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Chapter 1

Statistics and Their Distributions

1.1 The notion of a sample
CRAR. B4
Definition 1.1.1 The collection of all elements under investigation is called the population.

Definition 1.1.2 The variables representing the population is called the random variables. When we say
that the population has the distribution F(z), we mean that we are investigating a character X of elements

of this population and this character X is a random variable with the distribution function F(x).
BEALEA (EMRBEAR), i HAE. UEE, FAZHE

Definition 1.1.3 Sampling is the selection of a subset (a data sample) of individuals from a statistical
population to estimate characteristics of the whole population. A random sample of size n from a population
X (or a distribution, or a CDF F(x)) consists of i.i.d. random variables X1, Xa, ..., X,, each has the same
distribution as the population X. The values x1,xa,...,x, of X1,Xa,...,X, (observed and recorded from
the experiments) are called sample values. The set of all possible random samples of n elements is called the

sample space.

Definition 1.1.4 (empirical distribution function) Let x1,xs,...,x, be observations from F(x). Let x(1y <

T2y < ... <y be the order statistics.

0, =« < Z(),
F,(x) = %, Ty <z <z (B=1,...,n—-1),
L, 2 %@m)-

Obviously, F,(—o0) = 0, F,(+00) = 1. F,(x) is called a empirical distribution function or a sample distri-

bution function.

Proposition 1.1.5 By law of large number, for any given x, one has Fy,(z) = F(x) as n — co.
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Figure 1.1: Diamonds are the observation data points, solid line is the true CDF, and dashed line is the

empirical CDF.

1.2 The notion of a statistics

Definition 1.2.1 A random variable which is a function of the observed random vector (X1,...,X,) and
known parameters is called a statistics. Note that a statistics is not allowed to involve unknown
parameters. Specifically, let X1, Xs,..., X, be samples, and then g(Xi,...,X,) is a statistics. When

observations are x1,%a, ..., Ty, then g(xy,...,x,) is an observation value of the statistics.

Example 1.2.2 Let X ~ N(u,0?) with given p but unknown o*. Let (X1,...,X,) be samples. Then

n

% zn:Xi and % > (X = p)?
1=1

i=1

are statistics, whereas 25 Y.\ (X; — X)? not since it involves with the unknown o?.

We have already encountered some of the most important statistics.We now list some below. Their
denitions involve the size n of the sample, which are usually omitted when there is no confusion. Let
X1,...,X, beiid. samples. Then

#EA{E e The sample mean

Y:

S|

S
i=1

#eA 7 % e The sample variance




FEAEW 4% o The sample moment of kth order

ap = %Zn:XZk
=1

ALY H 04 o The sample central moment of kth order

Example 1.2.3 Let &,...,&, and n1,...,0m be independent samples from N(0,1) of size n and m. Then

n
o= ) &
=1

&i
t = ,
VX3 /n
o Z;n:1 n?/m

Z?:lgiz/n,

are all statistics.

1.3 Review of \?,t, I distributions

1.3.1 y? distribution

Lemma 1.3.1 Let X be a random variable of continuous type with density function p(z). Let y = f(x) be a
strictly monotonic function and let x = h(y) be the inverse function of y = f(x) with continuous derivative.

Then'Y = f(X) is also a continuous random variable with density function

) = { p(h(®) - W W), a<y<p,

0 else,
where « = min{f (—00), f (+00)} and B = max{f (—o0), f (+0)}.

Proof. Assume that f(x) a strictly monotonically increasing function. Then h(y) is also strictly monotoni-

cally increasing.

Fy(y) = P <y)=P(f(X)<y)
h(y)
= PLC<h) = [ pe)ds, for f(-00) <y < (+50).

Thus, the pdf is
p(h(y)) - W'(y), f(=00) <y < f(+00),
0, else.

Y(y) = Fy(y) = {

One can follow the similar procedure here to prove for the case when f(z) is strictly monotonically decreasing.

Remark 1.3.2 The condition can be relazed to that the function f(x) is piecewise strictly monotonic and

its inverse function is continuous and differentiable. For example, y = x2.



Example 1.3.3 Let X be a standard normal distribution N(0,1). Find the pdf of Y = X2
Sol. Fory <0, Fy(y)=P(Y <y)=0. Fory >0,

Fy(y) = P(Y <y)=P(X*<y)
+Vy
— PVi<X<vi= [ eln,
VY

where o(x) = \/#276_%. Then, the pdf of Y is

1 1 y
(VY 3y 2 +o(—h)iy 2 = F=e 2=, y >0,
w<y>:F;<y>:{ & D= et g
0, y <0.

