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Chapter 1

Statistics and Their Distributions

1.1 The notion of a sample

（总体、母体）

Definition 1.1.1 The collection of all elements under investigation is called the population.

Definition 1.1.2 The variables representing the population is called the random variables. When we say
that the population has the distribution F (x), we mean that we are investigating a character X of elements
of this population and this character X is a random variable with the distribution function F (x).

随机样本（简称样本），抽样 样本值、观察值，样本空间

Definition 1.1.3 Sampling is the selection of a subset (a data sample) of individuals from a statistical
population to estimate characteristics of the whole population. A random sample of size n from a population
X (or a distribution, or a CDF F (x)) consists of i.i.d. random variables X1, X2, . . . , Xn, each has the same
distribution as the population X. The values x1, x2, . . . , xn of X1, X2, . . . , Xn (observed and recorded from
the experiments) are called sample values. The set of all possible random samples of n elements is called the
sample space.

Definition 1.1.4 (empirical distribution function) Let x1, x2, . . . , xn be observations from F (x). Let x(1) ≤
x(2) ≤ . . . ≤ x(n) be the order statistics.

Fn(x) =


0, x < x(1),
k
n , x(k) ≤ x ≤ x(k+1) (k = 1, . . . , n− 1),

1, x ≥ x(n).

Obviously, Fn(−∞) = 0, Fn(+∞) = 1. Fn(x) is called a empirical distribution function or a sample distri-
bution function.

Proposition 1.1.5 By law of large number, for any given x, one has Fn(x)
p−→ F (x) as n→∞.
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Figure 1.1: Diamonds are the observation data points, solid line is the true CDF, and dashed line is the
empirical CDF.

1.2 The notion of a statistics

Definition 1.2.1 A random variable which is a function of the observed random vector (X1, . . . , Xn) and
known parameters is called a statistics. Note that a statistics is not allowed to involve unknown
parameters. Specifically, let X1, X2, . . . , Xn be samples, and then g(X1, . . . , Xn) is a statistics. When
observations are x1, x2, . . . , xn, then g(x1, . . . , xn) is an observation value of the statistics.

Example 1.2.2 Let X ∼ N(µ, σ2) with given µ but unknown σ2. Let (X1, . . . , Xn) be samples. Then

1

n

n∑
i=1

Xi and
1

n

n∑
i=1

(Xi − µ)2

are statistics, whereas 1
σ2

∑n
i=1(Xi −X)2 not since it involves with the unknown σ2.

We have already encountered some of the most important statistics.We now list some below. Their
denitions involve the size n of the sample, which are usually omitted when there is no confusion. Let
X1, . . . , Xn be i.i.d. samples. Then
样本均值 • The sample mean

X =
1

n

n∑
i=1

Xi .

样本方差 • The sample variance

S2
n =

1

n

n∑
i=1

(Xi −X)2.

无偏样本方差 • The unbiased sample variance

S∗2n =
1

n− 1

n∑
i=1

(Xi −X)2.

3



样本k阶矩 • The sample moment of kth order

ak =
1

n

n∑
i=1

Xk
i .

样本k阶中心矩 • The sample central moment of kth order

bk =
1

n

n∑
i=1

(Xi −X)k.

Example 1.2.3 Let ξ1, . . . , ξn and η1, . . . , ηm be independent samples from N(0, 1) of size n and m. Then

χ2 =

n∑
i=1

ξ2
i ,

t =
ξi√
χ2/n

,

F =

∑m
j=1 η

2
j /m∑n

i=1 ξ
2
i /n

,

are all statistics.

1.3 Review of χ2, t, F distributions

1.3.1 χ2 distribution

Lemma 1.3.1 Let X be a random variable of continuous type with density function p(x). Let y = f(x) be a
strictly monotonic function and let x = h(y) be the inverse function of y = f(x) with continuous derivative.
Then Y = f(X) is also a continuous random variable with density function

ψ(y) =

{
p(h(y)) · |h′(y)| , α < y < β,

0 else,

where α = min{f (−∞) , f (+∞)} and β = max{f (−∞) , f (+∞)}.

Proof. Assume that f(x) a strictly monotonically increasing function. Then h(y) is also strictly monotoni-
cally increasing.

FY (y) = P (Y ≤ y) = P (f(X) ≤ y)

= P (X ≤ h(y)) =

∫ h(y)

−∞
p(x)dx, for f (−∞) < y < f (+∞) .

Thus, the pdf is

ψ(y) = F ′Y (y) =

{
p(h(y)) · h′(y), f (−∞) < y < f (+∞) ,

0, else.

One can follow the similar procedure here to prove for the case when f(x) is strictly monotonically decreasing.

Remark 1.3.2 The condition can be relaxed to that the function f(x) is piecewise strictly monotonic and
its inverse function is continuous and differentiable. For example, y = x2.
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Example 1.3.3 Let X be a standard normal distribution N(0, 1). Find the pdf of Y = X2.

Sol. For y < 0, FY (y) = P (Y ≤ y) = 0. For y ≥ 0,

FY (y) = P (Y ≤ y) = P (X2 ≤ y)

= P (−√y ≤ X ≤ √y) =

∫ +
√
y

−√y
ϕ(x)dx,

where ϕ(x) = 1√
2π
e−

x2

2 . Then, the pdf of Y is

ψ(y) = F ′Y (y) =

{
ϕ(
√
y) 1

2y
− 1

2 + ϕ(−√y) 1
2y
− 1

2 = 1√
2π
e−

y
2

1√
y , y ≥ 0,

0, y < 0.

