3.22 Let Z ∼ N(0, σ2). Then,

P (|Z| > t) ≤
√

2

π

σ

t
e−t

2/(2σ2).

Remark 1.3.23 This result can be extended to the maximum of m Gaussian random variables by way of the
union bound. Suppose {Zi}mi=1 ∼ N(0, σ2). Then the union bound implies:

P ( max
1≤i≤m

|Zi| > t) ≤ m ·
√

2

π

σ

t
e−t

2/(2σ2).

Example 1.3.24 Let X1, ..., Xn ∼ Bernoulli(p). Let p = 0.5, n = 100 and ε = 0.2. We saw that Chebyshev’s
inequality yielded

P (|Xn − p| > ε) ≤ E|Xn − p|2

ε2
=
pq/n

ε2
= 0.0625.

According to Hoeffding’s inequality,

P (|Xn − p| > ε) ≤ 2e−2(100)(0.2)2 = 0.00067.
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By the Central Limit Theorem,

P (|Xn − p| > ε) ≤ P (
|Xn − p|√

pq/n
>

ε√
pq/n

) ≈ P
(
|Z| > 0.2

0.5
10

= 4

)
< 6× 10−5,

where Z ∼ N(0, 1). By the table for Φ, we know that the probability is smaller at least than 0.0004 since 4

is too large for a standard normal. By Mill’s inequality, we can see that the probability is not greater than
6×10−5. One can see CLT is most tight bound, however, CLT only provides an estimation of the probability.
This CLT bound is valid only when n is really large. In contrast, the other two bounds are reliable for any
number of samples n. Moreover, Hoeffding’s bound is tighter than Chebyshev’s. As I know, when n is large
one can use Hoeffding’s bound whereas when n is small one can use Chebyshev’s bound.

1.3.4 More Topics about Confidence Interval

unknown variances for both subsamples

If both σ2
1 and σ2

2 are unknown and also we do not know whether they are equal, then the problem
to estimate the confidence interval of the difference mean µ1 − µ2 is the famous Behren-Fisher problem in
statistics. If both σ2

1 and σ2
2 were known, we could use the confidence interval,[
X − Y − z1−α/2

√
σ2

1

n
+
σ2

2

m
,X − Y + z1−α/2

√
σ2

1

n
+
σ2

2

m

]
.

Now since σ2
1 and σ2

2 are unknown, we can replace them with unbiased S∗2n,1 and S∗2n,2 and also replace z1−α/2

with t1−α/2(l) (with l degrees of freedom) to obtainX − Y − t1−α/2(l)

√
S∗2n,1
n

+
S∗2n,2
m

,X − Y + t1−α/2(l)

√
S∗2n,1
n

+
S∗2n,2
m

 ,
where l is the closest integer to the following l∗,

l∗ =

(
S∗2
n,1

n +
S∗2
n,2

m

)2

1
n−1

(
S∗2
n,1

n

)2

+ 1
m−1

(
S∗2
n,2

m

)2 .

Here are two issues to construct the pivotal quantity. First, the sum of χ2 distributions with different non-
integer variances may not give rise to a χ2 distribution since the exponential indices may be different. Second,
it is hard to cancel out both σ2

1 and σ2
2 in constructing the pivotal quantity.

单侧置信限

one-sided confidence interval

So far we only discuss the two-sided confidence interval. In practice, we only interested in the unknown
parameter not smaller than or not greater than some value. For instance, we hope the lifespan of some
products as long as possible, the standard deviation of the size of some products as small as possible, etc.
We now need the concept for one-sided confidence interval.
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Definition 1.3.25 Let θ be a parameter and let a = a(X1, ..., Xn) and b = b(X1, ..., Xn) be two functions
or two statistics of the random samples X1, . . . , Xn from a distribution. Then a is said to be a 1 − α lower
one-sided confidence interval for θ if

P (θ ≥ a) ≥ 1− α, for all θ ∈ Θ.

In words, (a,∞) traps θ with probability 1 − α. On the other hand, b is said to be a 1 − α upper one-sided
confidence interval for θ if

P (θ ≤ b) ≥ 1− α, for all θ ∈ Θ.

In words, (−∞, b) traps θ with probability 1− α.

置信水平为1− α的单侧置信下限（上限）

Example 1.3.26 Suppose that X ∼ N(µ, σ2), where µ and σ2 are both unknown parameters. Let X1, . . . , Xn

be a random sample from X. Can we find a coefficient 1− α lower one-sided confidence interval for µ?
Solution. Note that X is an unbiased estimator of µ, and Z = X−µ

σ/
√
n
∼ N(0, 1). We replace σ in Z by its

unbiased estimator S∗n. Note that

X − µ
S∗n/
√
n

=
X − µ

Sn/
√
n− 1

∼ t(n− 1).

Then we have
P

(
X − µ
S∗n/
√
n
< tα(n− 1)

)
= 1− α.