This is the density function of x*(1).

We now show the distribution for x?(n) and then show the detailed computation for x?(n). The dis-
tribution of x? was obtained by Helmert (book Fiesz). The parameter n is called the number of degrees of

freedom.
B o E Ant 2o
Definition 1.3.4 Let X1,..., X,, be i.i.d. with normal distributions N(0,1). Then x*> = X + -+ + X2 is

said to be a x? distribution with n degrees of freedom, denoted by x?(n). Its pdf is

1 p3-1le—3 >0
f(x) _ { Sn/zr(n/z)z e 2, z ; 07 (1.1)

Here, Gamma function
oo
ING) :/ et te dr, t>0,
0

with T'(1) = 1,1(3) = /7@, and T(t + 1) = tI(t).

Now let’s see how to derive the pdf of x?(n). We first compute the distribution of sum. Let (X,Y) be
a random variable of continuous type with joint pdf p(x,y). Then the distribution function of Z = X +Y is

Fz(z) = //xﬂgzp(:v,y)dxdy = /_Z (/_Z: p(%y)dy) dz.

In addition, if X and Y are independent, then

Fz(2) /_Z dx </_Zoj pX(x)py(y)dy>
/_Z dx </_ZOOPX($)PY(17 - x)dgj) (y=19—1)

/Oo (/O:o px (2)py (9 — :c)dx) dj.

pate) = Fy() = [ " px @y (2 — )da.

— 00

The pdf of Z is

By symmetry, one can also show that

pate) = | " px(z - 2)py (x)d,

— 00

where both above formula are the convolution between px (z) and py (y).



Example 1.3.5 Let X,Y be two independent normally distributed random variables. Then their sum Z =
X +Y has the pdf of

oo 1 oo 12 e 2
pz(z) = / pX(z)py(z—x)dzZT e Fe T de
— 00 ™ oo
]. 22 & z\2 1 22
= e 7T —@=3) gy = ——_e~ 7T
5-¢ /_Ooe x 2\/%e

Thus, Z ~ N(0,2).

Remark 1.3.6 Let X; (i =1,...,n) be independent random variable with normal distributions N(u;,c?).
(1) Then, Y"1, X; is normally distributed with N(u,0?), where p =31 | ju; and 0% =" | 2.

(2) For any real l;, Y i, 1;X; is also normally distributed with N(u,0?), where p = > i lip; and o? =
>licy o

(8) The above can be proved using convolustion formula by induction or using characteristic function method.

Definition 1.3.7 If X has pdf

AY a—1,-)\x >
p() = fayr" e, v 2 0,
0, z < 0.

Then we say that X is a random variable with a gamma distribution with parameters (a,\), denoted by
T(a, A).

Example 1.3.8 Let X,Y be independent random variables with distributions T'(a1, A) and T'(ag, \). (Note
that the second parameter A is the same). Find the pdf of Z =X +Y.

Sol. Using the convolution formula,

o >\061+042 z
— o dr = -z . a;—1 agfld )
pz(z) /Oopx(z x)py (x)dx 71“(041)F(a2)6 /0 (z —x) T s

Let Z =t. Then

1
/Z(Z —x) gy = za“”’rl/ (1 —t)*r—1g2—1gy
0

0

where . -
- _ Io)T (a2
1— )™ ltaz ldt:BOZ,Oé _ Q) @)
Ja-o R
Then
pZ(z) = LW —Az a1+@2—1w
INCENINCEY (o + o)
>\041+062
— 7Za1+a27167)\2'
(o + )

Thus Z ~ T'(aq+a9, A), which means that gamma distribution has the additive property for the first parameter.

Remark 1.3.9 One can also compute the above result using Ch.f. method.

n
=1

Remark 1.3.10 In general, if {X;}._, are independent random variables with distributions {I'(c;, A)}
then Z=X1+ -+ X, ~T(aq 4+ -+ an, N).



Remark 1.3.11 Ifa=§,\A = % for the gamma distribution I'(%, %), then one can observe that it is the same
as the pdf of x> from (1.1), that is, INEH %) = x%(n). Moreover, x? distribution has the additive property as
inherited from the gamma distribution. That is, if X ~ x%(n) and Y ~ x2(m), and X and Y are independent,
then X +Y ~ x%(n+m).