This is the density function of χ2(1).

We now show the distribution for χ2(n) and then show the detailed computation for χ2(n). The dis-
tribution of χ2 was obtained by Helmert (book Fiesz). The parameter n is called the number of degrees of
freedom.

自由度为n的χ2分布

Definition 1.3.4 Let X1, . . . , Xn be i.i.d. with normal distributions N(0, 1). Then χ2 = X2
1 + · · · + X2

n is
said to be a χ2 distribution with n degrees of freedom, denoted by χ2(n). Its pdf is

f(x) =

{
1

2n/2Γ(n/2)
x
n
2−1e−

x
2 , x ≥ 0,

0, x < 0.
(1.1)

Here, Gamma function

Γ(t) =

∫ ∞
0

xt−1e−xdx, t > 0,

with Γ(1) = 1,Γ( 1
2 ) =

√
π, and Γ(t+ 1) = tΓ(t).

Now let’s see how to derive the pdf of χ2(n). We first compute the distribution of sum. Let (X,Y ) be
a random variable of continuous type with joint pdf p(x, y). Then the distribution function of Z = X + Y is

FZ(z) =

∫∫
x+y≤z

p(x, y)dxdy =

∫ ∞
−∞

(∫ z−x

−∞
p(x, y)dy

)
dx.

In addition, if X and Y are independent, then

FZ(z) =

∫ ∞
−∞

dx

(∫ z−x

−∞
pX(x)pY (y)dy

)
=

∫ ∞
−∞

dx

(∫ z

−∞
pX(x)pY (ŷ − x)dŷ

)
(y = ŷ − x)

=

∫ z

−∞

(∫ ∞
−∞

pX(x)pY (ŷ − x)dx

)
dŷ.

The pdf of Z is

pZ(z) = F ′Z(z) =

∫ ∞
−∞

pX(x)pY (z − x)dx.

By symmetry, one can also show that

pZ(z) =

∫ ∞
−∞

pX(z − x)pY (x)dx,

where both above formula are the convolution between pX(x) and pY (y).
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Example 1.3.5 Let X,Y be two independent normally distributed random variables. Then their sum Z =

X + Y has the pdf of

pZ(z) =

∫ ∞
−∞

pX(x)pY (z − x)dx =
1

2π

∫ ∞
−∞

e−
x2

2 e−
(z−x)2

2 dx

=
1

2π
e−

z2

4

∫ ∞
−∞

e−(x− z2 )2dx =
1

2
√
π
e−

z2

4 .

Thus, Z ∼ N(0, 2).

Remark 1.3.6 Let Xi (i = 1, . . . , n) be independent random variable with normal distributions N(µi, σ
2
i ).

(1) Then,
∑n
i=1Xi is normally distributed with N(µ, σ2), where µ =

∑n
i=1 µi and σ

2 =
∑n
i=1 σ

2
i .

(2) For any real li,
∑n
i=1 liXi is also normally distributed with N(µ, σ2), where µ =

∑n
i=1 liµi and σ2 =∑n

i=1 l
2
i σ

2
i .

(3) The above can be proved using convolustion formula by induction or using characteristic function method.

Definition 1.3.7 If X has pdf

p(x) =

{
λα

Γ(α)x
α−1e−λx, x ≥ 0,

0, x < 0.

Then we say that X is a random variable with a gamma distribution with parameters (α, λ), denoted by
Γ(α, λ).

Example 1.3.8 Let X,Y be independent random variables with distributions Γ(α1, λ) and Γ(α2, λ). (Note
that the second parameter λ is the same). Find the pdf of Z = X + Y .
Sol. Using the convolution formula,

pZ(z) =

∫ ∞
−∞

pX(z − x)pY (x)dx =
λα1+α2

Γ(α1)Γ(α2)
e−λz

∫ z

0

(z − x)α1−1xα2−1dx.

Let x
z = t. Then ∫ z

0

(z − x)α1−1xα2−1dx = zα1+α2−1

∫ 1

0

(1− t)α1−1tα2−1dt

where ∫ 1

0

(1− t)α1−1tα2−1dt = B(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)
.

Then

pZ(z) =
λα1+α2

Γ(α1)Γ(α2)
e−λzzα1+α2−1 Γ(α1)Γ(α2)

Γ(α1 + α2)

=
λα1+α2

Γ(α1 + α2)
zα1+α2−1e−λz.

Thus Z ∼ Γ(α1+α2, λ), which means that gamma distribution has the additive property for the first parameter.

Remark 1.3.9 One can also compute the above result using Ch.f. method.

Remark 1.3.10 In general, if {Xi}ni=1 are independent random variables with distributions {Γ(αi, λ)}ni=1 ,

then Z = X1 + · · ·+Xn ∼ Γ(α1 + · · ·+ αn, λ).
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Remark 1.3.11 If α = n
2 , λ = 1

2 for the gamma distribution Γ(n2 ,
1
2 ), then one can observe that it is the same

as the pdf of χ2 from (1.1), that is, Γ(n2 ,
1
2 ) = χ2(n). Moreover, χ2 distribution has the additive property as

inherited from the gamma distribution. That is, if X ∼ χ2(n) and Y ∼ χ2(m), and X and Y are independent,
then X + Y ∼ χ2(n+m).