Calculation reveals that a 1− α lower one-sided confidence interval is

[X − tα(n− 1)
S∗n√
n
,+∞).

relationship between confidence interval and hypothesis test for standard problems

For the problems of estimating means, variances, and differences of means, ratios of variances for normal
distributions, the construction of pivotal quantities for confidence intervals is similar to the application of
test statistics in hypothesis tests. In the following section, we will discuss more about this topic.

This is not hard to understand since there are close relations between confidence interval approximaitons
and hypothesis tests. Let us consider the example for X ∼ N(µ, σ2), where µ is unknown and σ2 is known.
Then the statement that µ0 belongs to the 1− α confidence interval of µ is equivalent to the statement that
we cannot reject the null hypothesis at the level α for the hypothesis test problem H0:µ = µ0, H1:µ 6= µ0.

The reason is given as follows. The 1− α confidence interval is(
X − zα/2

σ√
n
,X + zα/2

σ√
n

)
.

If this set constains µ0, then we have
∣∣X − µ0

∣∣ ≤ zα/2
σ√
n
. This means that

∣∣∣X−µ0

σ/
√
n

∣∣∣ ≤ zα/2. Thus at the
significance level α, the subsampling µ0 is NOT located in the rejection region of the test. Therefore, for the
hypothesis test problem, we cannot reject the null hypothesis at the significance level of α.
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1.4 Hypothesis Testing

1.4.1 Definition

Keywords: Parametric Hypothesis Test（参数假设检验）， significance level（显著性水平）， p-value
（p值）

In general, let us consider a statistical problem involving a population X whose distribution has a
unknown parameter θ. The value of θ is unknown but must lie in a certain parameter space Θ. Suppose now
that Θ can be partitioned into two disjoint subsets Θ0 and Θ1, i.e.,

Θ = Θ0 ∪Θ1, Θ0 ∩Θ1 = ∅.

And the statistician is interested in whether θ lies in Θ0 or in Θ1. Denote by Hi the hypothesis that θ ∈ Θi

(i = 0, 1). The statistician must decide which of the hypotheses H0 or H1 appears to be true. A problem of
this type is called a problem of testing hypotheses.

零假设，备择假设

In hypothesis testing, we start with some default theory — called a null hypothesis H0 — and we
ask if the data provide sufficient evidence to reject the theory. If not we retain the null hypothesis. The term
“retaining the null hypothesis” is due to Chris Genovese. Other terminology is “accepting the null” or “failing
to reject the null.” In other words, for hypothesis testing, we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Then H0 is the null hypothesis and H1 is the alternative hypothesis. if we decide that θ lies in Θ1, then
we reject the null hypothesis H0. If we decide that θ lies in Θ0, then we do not reject H0.

Example 1.4.1 (Testing if a Coin is Fair). Let

X1, ..., Xn ∼ Bernoulli(p)

be n independent coin flips. Suppose we want to test if the coin is fair. Let H0 denote the hypothesis that the
coin is fair and let H1 denote the hypothesis that the coin is not fair. H0 is called the null hypothesis and
H1 is called the alternative hypothesis. We can write the hypotheses as

H0 : p = 1/2 versus H1 : p 6= 1/2.

It seems reasonable to reject H0 if T = |p̂n− (1/2)| is large. When we discuss hypothesis testing in detail, we
will be more precise about how large T should be to reject H0.

Remark 1.4.2 Statistical inference is covered in many texts. Elementary texts include DeGroot and Schervish
(2002) and Larsen and Marx (1986). At the intermediate level Larry recommends Casella and Berger (2002),
Bickel and Doksum (2000), and Rice (1995). At the advanced level, Cox and Hinkley (2000), Lehmann and
Casella (1998), Lehmann (1986), and van der Vaart (1998).

简单假设，复合假设

Definition 1.4.3 If Θi (i = 0, 1) contains just a single value of θ, then Hi is called a simple hypothesis. If
the set Θi (i = 0, 1) contains more than one value of θ, then Hi is called a composite hypothesis.
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单边假设，双边假设

Definition 1.4.4 Moreover, one-sided null hypotheses are of the form H0 : θ ≤ θ0 or H0 : θ ≥ θ0. The
corresponding one-sided alternative hypotheses being H1 : θ > θ0 or H1 : θ < θ0. When the null hypothesis is
simple, the alternative hypothesis is usually two-sided.

当问题需要确定答案时才开始假设检验

Remark 1.4.5 Warning! There is a tendency to use hypothesis testing methods even when they are not
appropriate. Often, estimation and confidence intervals are better tools. Use hypothesis testing only when
you want to test a well-defined hypothesis.

检验统计量，拒绝域

Definition 1.4.6 Let X1, . . . , Xn be a random sample from the population X. Let Z = Z(X1, ..., Xn) be a
statistic and R be a subset of R. Suppose that we will reject H0 if Z ∈ R. Then we call Z a test statistic
and R the rejection region of the test. If Z ∈ R we reject the null hypothesis, otherwise, we do not reject the
null hypothesis:

Z ∈ R⇒ reject H0

Z /∈ R⇒ retain (do not reject) H0.