Remark 1.3.12 In general, if X1,. .., Xy are independent random variables and X; ~ x*(m;) (i =1,...,k),
then X7 + -+ + X}, NX2(m1++mk)

Remark 1.3.13 Based on the Definition 1.5.4, if X1,...,X, are n i.i.d. random wvariables with normal
distributions N(0,1). Then X? ~ x*(1) for each k =1,...,n and Y = X{ + -+ X2 ~ x*(n) is said to be

a x? distribution with n degrees of freedom.
Remark 1.3.14 If X ~ x?(n), then EX =n,Var(X) = 2n.

Proof. We can compute the expectation

EX = —— _x27le73yg
n+2
275 [ (nt2) o 1 n .
= n (nQ )/ RS — l'#_le_fdx
= 2~E:n,
2

where the integral in the second line is for the pdf of x?(n +2). Similarly, EX? = n%+2n and Var(X) = 2n.
]

Last, we consider the case for the independent random variables Xy (k = 1,...,n) where the normal
distribution has variance o2, that is, the normal density

fla) = —= e (- ””)

oV22r 202

ﬂ

The expression
n

X =) Xk
k=1
is also called the statistic x2, whose distribution was obtained by Helmert. We can obtain the expectation

and variance as

Ex? =no?, Var(x?) = 2no?.

The parameter n is also called the number of degrees of freedom, which corresponds to the fact that x?2 is
the sum of n independent random variables. The tables of the x? distribution usually give the values of the
distribution function value with ¢ = 1 for different values of x and n.

In Fig. 1.2, the densities of x2 for ¢ = 1 and various degrees of freedom are displayed.

Remark 1.3.15 The tables of the x*(n) distribution are usually given for mo more than thirty degrees of
freedom. Fisher [6] (in Fiesz book) showed that if the number of degree of freedom n increases to infinity, the
random variable \/2x?(n) has the asymptotically normal distribution N(1/2n —1,1). For n > 30,

we may use the tables of the normal distribution.



Probability

Figure 1.2: Comparison of x? distribution for different n.

1.3.2 Independence and distribution of sample mean X and sample variance S2

In applications, we often deal with problems of the following type. The values of sample mean X and
sample variance S,QL are observed and found to be such that a < T < b and s > ¢. We would like to find
the probability of these inequalities, or in other words, we would like to find out how often the values T
of the statistic X and the values s of the statistic S,, satisfy these inequalities if we take a large series of
observations. First, let us right now prove that X and S? are independent and also find their distributions

as well, which will be used for the definition of the following Student’s ¢ distribution.

Proposition 1.3.16 Let €7 = (¢&1,...,6.),n" = (n1,...,nn) be two random wvectors. Let n = A for
A e R"™ ™. Then

E(n) = AE(£), Cov(n,n) = ACov(&,£)AT.

Lemma 1.3.17 Let & and n be two independent random variables. Let f(z) and g(x) be two continuous or
piecewise continuous functions. Then f(€) and g(n) are independent with each other. (The conclusion is

intuitively correct, however, the rigorours proof is out of the scope of the course. One can refer to probability

theory by fudan university 1979 for reference.)

Theorem 1.3.18 Let &1,...,&, (n > 1) be random samples from a normal distribution N(u,0?). The

sample mean and sample variance are

n

St S2=13 (G-
k=1

Then & and S2 are independent. Moreover,

£=

S|
=~
Il
—



Proof. Let

&1 m
&2 12

E - . ) T] = 9
gn Tin

where & and 7 are different by a orthogonal transformation A,

n= A£$
where A is an orthogonal matrix,
T 1 1 1 1T
vn N vn N Vvn
1 -1
V21 V21 0 0 0
1 1 -2
A=| 753 733 e 0 0
1 1 1 . 1 —(n=1)
L \/n(nfl) \/n(nfl) \/n(nfl) \/n(nfl) \/n(nfl) _

Notice that A is a specific orthogonal matrix whose all row sums are zeros except for the first row. Based on

this transformation,

m == - k — \/ﬁga
e
—2
n = nf. (1.2)
Due to the orthogonality of A, one has
n n n . o
S i=nTn=¢TATAE=¢Te=Y = (&) +nE.
k=1 k=1 k=1