Remark 1.3.12 In general, if X1, . . . , Xk are independent random variables and Xi ∼ χ2(mi) (i = 1, . . . , k),
then X1 + · · ·+Xk ∼ χ2(m1 + · · ·+mk).

Remark 1.3.13 Based on the Definition 1.3.4, if X1, . . . , Xn are n i.i.d. random variables with normal
distributions N(0, 1). Then X2

k ∼ χ2(1) for each k = 1, . . . , n and Y = X2
1 + · · ·+X2

n ∼ χ2(n) is said to be
a χ2 distribution with n degrees of freedom.

Remark 1.3.14 If X ∼ χ2(n), then EX = n, V ar(X) = 2n.

Proof. We can compute the expectation

EX =

∫ ∞
0

x
1

2n/2Γ(n/2)
x
n
2−1e−

x
2 dx

=
2
n+2
2 Γ

(
n+2

2

)
2
n
2 Γ(n2 )

∫ ∞
0

1

2
n+2
2 Γ(n+2

2 )
x
n+2
2 −1e−

x
2 dx

= 2 · n
2

= n,

where the integral in the second line is for the pdf of χ2(n+ 2). Similarly, EX2 = n2 + 2n and V ar(X) = 2n.

Last, we consider the case for the independent random variables Xk (k = 1, . . . , n) where the normal
distribution has variance σ2, that is, the normal density

f(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
.

The expression

χ2 =

n∑
k=1

X2
k ,

is also called the statistic χ2, whose distribution was obtained by Helmert. We can obtain the expectation
and variance as

Eχ2 = nσ2, V ar(χ2) = 2nσ4.

The parameter n is also called the number of degrees of freedom, which corresponds to the fact that χ2 is
the sum of n independent random variables. The tables of the χ2 distribution usually give the values of the
distribution function value with σ = 1 for different values of x and n.

In Fig. 1.2, the densities of χ2 for σ = 1 and various degrees of freedom are displayed.

Remark 1.3.15 The tables of the χ2(n) distribution are usually given for no more than thirty degrees of
freedom. Fisher [6] (in Fiesz book) showed that if the number of degree of freedom n increases to infinity, the
random variable

√
2χ2(n) has the asymptotically normal distribution N(

√
2n− 1, 1). For n ≥ 30,

we may use the tables of the normal distribution.
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Figure 1.2: Comparison of χ2 distribution for different n.

1.3.2 Independence and distribution of sample mean X and sample variance S2
n

In applications, we often deal with problems of the following type. The values of sample mean X and
sample variance S2

n are observed and found to be such that a ≤ x < b and s ≥ c. We would like to find
the probability of these inequalities, or in other words, we would like to find out how often the values x
of the statistic X and the values s of the statistic Sn satisfy these inequalities if we take a large series of
observations. First, let us right now prove that X and S2

n are independent and also find their distributions
as well, which will be used for the definition of the following Student’s t distribution.

Proposition 1.3.16 Let ξ> = (ξ1, . . . , ξn),η> = (η1, . . . , ηn) be two random vectors. Let η = Aξ for
A ∈ Rn×n. Then

E(η) = AE(ξ), Cov(η, η) = ACov(ξ, ξ)A>.

Lemma 1.3.17 Let ξ and η be two independent random variables. Let f(x) and g(x) be two continuous or
piecewise continuous functions. Then f(ξ) and g(η) are independent with each other. (The conclusion is
intuitively correct, however, the rigorours proof is out of the scope of the course. One can refer to probability
theory by fudan university 1979 for reference.)

Theorem 1.3.18 Let ξ1, . . . , ξn (n > 1) be random samples from a normal distribution N(µ, σ2). The
sample mean and sample variance are

ξ =
1

n

n∑
k=1

ξk, S2
n =

1

n

n∑
k=1

(ξk − ξ)2.

Then ξ and S2
n are independent. Moreover,

nS2
n

σ2
∼ χ2(n− 1).
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Proof. Let

ξ =


ξ1

ξ2
...
ξn

 , η =


η1

η2

...
ηn

 ,

where ξ and η are different by a orthogonal transformation A,

η = Aξ,

where A is an orthogonal matrix,

A =



1√
n

1√
n

1√
n

· · · 1√
n

1√
n

1√
2·1

−1√
2·1 0 · · · 0 0

1√
3·2

1√
3·2

−2√
3·2 · · · 0 0

...
...

...
. . .

...
...

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · 1√
n(n−1)

−(n−1)√
n(n−1)


.

Notice that A is a specific orthogonal matrix whose all row sums are zeros except for the first row. Based on
this transformation,

η1 =
1√
n

n∑
k=1

ξk =
√
nξ,

η2
1 = nξ

2
. (1.2)

Due to the orthogonality of A, one has

n∑
k=1

η2
k = η>η = ξ>A>Aξ = ξ>ξ =

n∑
k=1

ξ2
k =

n∑
k=1

(
ξk − ξ

)2
+ nξ

2
.

Substituting (1.2) into above,

nS2
n =

n∑
k=1

(
ξk − ξ

)2
=

n∑
k=1

η2
k − nξ

2
=

n∑
k=1

η2
k − η2

1 =
n∑
k=2

η2
k.