Remark 1.4.7 Here, we use “rejection” instead of “acception”. Because we can not use data to prove
something. But it is reasonable to use data to disproof something.

第一类错误（拒真），第二类错误（受伪），显著性水平

No matter how we do the test, mistakes can not always be avoided. An erroneous decision to reject a
true null hypothesis is called a type I error (a false positive conclusion). An erroneous decision not to
reject a false null hypothesis is called a type II error (a false negative conclusion).
这里我们只对犯第一类错误加以限制，只考虑显著性检验（significance test）
The objective of a statistical test of H0 is not to explicitly determine whether or not H0 is true but

rather to determine if its validity is consistent with the resultant data. Hence, with this objective it seems
reasonable that H0 should only be rejected if the resultant data are very unlikely. The classical way of
accomplishing this is to fix a level of significance α and then require that the test have the property that the
probability of a type I error occurring can never be greater than α, i.e.,

P (Z ∈ R) ≤ α.

(Type II error is not considered in this note.)

Figure 1.5: Summary of outcomes of hypothesis testing.
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The procedure of testing hypothesis is as follows:
(1) Construct the hypotheses H0 and H1 from the problem. (We propose the null hypothesis H0.) 提出假设
(2) Choose a suitable test statistic such that its sampling distribution does not contain unknown pa-
rameters. 构造小概率事件，创建拒绝域
(3) Given level of significant α, find the corresponding rejection region (based on H1?).
(4) Calculate the value of the statistic from observed sample values, determine whether it is in the reject
region (reject H0) or not (not to reject H0).

1.4.2 Examples for Simple Hypothesis

Example 1.4.8 (Z Test) Let us consider the population satisfying X ∼ N(µ, σ2), where σ2 is known but µ
is unknown. To carry out a test of the following hypothesis at the significance level of significant α:

H0 : µ = µ0, H1 : µ 6= µ0,

we have chosen the test statistic Z = X−µ0

σ/
√
n
. If H0 is true, then

Z =
X − µ0

σ/
√
n
,

has standard normal distribution. Here µ0 comes from the hypothesis and σ2 is known, so Z does not contain
unknown parameters. Let us choose the significant level to be α. Recall that the pdf is even. Then we have
that

α = P (|Z| > zα/2) = P (|Z| ∈ R).

So a rejection region of significance level α is (−∞,−zα/2] ∪ [zα/2,+∞). X与µ0误差很大时，有理由怀疑

原假设的正确性，构造小概率事件，创建拒绝域

In this example, if we take α = 0.05, then z0.025 = 1.96. And n = 9, σ = 0.015, x = 0.511. It follows that

|z| =
∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣ = 2.2 > 1.96.

Then we reject H0.

Remark 1.4.9 Consider the test: H0 : µ 6= µ0, H1 : µ = µ0. Assume that H0 is true. If we use Z = X−µ
σ/
√
n
,

then Z ∼ N(0, 1). But this random variable involves µ, which is unknown and can not appear in the expression
of R. One may consider Z = X−µ0

σ/
√
n

instead. It does not contain unknown parameters. But, its distribution
is unknown since its mean involving the unknown µ. We are not able to handle this test in a similar way as
in above example. So, people need to construct suitable hypothesis H0 and H1 for a concrete problem.

Example 1.4.10 (T Test) Suppose that the two independent populations X and Y satisfy that X ∼ N(µ1, σ
2)

and Y ∼ N(µ2, σ
2), where σ is unknown (we require that they have same variance). Let us carry out a test

of the following hypothesis at level α:

H0 : µ1 = µ2, H1 : µ1 6= µ2,

Let X1, ..., Xn be a random sample from X, and Y1, ..., Ym be a random sample from Y . Take

T =
X − Y√

(n−1)S∗2
n,1+(m−1)S∗2

n,2

m+n−2 ( 1
n + 1

m )

.
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Here S∗2n,1 and S∗2n,2 are the unbiased sample variances of X and Y , respectively. If H0 is true, then T ∼
t(n+m− 2). Similar as previous, we have

P (|T | ≥ tα/2(n+m− 2)) = α.

The rejection region for T is

(−∞,−tα/2(n+m− 2)] ∪ [tα/2(n+m− 2),+∞).

Example 1.4.11 (χ2 Test) Suppose that the population satisfies X ∼ N(µ, σ2), where neither µ nor σ2 is
known. Let us carry out a test of the following hypothesis at level α:

H0 : σ2 = σ2
0 , H1 : σ2 6= σ2

0 ,

Let X1, ..., Xn be a random sample from X. In this example, we should consider the test statistic

χ2 =
(n− 1)S∗2n

σ2
0

When H0 is true, we have χ2 ∼ χ2(n− 1). Assume that the rejection region has the form

P (
{
χ2 ≤ c1

}
∪
{
χ2 ≥ c2

}
) = α.

For convenience, let
P (χ2 ≤ c1) = P (χ2 ≥ c2) =

α

2
.

Then c1 = χ2
1−α/2(n− 1), c2 = χ2

α/2(n− 1). The rejection region is

(−∞, χ2
1−α/2(n− 1)] ∪ [χ2

α/2(n− 1),+∞).