Substituting (1.2) into above,

n n n
— 2
nSi=3 (6 -9 =3 nt-nt —Zm n= k-
k=1 k=1 k=2
We now discuss the distribution and independence of random variables 71, ...,n,. Since n = A&, we
know that each 7 is a linear combination of normal &1, ...,&,. Thus n1,...,n, are all random variables with

normal distributions. Moreover, one has
Cov(n,m) = ACov(&,€)AT = Ac’TAT = 521,

where I is an identity matrix. Thus #1,...,n, are pairwise uncorrelated and thereafter independent due
to they are all normally distributed. (The reason is that the joint pdf of n can be written in terms of the
multiplication of the pdf of each 7; since the covariance of 7 is diagonal). Therefore, n? = nEQ is independent
of >p_,m? = nS2, which is the main result for the first part, ¢ and S? are independent with each

other. Here we have used the conclusion from Lemma 1.3.17.



One can compute the expectation of 7,

Em Vi

En 0
E(n) = : =AE (&) =

En, 0

Thus each 7; (i = 2,3,...,n) has the normal distribution N(0,02). Then based on the definition of 2

distribution, one has

nSy Do ()2 2
7:T:Z(;> ~ X (n—1),
k=2
satisfying the x2 distribution with n — 1 degrees of freedom. m
We realize that the above proof is very tricky for the construction of orthogonal matrix A. Next, we

provide another way to prove the above independence result and find the distribution of (Y, S,%) We hope

to have an intuitive understanding. Let Xi,...,X,, (n > 1) be independent random samples from a normal
distribution N(0,0?),
fla) = — -
x) = exp| ——= | .
ovV2w P\ 7202

Here all variables are shifted to the zero mean. The sample mean and sample variance are

n

Sx. ste iy -we
k=1

k=1

Y:

Sl

and their observation values are T and s2, respectively.
Proof. Let f(x1,...,2,) be the density of the n-dimensional random variable (Xi,...,X,). We call the

expression

dP = f(x1,...,2pn)dzy ... dTy,

the probability element of this random variable. Since X3, ..., X, are independent, we obtain

1 1 n
dP = ——exp|——=— 22 | dxy ... dx,
on (2m)"/? ( & ’“)

1 2 2
= 5 XD (—W) dxi...dzy. (1.3)
o™ (2m) 20
Let us make the following transformation:
T =T+sz, (k=1,...,n). (1.4)

From the constraint relations
n n
E T = Nx, E x% =nT? + nsz,
k=1 k=1

we obtain two constraint relations for the variable zg,

sz =0, Zz% =n. (1.5)

10



Thus, all z;’s are NOT independent and two variables among all the zy, say z, and z,_1, are functions of

the remaining zy,

Zn—1, Zn(Zh .. 7Zn—2)-
By solving (1.5) for z, and z,_1, either
A-B A+ B
Zn—1 = 2 ) Zn = 2 3
or zp_1 = AJ”TB, Zp = A;—B, where
n—2 n—2 n—2
A:—sz, B = 2n—322i— Z 27
k=1 k=1 k,j=1
Kt
Hence transformation in (1.4) is not one-to-one for all zj, but to
(X1, yxn) < (T,8, 21, ., Zn_2),
where s > 0, Zz;f zr # 0, and Zz;f 22 < n, there correspond two systems (1,...,z,), namely, the system
g = THsz, (k=1,2,...,n—2), (1.6)
_ A-B _ A+B
Tp—1 = IT+S8 , Ty =T +S s
2 2
and the system
g = THsz, (k=1,2,...,n—2), (1.7)
_ A+B _ A-B
Tpn-1 = T+S8 5 Tp =T+ S 5

One can see that thw absolute values of the Jacobians of the two transformations are equal. For the trans-

formation (1.6), we have

76:1:1 ... axn ...
o o 1 1 1 1 1
oz Ox, L. A—B A+B
0s T Os 1 22 “n—2 2 2
: . : o s (0A _ 0B s (QA 4 0B
J = : . : =| s 0 0 2 (821 821) 2 (821 T 67.1)
: . : 0 : :
O dzy . s 0A 9B s 0A OB
Sznig Y Bzp_o 0 0 § 2 (azn72 azn72) 2 (8271.72 + 8271.72)

After a few computations we obtain the absolute value of the Jacobian,
] = ks™2,
where k = k(z1,...,2,—2) is some complicated function independent of Z and s. Notice that the density has
the same value for both transformations (1.6) and (1.7), and we obtain from (1.3) that
nT? + ns?