We now discuss the distribution and independence of random variables η1, . . . , ηn. Since η = Aξ, we
know that each ηk is a linear combination of normal ξ1, . . . , ξn. Thus η1, . . . , ηn are all random variables with
normal distributions. Moreover, one has

Cov(η, η) = ACov(ξ, ξ)A> = Aσ2IA> = σ2I,

where I is an identity matrix. Thus η1, . . . , ηn are pairwise uncorrelated and thereafter independent due
to they are all normally distributed. (The reason is that the joint pdf of η can be written in terms of the
multiplication of the pdf of each ηi since the covariance of η is diagonal). Therefore, η2

1 = nξ
2
is independent

of
∑n
k=2 η

2
k = nS2

n, which is the main result for the first part, ξ and S2
n are independent with each

other. Here we have used the conclusion from Lemma 1.3.17.
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One can compute the expectation of η,

E(η) =


Eη1

Eη2

...
Eηn

 = AE (ξ) =


√
nµ

0
...
0

 .

Thus each ηi (i = 2, 3, . . . , n) has the normal distribution N(0, σ2). Then based on the definition of χ2

distribution, one has
nS2

n

σ2
=

∑n
k=2 η

2
k

σ2
=

n∑
k=2

(ηk
σ

)2

∼ χ2(n− 1),

satisfying the χ2 distribution with n− 1 degrees of freedom.
We realize that the above proof is very tricky for the construction of orthogonal matrix A. Next, we

provide another way to prove the above independence result and find the distribution of
(
X,S2

n

)
. We hope

to have an intuitive understanding. Let X1, . . . , Xn (n > 1) be independent random samples from a normal
distribution N(0, σ2),

f(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
.

Here all variables are shifted to the zero mean. The sample mean and sample variance are

X =
1

n

n∑
k=1

Xk, S2
n =

1

n

n∑
k=1

(Xk −X)2,

and their observation values are x and s2, respectively.
Proof. Let f(x1, . . . , xn) be the density of the n-dimensional random variable (X1, . . . , Xn). We call the
expression

dP = f(x1, . . . , xn)dx1 . . . dxn,

the probability element of this random variable. Since X1, . . . , Xn are independent, we obtain

dP =
1

σn (2π)
n/2

exp

(
− 1

2σ2

n∑
k=1

x2
k

)
dx1 . . . dxn

=
1

σn (2π)
n/2

exp

(
−nx

2 + ns2

2σ2

)
dx1 . . . dxn. (1.3)

Let us make the following transformation:

xk = x+ szk, (k = 1, . . . , n). (1.4)

From the constraint relations
n∑
k=1

xk = nx,

n∑
k=1

x2
k = nx2 + ns2,

we obtain two constraint relations for the variable zk,

n∑
k=1

zk = 0,

n∑
k=1

z2
k = n. (1.5)
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Thus, all zk’s are NOT independent and two variables among all the zk, say zn and zn−1, are functions of
the remaining zk,

zn−1, zn(z1, . . . , zn−2).

By solving (1.5) for zn and zn−1, either

zn−1 =
A−B

2
, zn =

A+B

2
,

or zn−1 = A+B
2 , zn = A−B

2 , where

A = −
n−2∑
k=1

zk, B =

√√√√√2n− 3

n−2∑
k=1

z2
k −

n−2∑
k,j=1
k 6=j

zkzj .

Hence transformation in (1.4) is not one-to-one for all zk, but to

(x1, . . . , xn)↔ (x, s, z1, . . . , zn−2),

where s > 0,
∑n−2
k=1 zk 6= 0, and

∑n−2
k=1 z

2
k < n, there correspond two systems (x1, . . . , xn), namely, the system

xk = x+ szk, (k = 1, 2, . . . , n− 2), (1.6)

xn−1 = x+ s
A−B

2
, xn = x+ s

A+B

2
,

and the system

xk = x+ szk, (k = 1, 2, . . . , n− 2), (1.7)

xn−1 = x+ s
A+B

2
, xn = x+ s

A−B
2

.

One can see that thw absolute values of the Jacobians of the two transformations are equal. For the trans-
formation (1.6), we have

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂x · · · ∂xn
∂x

∂x1

∂s · · · ∂xn
∂s

...
. . .

...
...

. . .
...

∂x1

∂zn−2
· · · ∂xn

∂zn−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1 1

z1 z2 · · · zn−2
A−B

2
A+B

2

s 0 · · · 0 s
2

(
∂A
∂z1
− ∂B

∂z1

)
s
2

(
∂A
∂z1

+ ∂B
∂z1

)
0

. . . . . . 0
...

...

0 · · · 0 s s
2

(
∂A

∂zn−2
− ∂B

∂zn−2

)
s
2

(
∂A

∂zn−2
+ ∂B

∂zn−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

After a few computations we obtain the absolute value of the Jacobian,

|J | = ksn−2,

where k = k(z1, . . . , zn−2) is some complicated function independent of x and s. Notice that the density has
the same value for both transformations (1.6) and (1.7), and we obtain from (1.3) that

dP = 2
1

σn (2π)
n/2

exp

(
−nx

2 + ns2

2σ2

)
ksn−2dxdsdz1 . . . dzn−2.