Remark 1.4.12 If, in above example, the mean µ is known, then one can use the test statistic χ2 =∑
(Xi−µ)2

σ2
0

, which has distribution χ2(n). The rejection region can be (−∞, χ2
1−α/2(n)] ∪ [χ2

α/2(n),+∞).

Example 1.4.13 (F Test) Let X and Y be two independent population such that X ∼ N(µ1, σ
2
1) and Y ∼

N(µ2, σ
2
2), where µ1 and µ2 are unknown parameters. Let us carry out a test of the following hypothesis at

level α:
H0 : σ2

1 = σ2
2 , H1 : σ2

1 6= σ2
2 ,

Let X1, X2, ..., Xn and Y1, Y2, ..., Ym be random samples from X and Y , with unbiased sample variance S∗2X
and S∗2Y , respectively. If the hypothesis H0 is true, then the statistic

F =
S∗2X
S∗2Y

,

has distribution F (n− 1,m− 1). Similar as previous, we may take use of the facts that

P (F ≤ F1−α/2(n− 1,m− 1)) = P (F ≥ Fα/2(n− 1,m− 1)) =
α

2
.

So the rejection region for F is

(−∞, F1−α/2(n− 1,m− 1)] ∪ [Fα/2(n− 1,m− 1),+∞).
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1.4.3 A Two-step Test Example

Example 1.4.14 We compare the therapeutic effects of two somnifacients (sleeping pills). We separate 20
patients into two groups with each one 10 persons. The extended sleep time after taking medication is normally
distributed. The data are

A : 5.5 4.6 3.4 1.9 1.6 1.1 0.8 0.1 −0.1 4.4

B : 3.7 3.4 2.0 2.0 0.8 0.7 0 −0.1 −0.2 −1.6

Then is there any significant difference for the therapeutic effects between the two somnifacients at the level
α = 0.05?

Solution. Suppose that X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2), and we compute that

X = 2.33, Y = 0.75, S∗2X = 4.01, S∗2Y = 3.2.

We first test the null hypothesis σ2
1 = σ2

2 to write as

H0 : σ2
1 = σ2

2 versus H1 : σ2
1 6= σ2

2 .

The test statistic F = S∗2X /S
∗2
Y = 1.25. We see that

F0.025(9, 9) = 5.35, F1−0.025(9, 9) =
1

F0.025(9, 9)
=

1

5.35
= 0.187.

Since F = 1.25 ∈ (0.187, 5.35) , we accept the null hypothesis σ2
1 = σ2

2 .

Under the condition that σ2
1 = σ2

2, we then test the null hypothesis µ1 = µ2,

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

The test statistic is

T =
X − Y

S∗w

√
1
n + 1

m

, with S∗w =

√
(n− 1)S∗2X + (m− 1)S∗2Y

m+ n− 2
.

By computation we see

s∗w =

√
(9)(4.01) + (9)(3.2)

18
= 1.899 and t =

2.33− 0.75

1.899
√

1
10 + 1

10

= 1.86.

Since |t| = 1.86 < 2.101 = t0.025(18), we still accept the null hypothesis H0 : µ1 = µ2. There is NO significant
difference for the therapeutic effects between the two somnifacients.

Remark 1.4.15 One can also do not test H0 : σ2
1 = σ2

2 at first; but directly replace σ2
1 , σ

2
2 with S∗2X , S

∗2
Y in

a normal distribution instead (see Sec. 1.3.4).

Remark 1.4.16 One can see that the test statistic 1.86 is very close to the quantile 2.101 while still |t| =

1.86 < 2.101 = t0.025(18). In the next section, we will introduce the concept for the p-value to further discuss
the “quality” of a hypothesis test.
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1.4.4 The Wald Test

The test is named after AbrahamWald (1902–1950), who was a very influential mathematical statistician.
Wald died in a plane crash in India in 1950. Let θ be a scalar parameter, let θ̂ be an estimate of θ and let σ̂
be the estimated standard error of θ̂.

Definition 1.4.17 (The Wald Test) Consider testing

H0 : θ = θ0 versus H1 : θ 6= θ0.

Assume that θ̂ is asymptotically normal:

θ̂ − θ0

σ̂

d−→ N(0, 1).

The size α Wald test is: reject H0 when |W | > zα/2 where

W =
θ̂ − θ0

σ̂
.

Theorem 1.4.18 Asymptotically, the Wald test has size α, that is,

P (|W | > zα/2)→ α,

as n→∞.

Proof. Under θ = θ0, we have θ̂−θ0
σ̂

d−→ N(0, 1). Hence, the probability of rejecting when the null θ = θ0 is
true is

P (|W | > zα/2) = P

(∣∣∣∣∣ θ̂ − θ0

σ̂

∣∣∣∣∣ > zα/2

)
→ P (|Z| > zα/2) = α,

where Z ∼ N(0, 1).