1
AP =2—— exp () ks"2dTdsdz, . .. dz,_s.
on (QW)H/Q 202

Let us now represent the above formula in the following form:

_ (n—1)/2 yn—2 (_L)
2 n S exp o2
dP = LI/Q eXp <_nI2> dx X 3)/2 1 2 1 ds
o (27) 20 20T (ngh) o

r(25)

X 2 (n—1)/2

k(Zl, ceey Zn_g)dzl . dZn_g.

11



Then the probability element of (X, S,, Z1,...,Z,_2) is product of three factors, the first of which is the
probability element of X, the second is the probability element of S,,, and the third is the probability element
of (Z1,...,Zn_2). Hence one can see from the joint pdf that X, S,, and (Z,...,Z,_5) are independent.
If we denote by h(T,s) the density of (X,5,) we have

h(E,s) =4 oCm7? TP 720
07 s < 0.

We now find the distribution of the statistic Z = nS2 /o2, denote by the density function f(2), (2s % ds =

dz, z = ns*/o?)

n(n=1/2gn=2 oxp (7%) o2 n(m=3)/2gn=3 oxp (—%)
2320 (1) gn1 " 2sn  20-D/2[ (2y1) gn3

20 2 exp (—5)

0 (351)

Let us compare f(z) with the x?(n — 1) distribution in Definition 1.1,

1 n-1_q _=z
fla) = 20—D/20((n — 1)/2)" P

and we find that they match each other exactly. Thus the statistic Z = nS2 /0% has the distribution as

x2%(n — 1) with n — 1 degrees of freedom. This agrees with our intuition since

n

nSﬁ = Z(Xk - X)Q,
k=1

is a sum of n random variables satisfying the constraint relation
n
> X =nX.
k=1

This result gives us a better understanding of the notion of the number of degrees of freedom. Hence

EnS?) = (n—1)c% Var(nS2)=2(n—1)c"
n—1 2(n—1)
E(S2) = — o?, Var(S2) = = ot

Remark 1.3.19 If the independent random variables Xy have the same normal distribution, then the joint
density of the random variables X and S,, is the product of the densities of these random variable, and hence
they are independent. This extremely important and interesting result was obtained by Fisher [5] in Fiesz
book.

Remark 1.3.20 The converse theorem is also true. If the statistics X and S, are independent, the random
variables Xy, have the normal distribution. The proof of this theorem was given by Geary [1], Lukacs [1],
Kawata and Sakamoto [1], and Zinger [1]. Later this theorem was generalized by Lukacs [2] and Basu and
Laha [1].

12



1.3.3 Student’s ¢t distribution
Definition

(BHI#)  Let us first consider the distribution of the Quotient.
Let (X,Y) be a two-dimensional random variable with pdf p(z,y). Find the distribution of Z = X/Y.

The distribution function of Z is

Fis) = PZ<2)=P(5<2)
= / p(w,y)dwdy=// +// p(z,y)dzdy
ggz %gz,y>0 %§27y<0
00 yz 0 00
- < / p(x,wdx) a+ [ ( / p(ay)dsc) dy.
0 —o00 —o0 Yz
Then the pdf of Z is
e’} 0
pz(z) = Fz(z) =/ yp(yz,y)dy—/ yp(yz,y)dy
0 —00

/ lylp(yz,y)dy.

— 00
Definition 1.3.21 Let £ ~ N(0,1) and n ~ x*(n — 1), and £ and n are independent. Then

I S
Vi/(n—=1)°

is a student’s t distribution with (n — 1) degrees of freedom, denoted by T ~ t(n —1). Its pdf is given by

_ I(3) T W
1

vVn — 13(%,%_1) <1+ y?2 )% .
Proof. We now compute the pdf of student’s ¢ distribution. The pdf for x?(n — 1) is,

n-1_4 _ax
x 2 “lem3, x>0,

ﬁ
pla) = 277 e
0, z < 0.

We now compute the pdf for 1/%. Let y = /=% and the inverse function h(y) = y*(n — 1). Using the

result in Lemma 1.3.1, we obtain the pdf for %,
1 9 n-1_, v2(n—1)
py) = —— (y*(n—-1)) 2 e 2z 2y(n—1
nol o 2, n—1y251 2
2(n—1 n=2 _ yZ(n-1) 2(21) "2 o ¥%(n—1)
2
07 Yy < 0.