Let us now represent the above formula in the following form:

dP =

√
n

σ (2π)
1/2

exp

(
−nx

2

2σ2

)
dx×

n(n−1)/2sn−2 exp
(
−ns

2

2σ2

)
2(n−3)/2Γ

(
n−1

2

)
σn−1

ds

×
Γ
(
n−1

2

)
nn/2π(n−1)/2

k(z1, . . . , zn−2)dz1 . . . dzn−2.

11



Then the probability element of (X,Sn, Z1, . . . , Zn−2) is product of three factors, the first of which is the
probability element of X, the second is the probability element of Sn, and the third is the probability element
of (Z1, . . . , Zn−2). Hence one can see from the joint pdf that X,Sn, and (Z1, . . . , Zn−2) are independent.
If we denote by h(x, s) the density of

(
X,Sn

)
we have

h(x, s) =


√
n

σ(2π)1/2
exp

(
−nx

2

2σ2

)
·
n(n−1)/2sn−2 exp

(
−ns2

2σ2

)
2(n−3)/2Γ(n−1

2 )σn−1
, s ≥ 0,

0, s < 0.

We now find the distribution of the statistic Z = nS2
n/σ

2, denote by the density function f(z), (2s nσ2 ds =

dz, z = ns2/σ2)

f(z) =
n(n−1)/2sn−2 exp

(
−ns

2

2σ2

)
2(n−3)/2Γ

(
n−1

2

)
σn−1

· σ
2

2sn
=
n(n−3)/2sn−3 exp

(
−ns

2

2σ2

)
2(n−1)/2Γ

(
n−1

2

)
σn−3

=
z(n−3)/2 exp

(
− z2
)

2(n−1)/2Γ
(
n−1

2

) .
Let us compare f(z) with the χ2(n− 1) distribution in Definition 1.1,

f(x) =
1

2(n−1)/2Γ((n− 1)/2)
x
n−1
2 −1e−

x
2 ,

and we find that they match each other exactly. Thus the statistic Z = nS2
n/σ

2 has the distribution as
χ2(n− 1) with n− 1 degrees of freedom. This agrees with our intuition since

nS2
n =

n∑
k=1

(Xk −X)2,

is a sum of n random variables satisfying the constraint relation

n∑
k=1

Xk = nX.

This result gives us a better understanding of the notion of the number of degrees of freedom. Hence

E(nS2
n) = (n− 1)σ2, V ar(nS2

n) = 2 (n− 1)σ4,

E(S2
n) =

n− 1

n
σ2, V ar(S2

n) =
2 (n− 1)

n2
σ4.

Remark 1.3.19 If the independent random variables Xk have the same normal distribution, then the joint
density of the random variables X and Sn is the product of the densities of these random variable, and hence
they are independent. This extremely important and interesting result was obtained by Fisher [5] in Fiesz
book.

Remark 1.3.20 The converse theorem is also true. If the statistics X and Sn are independent, the random
variables Xk have the normal distribution. The proof of this theorem was given by Geary [1], Lukacs [1],
Kawata and Sakamoto [1], and Zinger [1]. Later this theorem was generalized by Lukacs [2] and Basu and
Laha [1].
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1.3.3 Student’s t distribution

Definition

（商的分布） Let us first consider the distribution of the Quotient.
Let (X,Y ) be a two-dimensional random variable with pdf p(x, y). Find the distribution of Z = X/Y .

The distribution function of Z is

FZ(z) = P (Z ≤ z) = P (
X

Y
≤ z)

=

∫∫
x
y≤z

p(x, y)dxdy =

∫∫
x
y≤z,y>0

+

∫∫
x
y≤z,y<0

p(x, y)dxdy

=

∫ ∞
0

(∫ yz

−∞
p(x, y)dx

)
dy +

∫ 0

−∞

(∫ ∞
yz

p(x, y)dx

)
dy.

Then the pdf of Z is

pZ(z) = F ′Z(z) =

∫ ∞
0

yp(yz, y)dy −
∫ 0

−∞
yp(yz, y)dy

=

∫ ∞
−∞
|y| p(yz, y)dy.

Definition 1.3.21 Let ξ ∼ N(0, 1) and η ∼ χ2(n− 1), and ξ and η are independent. Then

T =
ξ√

η/(n− 1)
,

is a student’s t distribution with (n− 1) degrees of freedom, denoted by T ∼ t(n− 1). Its pdf is given by

pT (y) =
Γ(n2 )

√
n− 1

√
πΓ(n−1

2 )

(
1 +

y2

n− 1

)−n2
, −∞ < y <∞,

=
1√

n− 1B( 1
2 ,

n−1
2 )

1(
1 + y2

n−1

)n
2
.

Proof. We now compute the pdf of student’s t distribution. The pdf for χ2(n− 1) is,

p(x) =


1

2
n−1
2 Γ(n−1

2 )
x
n−1
2 −1e−

x
2 , x ≥ 0,

0, x < 0.

We now compute the pdf for
√

χ2(n−1)
n−1 . Let y =

√
x

n−1 and the inverse function h(y) = y2(n− 1). Using the

result in Lemma 1.3.1, we obtain the pdf for
√

χ2(n−1)
n−1 ,

p2(y) =
1

2
n−1
2 Γ(n−1

2 )

(
y2(n− 1)

)n−1
2 −1

e−
y2(n−1)

2 2y(n− 1)

=


2(n−1)

n−1
2 yn−2

2
n−1
2 Γ(n−1

2 )
e−

y2(n−1)
2 =

2(n−1
2 )

n−1
2

Γ(n−1
2 )

yn−2e−
y2(n−1)

2 , y ≥ 0,

0, y < 0.