Remark 1.4.19 An alternative version of the Wald test statistic is W = (θ̂−θ0)/σ0 where σ0 is the standard
error computed at θ = θ0. Both versions of the test are valid.

Example 1.4.20 (Comparing Two Prediction Algorithms). We test a prediction algorithm on a test set of
size m and we test a second prediction algorithm on a second test set of size n. Let X be the number of
incorrect predictions for algorithm 1 and let Y be the number of incorrect predictions for algorithm 2. Then
X ∼Binomial(m, p1) and Y ∼Binomial(n, p2). To test the null hypothesis that p1 = p2 write

H0 : δ = 0 versus H1 : δ 6= 0.

where δ = p1 − p2. The MLE is δ̂ = p̂1 − p̂2 with estimated standard error

σ̂ =

√
p̂1(1− p̂1)

m
+
p̂2(1− p̂2)

n
.

The size α Wald test is to reject H0 when |W | > zα/2 where

W =
δ̂ − 0

σ̂
=

p̂1 − p̂2√
p̂1(1−p̂1)

m + p̂2(1−p̂2)
n

.

The power of this test will be largest when p1 is far from p2 and when the sample sizes are large.
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Example 1.4.21 (Comparing Two Means). Let X1, ..., Xm and Y1, ..., Yn be two independent samples from
populations with means µ1 and µ2, respectively. Let’s test the null hypothesis that µ1 = µ2. Write this as
H0 : δ = 0 versus H1 : δ 6= 0 where δ = µ1 − µ2. Recall that the nonparametric plug-in estimate of δ is
δ̂ = X − Y with estimated standard error

σ̂ =

√
s2

1

m
+
s2

2

n
,

where s2
1 and s2

2 are the sample variances. The size α Wald test rejects H0 when |W | > zα/2 where

W =
δ̂ − 0

σ̂
=

X − Y√
s21
m +

s22
n

.

1.4.5 Examples for Composite Hypothesis

For such types of problems, if the null and alternative hypotheses are already given, the subsequent
computational procedure is standard technique. However, at least for me, the difficulty is to design the null
and alternative hypotheses.

Example 1.4.22 The population of all verbal GRE scores are known to have a standard deviation of 8.5. A
university hopes to receive applicants with a verbal GRE scores over 210. This year, the mean verbal GRE
scores for the 42 applicants was 212.79. Conduct a test at the level of significance 0.05 to see whether this
new mean is significantly greater than the desired mean of 210.

The test of hypothesis can be as follows:

H0 : µ ≤ 210 versus H1 : µ > 210.

The test statistic is
Z =

X − µ0

σ/
√
n
∼ N(0, 1),

and its value is
z =

212.79− 210

8.5/
√

42
= 2.1272.

The rejection region constructed based on H1 is

[z0.05,+∞) = [1.64,+∞).

We see that z is located in rejection region so that we reject the null hypothesis H0 and states that the verbal
GRE scores of the applicants is significantly greater than 210.

Remark 1.4.23 In my view, rejection is persuasive so that we’d better put the conclusion we hope to verify
in the alternative hypothesis.

Example 1.4.24 A manufacture claims that taking a new technique the lifespan of their light bulbs can be
extended much over 1000 hours. We can take

H0 : µ ≤ 1000 versus H1 : µ > 1000. (1.7)

For another problem, a manufacture claims that the lifespan of their light bulbs can be not less than 1000

hours. We can take
H0 : µ ≥ 1000 versus H1 : µ < 1000. (1.8)
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The sample mean is 1005 for n = 16 number of random samples. The standard deviation is 40 hours. The
test statistic is

Z =
X − µ0

σ/
√
n

=
1005− 1000

40/4
= 0.5.

The rejection region for problem (1.7) is [1.64,+∞). We see that the statistic is not in rejection region so
that we accept the null µ ≤ 1000 and then we claim that the lifespan is not much over 1000 hours. For the
second problem (1.8) the rejection region is (−∞,−1.64]. We see that the statistic is not in rejection region
so that we accept the null µ ≥ 1000 and then we claim that the lifespan is not less than 1000 hours. Here is
the charm of statistics. One may arrive at completely opposite conclusions for the same problem depending
on how you choose the hypothesis, the number of samples, the quality of samples, the significance level, etc.
For this problem, their claims indeed are different while they seems no difference. Let’s see the following
example for the appropriate way to deal with such situation.

Example 1.4.25 There are two ways A and B to make the same type of products with standard deviations
of tensile strength 6 kg and 8 kg, respectively. Now 12 and 16 numbers of products are random selected from
A and B with respective sample means 34 and 40 kg. The question is if the products by A have less tensile
strength than the products by B?
Solution. First, let

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2.

The test statistic is
U =

X − Y√
σ2
1

n +
σ2
2

m

=
34− 40√

62

12 + 82

16

= −2.2678.

The rejection region is [1.64,∞). Thus we accept H0 : µ1 ≤ µ2. Second, let

H0 : µ1 ≥ µ2 versus H1 : µ1 < µ2.