Using the quotient formula, we have

pr(y) :/ Top(x2y, T2)dwa,
0

13



where p(z,y) is the joint pdf of a standard Gaussian and \/%,

p(ar,z2) = ée 2 po(w2), T2 >0,
0, 22 <0
Then
Tl ep? 205 = 5 _22(n-1)
pT(y) = / x e 2 . - 2 s .
o VI P57
oo n—1 n—1
= / LQ( Qn )1 2 xn_le_%w2(y2+n—1)dx
0 2r I'(%57)
x2(y2+n—1):s
2x(y2+n—1)dx:ds /oo 1 2(%71 nt ( . >7121 -
_ B
o Vor () \pP+n—1
_ [ e 1
o V2r D(%Fh) W2 +n—1) e —
n—1
LT e
= - n— y +TL— ]_ 2 / s%3 e st
Var T(t5) ( ) ;

Using the fact that

then we obtain that

pr(y)

Motivation and Properties

We now provide the motivation for the ¢ distribution. We have considered the distribution of the statistic

X given by
1 n
X=-» X
S
k=1
where the random variables Xj (k = 1,...,n) are independent and have the same normal distribution

N(u,0?%). We established that X has the normal distribution N (u, 02 /n); hence for a known ;1 and unknown
o2, the distribution of X is unknown. Of course, we cannot directly replace o2 by the value obtained from
a sample variance since the sample variance itself is a random variable and can take on different values in
different samples. In order to deduce anything about i without the knowledge of 02, we have

to consider a statistic which is a function of y and with a distribution independent of 2.

14



This problem was solved by Gosset (pseudonym: Student [1] in Fiesz), who introduced the statistic called
Student’s t-statistic.

Let X; (k=1,...,n) be independent and have the same normal distribution N(u,0?). Then Student’s
t is defined by

X — = N(0,1
Xty = NOD (1.8)
Sn nsSy x2(n=1)o2
(n—1)02 (n—1)02
where
1 <& 1 < _
X=-) X3, S2=-)(Xx—-X)>

In fact, here we need to further verify that X and S? are independent which will be shown later.
Thus the density of Student’s ¢ is independent of o2. As we have already mentioned, it is this fact that makes
possible many applications of the ¢-distribution. We say that a random variable with density of T in (1.8)

has the t-distribution with n — 1 degrees of freedom.
Proposition 1.3.22 The density of the random variable t is symmetric with respect to t = 0.

Proposition 1.3.23 Student’s t-distribution has only moments of order k < n — 1. Thus, for n = 2 no
moments exist. The reader can verify that for n = 2, Student’s t-distribution is a particular case of the

Cauchy distribution which, as we know, has no moments.

The graph of the density of Student’s ¢-distribution is shown in Fig. 1.3. If we compare the Student’s
t-distribution for a number of degrees of freedom close to 30 with the normal distribution N(0,1), we see that
they are almost identical (see Fig. 1.3). This is because the ¢-distribution approaches the normal distribution

rapidly, as the number of degrees of freedom tends to infinity. We now prove this.

0.4 -4
-
=8 df
0.3 B - 20 df
- = standard normal
=
:g 0.2 4
o
I
a
01 -
0.0 -

T T T | T
-4 -2 0 2 4

T-score (no. standard deviations from the mean)

Figure 1.3: Comparison of Student’s ¢-distribution for different n.
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Lemma 1.3.24 Let {X,}(n = 1,2,...) be an arbitrary sequence of random variables (dependent or not)
and let the corresponding sequence of distribution functions {F,(x)} converge as n — oo to the CDF F(x).
Further, let {Y,} (n = 1,2,...) be another sequence of random variables stochastically convergent (in proba-
bility) to a constant a. Then

(1) the sequence of the CDFs of X,, + Y, converges to the CDF F(x — a).

(2) the sequence of the CDFs of X,, —Y,, converges to the CDF F(x + a).

(3) the sequence of the CDF's of X,,Y,, converges to the CDF F(z/a) if a > 0 and to the CDF 1 — F(z/a) if
a<0.

(4) the sequence of the CDF's of X, /Y, converges to the CDF F(ax) if a > 0 and to the CDF' 1 — F(az) if
a < 0.