Using the quotient formula, we have

pT (y) =

∫ ∞
0

x2p(x2y, x2)dx2,

13



where p(x, y) is the joint pdf of a standard Gaussian and
√

χ2(n−1)
n−1 ,

p(x1, x2) =

 1√
2π
e−

x21
2 p2(x2), x2 ≥ 0,

0, x2 < 0.

Then

pT (y) =

∫ ∞
0

x
1√
2π
e−

(xy)2

2 ·
2(n−1

2 )
n−1
2

Γ(n−1
2 )

xn−2e−
x2(n−1)

2 dx

=

∫ ∞
0

1√
2π

2(n−1
2 )

n−1
2

Γ(n−1
2 )

xn−1e−
1
2x

2(y2+n−1)dx

x2(y2 + n− 1) = s

2x(y2 + n− 1)dx = ds
=

∫ ∞
0

1√
2π

2(n−1
2 )

n−1
2

Γ(n−1
2 )

(
s

y2 + n− 1

)n−1
2

e−
s
2

ds

2
√

s
y2+n−1 (y2 + n− 1)

=

∫ ∞
0

1√
2π

(n−1
2 )

n−1
2

Γ(n−1
2 )

1

(y2 + n− 1)
n−1
2

1√
y2 + n− 1

s
n−1
2 s−

1
2 e−

s
2 ds

=
1√
2π

(n−1
2 )

n−1
2

Γ(n−1
2 )

(
y2 + n− 1

)−n2 ∫ ∞
0

s
n
2−1e−

s
2 ds

Using the fact that
1

2
n
2 Γ(n2 )

∫ ∞
0

s
n
2−1e−

s
2 ds = 1,

then we obtain that

pT (y) =
1√
2π

(n−1
2 )

n−1
2

Γ(n−1
2 )

(
y2 + n− 1

)−n2 2
n
2 Γ(

n

2
)

=
1√
2π

2−
n−1
2 2

n
2 Γ(n2 )

Γ(n−1
2 )

(n− 1)
n−1
2

(
y2 + n− 1

)−n2
=

1√
π

Γ(n2 )

Γ(n−1
2 )

1√
n− 1

(
1 +

y2

n− 1

)−n2
.

Motivation and Properties

We now provide the motivation for the t distribution. We have considered the distribution of the statistic
X given by

X =
1

n

n∑
k=1

Xk,

where the random variables Xk (k = 1, . . . , n) are independent and have the same normal distribution
N(µ, σ2). We established that X has the normal distribution N(µ, σ2/n); hence for a known µ and unknown
σ2, the distribution of X is unknown. Of course, we cannot directly replace σ2 by the value obtained from
a sample variance since the sample variance itself is a random variable and can take on different values in
different samples. In order to deduce anything about µ without the knowledge of σ2, we have
to consider a statistic which is a function of µ and with a distribution independent of σ2.
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This problem was solved by Gosset (pseudonym: Student [1] in Fiesz), who introduced the statistic called
Student’s t-statistic.

Let Xk (k = 1, . . . , n) be independent and have the same normal distribution N(µ, σ2). Then Student’s
t is defined by

T =
X − µ
Sn

√
n− 1 =

X−µ
σ√
n√
nS2

n

(n−1)σ2

∼ N(0, 1)√
χ2(n−1)σ2

(n−1)σ2

, (1.8)

where

X =
1

n

n∑
k=1

Xk, S2
n =

1

n

n∑
k=1

(Xk −X)2.

In fact, here we need to further verify that X and S2
n are independent which will be shown later.

Thus the density of Student’s t is independent of σ2. As we have already mentioned, it is this fact that makes
possible many applications of the t-distribution. We say that a random variable with density of T in (1.8)
has the t-distribution with n− 1 degrees of freedom.

Proposition 1.3.22 The density of the random variable t is symmetric with respect to t = 0.

Proposition 1.3.23 Student’s t-distribution has only moments of order k < n − 1. Thus, for n = 2 no
moments exist. The reader can verify that for n = 2, Student’s t-distribution is a particular case of the
Cauchy distribution which, as we know, has no moments.

The graph of the density of Student’s t-distribution is shown in Fig. 1.3. If we compare the Student’s
t-distribution for a number of degrees of freedom close to 30 with the normal distribution N(0, 1), we see that
they are almost identical (see Fig. 1.3). This is because the t-distribution approaches the normal distribution
rapidly, as the number of degrees of freedom tends to infinity. We now prove this.

Figure 1.3: Comparison of Student’s t-distribution for different n.
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Lemma 1.3.24 Let {Xn} (n = 1, 2, . . .) be an arbitrary sequence of random variables (dependent or not)
and let the corresponding sequence of distribution functions {Fn(x)} converge as n → ∞ to the CDF F (x).
Further, let {Yn} (n = 1, 2, . . .) be another sequence of random variables stochastically convergent (in proba-
bility) to a constant a. Then
(1) the sequence of the CDFs of Xn + Yn converges to the CDF F (x− a).
(2) the sequence of the CDFs of Xn − Yn converges to the CDF F (x+ a).
(3) the sequence of the CDFs of XnYn converges to the CDF F (x/a) if a > 0 and to the CDF 1− F (x/a) if
a < 0.