The rejection region is (−∞,−1.64]. Thus we reject H0 : µ1 ≥ µ2. Both results agree to conclude that the
products by A have less tensile strength than the products by B.

Remark 1.4.26 Rejection to the null hypothesis is persuasive whereas acception is not persuisive. In prac-
tice, we should keep on hypothesis test until rejection. Sometimes we may have the contradictory situation,
which means we accept H0 : µ1 ≤ µ2 and we also accept H0 : µ1 ≥ µ2. At this time, we should increase the
significance level α and keep on hypothesis test until we arrive at the consistent conclusion.

1.4.6 p-Values

Reporting “reject H0” or “retain H0” is not very informative. Instead, we could ask, for every α,
whether the test rejects at that level. Generally, if the test rejects at level α it will also reject at level α′ > α.
Hence, there is a smallest α at which the test rejects and we call this number the p-value. See Figure 1.6.

Definition 1.4.27 Suppose that for every α ∈ (0, 1) we have a size α test with rejection region Rα (the size
of Rα, in general, is monotonically increasing w.r.t. α). Then,

p-value = inf
{
α : T (Xn) ∈ Rα

}
.

That is, the p-value is the smallest level at which we can reject H0.
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Figure 1.6: p-values explained. For each α we can ask: does our test reject H0 at level α? The p-value is the
smallest α at which we do reject H0. If the evidence against H0 is strong, the p-value will be small.

Informally, the p-value is a measure of the evidence against H0: the smaller the p-value, the stronger
the evidence against H0. Typically, researchers use the evidence scale as shown in Figure 1.7.

Figure 1.7: Table for p-values versus evidence.

Remark 1.4.28 Warning! A large p-value is not strong evidence in favor of H0. A large p-value
can occur for two reasons: (i) H0 is true or (ii) H0 is false but the test has low power.

Remark 1.4.29 Warning! Do not confuse the p-value with P (H0|Data). The p-value is not the probability
that the null hypothesis is true.

Theorem 1.4.30 Let w = (θ̂ − θ0)/σ̂ denote the observed value of the Wald statistic W . The p-value is
given by

p-value = P (|W | > |w|) ≈ P (|Z| > |w|) = 2Φ(−|w|),

where Z ∼ N(0, 1).

To understand this last theorem, look at Figure 1.8.
Here is an important property of p-values.

Theorem 1.4.31 If the test statistic has a continuous distribution, then under H0 : θ = θ0, the p-value has
a Uniform (0, 1) distribution. Therefore, if we reject H0 when the p-value is less than α, the probability of a
type I error is α.
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Figure 1.8: The p-value is the smallest α at which you would reject H0. To find the p-value for the Wald
test, we find α such that |w| and −|w| are just at the boundary of the rejection region. Here, w is the observed
value of the Wald statistic: w = (θ̂− θ0)/σ̂. This implies that the p-value is the tail area P (|Z| > |w|) where
Z ∼ N(0, 1).

Remark 1.4.32 In other words, if H0 is true, the p-value is like a random draw from a Unif(0, 1) distribu-
tion. If H1 is true, the distribution of the p-value will tend to concentrate closer to 0.

Example 1.4.33 Two groups of cholesterol data with respective means of 216.19 and 195.27. Each of the
groups has 16 persons. The estimated standard deviations are 20.0 and 9.6, respectively. We ask if the means
are different.
Solution. The Wald statistic is

W =
δ̂ − 0

σ̂
=

(X − Y )− 0√
s21
n +

s22
m

=
216.19− 195.27√

202

16 + 9.62

16

= 3.78.

To compute the p-value, let Z ∼ N(0, 1) denote a standard normal random variable. Then,

p-value = P (|Z| > 3.78) = 2P (Z < −3.78) = 0.0002,

which is very strong evidence against the null hypothesis.

Figure 1.9:
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Figure 1.10:
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Figure 1.11:

1.4.7 Concept for the Best Test

下述为什么第一类显著性检验相比于犯第二类错误更重要

Figure 1.12:
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1.4.8 Nonparametric Hypothesis Test (Pearson’s χ2 Test)

Figure 1.13:

We have ignored the probability fitting method, （概率图纸法） in which one can neither obtain high
accuracy nor control the probability of making errors. In this section, we only focus on the Pearson’s χ2 test,
in which one can control the probability of making the type I error like aforementioned significance tests.

Test for Multinomial Data and Discrete Distributions

Pearson’s χ2 test is used for multinomial data. Recall that if X = (X1, ..., Xk) has a multinomial (n, p)

distribution, then the MLE of p is p̂ = (p̂1, ..., p̂k) = (X1/n, ...,Xk/n).
Let p0 = (p01, ..., p0k) be some fixed vector and suppose we want to test

H0 : p = p0 versus H1 : p 6= p0.

Definition 1.4.34 Pearson’s χ2 statistic is

T =

k∑
j=1

(Xj − np0j)
2

np0j
=

k∑
j=1

(Xj − Ej)2

Ej
,

where Ej = E(Xj) = np0j is the expected value of Xj under H0.