(4) the sequence of the CDFs of Xn/Yn converges to the CDF F (ax) if a > 0 and to the CDF 1− F (ax) if
a < 0.

Theorem 1.3.25 The sequence {Fn(t)} of distribution functions of Student’s t with n degrees of freedom
satisfies for every t the relation

lim
n→∞

Fn(t) =
1√
2π

∫ t

−∞
e−

s2

2 ds.

Proof. Let us write the t-distribution in the form

Tn =
Yn√
Xn
n

=
Yn√
Zn

=
Yn
Vn
,

where for every n the random variable Yn has the normal distribution N(0, 1) and Xn has the χ2(n) with n
degrees of freedom. We shall prove that the sequence {Vn} converges stochastically to the constant one.

Recall that for a gamma distribution with pdf Γ(α, λ),

p(x) =

{
λα

Γ(α)x
α−1e−λx, x ≥ 0,

0, x < 0,

the corresponding Ch.f. is
φΓ(t) =

1

(1− it/λ)α
.

The random variable Xn has the distribution of χ2(n), which is the gamma distribution with Γ(n2 ,
1
2 ). Hence

the Ch.f. of Xn is 1

(1−2it)
n
2

and then the Ch.f. of Zn = Xn
n is

φn(t) =
1

(1− 2it
n )

n
2

.

Hence
lim
n→∞

φn(t) = eit.

It follows from the last equation that the sequence {Zn} is stochastically convergent to the distribution of
P (X = 1) = 1 (Two points here. First, φ(t) =

∑
k P (X = xk)eitxk = eit · 1. Second, the convergence

in distribution to a constant is equivalent to the stochastic convergence in probability to that constant.).
By continuous mapping theorem, the sequence {Vn} is also stochastically convergent to one. From Lemma
1.3.24, we arrive at the conclusion.
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Applications

Here we show one example for Student’s t-distribution.

Example 1.3.26 We now introduce one statistic of great importance in applications. Let X1, . . . , Xn1 ∼
N(m1, σ

2) and Y1, . . . , Yn2 ∼ N(m2, σ
2) be independent random variables with the same variance but different

expectation. Let

X =
1

n1

n1∑
k=1

Xk, Y =
1

n2

n2∑
l=1

Yl,

S2
n,1 =

1

n1

n1∑
k=1

(Xk −X)2, S2
n,2 =

1

n2

n2∑
l=1

(Yl − Y )2.

As we know, X and Y have, respectively, the normal distributions

N(m1,
σ2

n1
) and N(m2,

σ2

n2
).

Hence the random variable (X − Y − (m1 −m2))/σ has the distribution

N(0,
n1 + n2

n1n2
).

It follows that

Z =
X − Y − (m1 −m2)

σ

√
n1n2

n1 + n2

has the distribution N(0, 1). Moreover, the random variable

W =
n1S

2
n,1 + n2S

2
n,2

σ2

has the χ2 distribution with n1 + n2 − 2 degrees of freedom, which follows from the addition theorem for χ2,

since S2
n,1 and S2

n,2 are independent.
Let us consider the random variable U defined as

U =
Z√
W

n1+n2−2

=

X−Y−(m1−m2)
σ

√
n1n2

n1+n2√
n1S2

n,1+n2S2
n,2

σ2(n1+n2−2)

=

[
X − Y − (m1 −m2)

]√
n1S2

n,1 + n2S2
n,2

√
n1n2 (n1 + n2 − 2)

n1 + n2
,

where Z and W are defined above. We see that U has Student’s t-distribution with n1 + n2 − 2 degrees of
freedom. Thus the distribution of U is independent of m1,m2 and σ. This result was obtained by Fisher [5].

Remark 1.3.27 The generalization of Student’s t to multi-dimensional random variables is Hotelling’s T 2

(Hotelling [2] in Fiesz book).

1.3.4 Fisher’s Z distribution or F distribution

Historical notes

The leading statistician R. A. Fisher (1890-1962) invented analysis of variance. According to Miller, he
tabulated probabilities not for what is now called an F statistic but for z = (logF )/2. Snedecor (1934) gave
the name “F distribution” in honor of Fisher and tabulated F itself.
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From the Wikipedia article on Fisher, he worked at the Rothamsted Experimental Station in England
from 1919 to 1933, designing and performing agricultural experiments and analyzing them statistically. He
published books and became a world-famous statistician during that time. In 1931 and later in 1936 he
visited Iowa State College in Ames, Iowa, where there was also great interest in agricultural experiments and
statistics. Fisher met Snedecor there.

According to Wikipedia on Snedecor, the book by Snedecor and Cochran (1937 and later editions) was
at least for a while the most often cited book in all of science. On “F -distribution” it’s said sometimes to be
called “Snedecor’s F distribution” or the “Fisher-Snedecor distribution,” but “F distribution” is the standard
terminology in textbooks.

Snedecor lived from 1881 to 1974 and Cochran from 1909 to 1980. So even the 8th edition of their book
(1989) was posthumous for both of them.

Definition

Definition 1.3.28 Let ξ ∼ χ2(n), η ∼ χ2(m), and ξ, η are independent. Then

F =
ξ/n

η/m
,

is F distribution with degrees of freedom of (n,m), denoted by F ∼ F (n,m). The pdf is given by

pF (y) =
Γ(n+m

2 )

Γ(n2 )Γ(m2 )
n
n
2m

m
2

y
n
2−1

(ny +m)
m+n

2

.