Theorem 1.4.35 Under H0, T
d−→ χ2(k − 1). Hence the test: reject H0 if T > χ2

α(k − 1) has asymptotic
level α. The p-value is P (χ2(k − 1) > t) where t is the observed value of the test statistic.
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Figure 1.14:
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Figure 1.15:

Figure 1.16:
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Figure 1.17:
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Test for Continuous Distribution Function

Let the population X have the distribution function F (x) (such as normal distribution, exponential
distribution, binomial distribution, Poisson distribution, etc). Let us separate the range (Ra) of the random
variable X into k disjoint intervals A1 = (a0, a1], A2 = (a1, a2], . . . , Ak = (ak−1, ak], where the length of
each interval aj − aj−1 (j = 1, . . . , k) may be different. Here, AjAm = ∅ (j 6= m, j,m = 1, . . . , k) and
∪kj=1Aj = Ra. Let x1, . . . , xn be n observations of the population X and ni is the number of observations in
the set Ai such that

∑k
i=1 ni = n. Hence among the n observations, the frequency for observing a data in

Ai is ni

n .

We now test the null hypothesis H0 : F (x) = F0(x). If H0 is true, the probability for the random
variable X ∈ Ai is pi, where

pi = P (Ai) = F0(ai)− F0(ai−1), i = 1, . . . , k. (1.9)

Moreover, the probability, for n1 observations in A1, n2 observations in A2, . . . , nk observations in Ak, is

n!

n1!n2! · · ·nk!
pn1

1 pn2
2 · · · p

nk

k ,

which is a multinomial distribution. According to the law of large numbers, when H0 is true, the frequency
ni

n and the probability pi should not have too much deviations. As a result, Pearson constructed a test
statistic

χ2 =

k∑
i=1

(ni − npi)2

npi
, (1.10)

which is called Pearson’s χ2 statistic. In the following, we will see that its limit distribution is an asymptotic
χ2 distribution with k − 1 degrees of freedom.

For our ease, we first discuss the simple situation for k = 2. When H0 is true,

P (A1) = p1, P (A2) = p2,

where p1 + p2 = 1. We also have n1 + n2 = n. We now examine the quantity

χ2 =
(n1 − np1)

2

np1
+

(n2 − np2)
2

np2
.

Let
Y1 = n1 − np1, Y2 = n2 − np2,

and then we see that
Y1 + Y2 = n1 − np1 + n2 − np2 = n− n(p1 + p2) = 0.

Hence, Y1 and Y2 are not independent. Let Y2 = −Y1, then we find that

χ2 =
Y 2

1

np1
+
Y 2

2

np2
=

Y 2
1

np1p2
=

(n1 − np1)2

np1p2
=

(
n1 − np1√
np1(1− p1)

)2

.

We treat n1 as a random variable with a binomial distribution B(n, p1). According to the de Moivre-Laplace
Theorem in Section ??, the random variable n1−np1√

np1(1−p1)
has asymptotically normal distribution when n is

sufficiently large. Thus the Pearson’s χ2 statistic is asymptotically χ2(1) distributed with 1 degree of freedom
when n is sufficiently large as k = 2. For general cases, we have the following theorem.
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Theorem 1.4.36 When H0 is true, i.e., p1, . . . , pk are the true probabilities of the population, the Pearson’s
χ2 statistic defined by (1.10) has an asymptotic χ2 distribution with k− 1 degrees of freedom. Its pdf is given
by

f(x) =


1

2
k−1
2 Γ( k−1

2 )
x

k−3
2 e−

x
2 , x > 0,

0, x ≤ 0

Proof. The probability, for n1 observations in A1, n2 observations in A2, . . . , nk observations in Ak, is

P (N1 = n1, . . . , Nk = nk) =
n!

n1!n2! · · ·nk!
pn1

1 pn2
2 · · · p

nk

k ,

where n1 + · · ·+ nk = n. The Ch.f. of (N1, . . . , Nk) is

ϕN (t1, . . . , tk) = Eeit·N =
∑

n1,··· ,nk
n1+···+nk=n

eit·n
n!

n1!n2! · · ·nk!
pn1

1 pn2
2 · · · p

nk

k

=

 k∑
j=1

pje
itj

n

.

Let
Yi =

ni − npi√
npi

, i = 1, . . . , k. (1.11)

Then we obviously have the relations

χ2 =

k∑
i=1

(ni − npi)2

npi
=

k∑
i=1

Y 2
i ,

with the constraint
k∑
i=1

Yi
√
pi = 0.