Definition 1.3.29 If F ∼ F (n,m), then 1
F ∼ F (m,n).

Figure 1.4: Comparison of F distribution for different (n,m).

Proof. We now compute the pdf of F (n,m) distribution. The pdf of ξ/n is

pξ/n(x) =

{
n

2n/2Γ(n/2)
(nx)

n
2−1

e−
nx
2 , x ≥ 0,

0, x < 0.

The pdf of η/m is

pη/m(x) =

{
m

2m/2Γ(m/2)
(mx)

m
2 −1

e−
mx
2 , x ≥ 0,

0, x < 0.
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Then the pdf of F distribution becomes

pF (y) =

∫ ∞
−∞
|x| p(yx, x)dx =

∫ ∞
0

xp(yx, x)dx =

∫ ∞
0

xpξ/n(yx)pη/m(x)dx

=

∫ ∞
0

x · n

2n/2Γ(n/2)
(nyx)

n
2−1

e−
nyx
2 · m

2m/2Γ(m/2)
(mx)

m
2 −1

e−
mx
2 dx

=
n

2n/2Γ(n/2)

m

2m/2Γ(m/2)
(ny)

n
2−1

(m)
m
2 −1

∫ ∞
0

x (x)
n
2−1

(x)
m
2 −1

e−
nyx
2 −

mx
2 dx

=
nn/2mm/2

2n/2+m/2Γ(n/2)Γ(m/2)
(y)

n
2−1

∫ ∞
0

x
n
2 +m

2 −1e−
1
2 (ny+m)xdx.

Let x(ny +m) = t, then

pF (y) =
nn/2mm/2

2n/2+m/2Γ(n/2)Γ(m/2)
y
n
2−1

∫ ∞
0

(
t

ny +m

)n+m
2 −1

e−
t
2

dt

ny +m

=
nn/2mm/2

2n/2+m/2Γ(n/2)Γ(m/2)

y
n
2−1

(ny +m)
n+m

2

∫ ∞
0

t
n+m

2 −1e−
t
2 dt.

Notice that the following is pdf of χ2(n+m
2 ),

1

2(n+m)/2Γ((n+m)/2)

∫ ∞
0

t
n+m

2 −1e−
t
2 dt = 1.

Then the pF (y) becoms

pF (y) =
nn/2mm/2

2n/2+m/2Γ(n/2)Γ(m/2)

y
n
2−1

(ny +m)
n+m

2

2(n+m)/2Γ(
n+m

2
)

=
Γ(n+m

2 )

Γ(n2 )Γ(m2 )
n
n
2m

m
2

y
n
2−1

(ny +m)
n+m

2

.

Applications

Example 1.3.30 Let X1, . . . , Xn1 ∼ N(m1, σ
2
1) and Y1, . . . , Yn2 ∼ N(m2, σ

2
2) be independent random vari-

ables with normal distributions. Let

X =
1

n1

n1∑
k=1

Xk, Y =
1

n2

n2∑
l=1

Yl,

S2
n,1 =

1

n1

n1∑
k=1

(Xk −X)2, S2
n,2 =

1

n2

n2∑
l=1

(Yl − Y )2.

Then when σ2
1 and σ2

2 are known,

F =

n1S
2
n,1

(n1−1)σ2
1

n2S2
n,2

(n2−1)σ2
2

,

is a statistic with F (n1 − 1, n2 − 1) distribution. In particular, when σ2
1 and σ2

2 are unknown but σ2
1 = σ2

2 ,

F =

n1S
2
n,1

(n1−1)

n2S2
n,2

(n2−1)

=
n1(n2 − 1)S2

n,1

n2(n1 − 1)S2
n,2

,

is a statistic with F (n1 − 1, n2 − 1) distribution.
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1.4 Quantile

样本极差，样本中位数，样本α-分位数

Definition 1.4.1 Let X1, . . . , Xn be a random sample from a population whose CDF is F (x). Let X(1) ≤
. . . ≤ X(n) be the corresponding order statistics. The sample range is defined to be

Rn = X(n) −X(1),

and the sample median is defined to be

Mn =

 X(n/2), if n is even,(
X(n−1

2 ) +X(n+1
2 )

)
/2, if n is odd.

For 0 < α < 1, let xα be the α-quantile of the population of F (x), if

P (X < xα) = α.

The order statistic mα = X(k) + [(n + 1)α − k][X(k+1) −X(k)] is called sample α-quantile, k = b(n+ 1)αc.
Here, b·c means the floor integer function of the enclosed number. (see Zongshu Wei and
https://mathworld.wolfram.com/Quantile.html)

In real applications, the order statistic of some population is very complicated, so that we would like
to know the limit distribution of the sample α-quantile as n→∞. We show the following theorem without
justification. The proof can be found in reference in Wei Zongshu.

Theorem 1.4.2 Suppose X1, . . . , Xn be a random sample from a population X with pdf f(x). For 0 < α < 1,
let xα be the α-quantile of X. If f(xα) > 0 and f(x) is continuous at x = xα, then the following statements
hold for the sample α-quantile mα as n→∞:
(1) mα converges to xα in probability;
(2) mα has an asymptotic normal distribution (converges in distribution to a normal distribution)

N

(
xα,

1

f2(xα)

α(1− α)

n

)
.
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