Thus all random variables (Y1, . . . , Yk) are not linearly independent. From the relation between Yi and Ni in
(1.11), the Ch.f. of (Y1, . . . , Yk) is

ϕ(t1, . . . , tk) = exp

− k∑
j=1

itj
√
npj

 ·
 k∑
j=1

pj exp

(
itj√
npj

)n

,

where the first term comes from the translation and the second term comes from the scaling multiplication.
Take the logarithm on both sides,

lnϕ(t1, . . . , tk) =

−i√n k∑
j=1

tj
√
pj

+ n ln

 k∑
j=1

pj exp

(
itj√
npj

) .
We now Taylor expand the exponential and logarithm function at tj = 0,

exp

(
itj√
npj

)
− 1 =

itj√
npj
−

t2j
2npj

+ o(
1

n
),

ln(1 + x) = x− x2

2
+ o(x2).
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Then

lnϕ(t1, . . . , tk) = −i
√
n

k∑
j=1

tj
√
pj + n ln

 k∑
j=1

pj

(
1 +

itj√
npj
−

t2j
2npj

+ o(
1

n
)

)
= −i

√
n

k∑
j=1

tj
√
pj + n ln

1 +
i√
n

k∑
j=1

tj
√
pj −

1

2n

k∑
j=1

t2j + o(
1

n
)


= −i

√
n

k∑
j=1

tj
√
pj + n

 i√
n

k∑
j=1

tj
√
pj −

1

2n

k∑
j=1

t2j −
1

2

 i√
n

k∑
j=1

tj
√
pj

2

+ o(
1

n
)


= −1

2

k∑
j=1

t2j −
1

2

i k∑
j=1

tj
√
pj

2

+ o(1).

As n→∞,

lnϕ(t1, . . . , tk)→ −1

2

k∑
j=1

t2j +
1

2

 k∑
j=1

tj
√
pj

2

,

which is equivalent to

lim
n→∞

ϕ(t1, . . . , tk) = exp

−1

2

 k∑
j=1

t2j −

 k∑
j=1

tj
√
pj

2

 . (1.12)

We now take an orthogonal transformation:
Z1

...
Zk−1

Zk

 =


a11 · · · · · · a1k

...
. . . . . .

...
ak−1,1 · · · · · · ak−1,k
√
p1

√
p2 · · · √

pk




Y1

...
Yk−1

Yk

 ,

where the transformation matrix A satisfies A>A = AA> = I. Correspondingly, the variables for the Ch.f.s
have the linear transformation,

u1

...
uk−1

uk

 =


a11 · · · · · · a1k

...
. . . . . .

...
ak−1,1 · · · · · · ak−1,k
√
p1

√
p2 · · · √

pk




t1
...

tk−1

tk

 ,

where (u1, · · · , uk)
> corresponds to (Z1, · · · , Zk)

> and (t1, · · · , tk)
> corresponds to (Y1, · · · , Yk)

>
. In the

equation (1.12), we can compute the enclosed quantity,

k∑
j=1

t2j −

 k∑
j=1

tj
√
pj

2

=

k∑
j=1

u2
j − u2

k =

k−1∑
j=1

u2
j .

Thus, as n→∞, The Ch.f. of (Z1, · · · , Zk) becomes

lim
n→∞

ϕ(t1, . . . , tk) = exp

−1

2

k−1∑
j=1

u2
j

 .
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This means that each of Z1, · · · , Zk−1 has weak convergence of distribution to pairwisely independent
normal distribution N(0, 1) (corresponding to the Ch.f. ϕ(tj) → exp

(
− 1

2u
2
j

)
for j = 1, . . . , k − 1) whereas

Zk has convergence in probability to a constant 0 (corresponding to the Ch.f. ϕ(tk)→ 1). Hence,

χ2 =

k∑
i=1

Y 2
i = Y>Y = Y>A>AY = Z>Z =

k∑
i=1

Z2
i ,

has an asymptotic χ2 distribution with k − 1 degrees of freedom.

Remark 1.4.37 If in the null hypothesis H0 only the the type of the distribution of the population is given
(such as Gaussian, exponential, Poisson, etc) but with unknown parameters θ1, . . . , θm in the distribution,
we cannot directly apply the above theorem to test the null hypothesis. Fisher proved the following theorem to
resolve the hypothesis test problem for a distribution with unknown parameters.

Theorem 1.4.38 Let F (x; θ1, . . . , θm) be the true distribution of the population, where θ1, . . . , θm are m un-
known parameters. Replace (θ1, . . . , θm) in F (x; θ1, . . . , θm) with their maximum likelihood estimates (MLEs)
(θ̂1, . . . , θ̂m), and futher replace F (x) in (1.9) with F (x; θ̂1, . . . , θ̂m) to obtain

p̂i = F (ai; θ̂1, . . . , θ̂m)− F (ai−1; θ̂1, . . . , θ̂m). (1.13)

Substitute the above into (1.10) to obtain the test statistic,

χ2 =

k∑
i=1

(ni − np̂i)2

np̂i
.

Then the statistic χ2 has an asymptotic χ2 distribution with k −m− 1 degrees of freedom as n→∞.

统计学数学方法 克拉美 1966
Proof. The proof can be found in one of H. Cramér’s book.
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Figure 1.18: This is the 1st example using χ2 test for a continuous distribution.
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Figure 1.19: Summary of χ2 test for a continuous distribution.
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Figure 1.20: This is the 2nd example using χ2 test for a continuous distribution.
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Figure 1.21: Test for Independence.
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Figure 1.22: The example for the test for Independence
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