Theorem 1.3.25 The sequence {F,(t)} of distribution functions of Student’s t with n degrees of freedom

satisfies for every t the relation

1 t 52
lim F,(t) = — e 2 ds.
n—o00 n( ) Vs /700
Proof. Let us write the ¢-distribution in the form

T — Y., Y, Y,
n — &* ﬁZn*Vna

n

where for every n the random variable Y,, has the normal distribution N (0,1) and X,, has the x?(n) with n
degrees of freedom. We shall prove that the sequence {V,,} converges stochastically to the constant one.
Recall that for a gamma distribution with pdf I'(«a, M),

A% a—1_,-)Azx
e x>0,
pl) =3 I
0, x <0,

the corresponding Ch.f. is
1

o) = T it/aye

The random variable X,, has the distribution of x?(n), which is the gamma distribution with I'(%, 3). Hence

the Ch.f. of X,, is —L— and then the Ch.f. of Z,, = Z= is
(1-2it)2 n

o
(1—20)%

n

¢n(t) =

Hence
lim ¢, (t) = €.

n—oQ
It follows from the last equation that the sequence {Z,} is stochastically convergent to the distribution of
P(X = 1) =1 (Two points here. First, ¢(t) = >, P(X = zp)e’™ = ¢ - 1. Second, the convergence
in distribution to a constant is equivalent to the stochastic convergence in probability to that constant.).
By continuous mapping theorem, the sequence {V,,} is also stochastically convergent to one. From Lemma

1.3.24, we arrive at the conclusion. m
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Applications

Here we show one example for Student’s t-distribution.

Example 1.3.26 We now introduce one statistic of great importance in applications. Let Xq,..., Xy, ~
N(my,02) and Y1, ..., Y, ~ N(ma,o?) be independent random variables with the same variance but different

expectation. Let

ni no

— 1 = 1
X = — X Y =—
LS, 7o L3
k=1 =1
1 ni o 1 No o
53,1 = Z(Xk - X)Qa 5721,2 - Z(Yl - Y)Q-
™Mo 20D
As we know, X and Y have, respectively, the normal distributions
2 2
N(my, U—) and N(ma, U—).
ni n2

Hence the random variable (X —Y — (my —ma))/o has the distribution

N0, "2y

ninz

It follows that

Z_Y—Y—(ml—mg) n1ns
o o ny + no

has the distribution N(0,1). Moreover, the random variable

2 2
nl S’I’L,l + n25’n72

o2

has the x2 distribution with ni + no — 2 degrees of freedom, which follows from the addition theorem for x2,
since Sy 1 and S} 5 are independent.

Let us consider the random variable U defined as

X—Y —(mi;—ms2) nin —
U — Z . ffl : \V n11+;2 . [Y—Y—(ml—mg)] \/nlng(nlJrnQQ)

o w o n1S52 [ +n2S52 o 2 2 ny+n

Va2 I CrE— m1S, 1+ 125, L
where Z and W are defined above. We see that U has Student’s t-distribution with ny + ny — 2 degrees of
freedom. Thus the distribution of U is independent of my,ms and o. This result was obtained by Fisher [5].

)

Remark 1.3.27 The generalization of Student’s t to multi-dimensional random variables is Hotelling’s T?
(Hotelling [2] in Fiesz book).

1.3.4 Fisher’s Z distribution or F' distribution

Historical notes

The leading statistician R. A. Fisher (1890-1962) invented analysis of variance. According to Miller, he
tabulated probabilities not for what is now called an F statistic but for z = (log F')/2. Snedecor (1934) gave

the name “I" distribution” in honor of Fisher and tabulated F itself.
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From the Wikipedia article on Fisher, he worked at the Rothamsted Experimental Station in England
from 1919 to 1933, designing and performing agricultural experiments and analyzing them statistically. He
published books and became a world-famous statistician during that time. In 1931 and later in 1936 he
visited Iowa State College in Ames, lowa, where there was also great interest in agricultural experiments and
statistics. Fisher met Snedecor there.

According to Wikipedia on Snedecor, the book by Snedecor and Cochran (1937 and later editions) was
at least for a while the most often cited book in all of science. On “F-distribution” it’s said sometimes to be
called “Snedecor’s F' distribution” or the “Fisher-Snedecor distribution,” but “F distribution” is the standard
terminology in textbooks.

Snedecor lived from 1881 to 1974 and Cochran from 1909 to 1980. So even the 8th edition of their book
(1989) was posthumous for both of them.

Definition

Definition 1.3.28 Let £ ~ x2(n),n ~ x2(m), and &,n are independent. Then
s
n/m
is F distribution with degrees of freedom of (n,m), denoted by F ~ F(n,m). The pdf is given by

)
n

pr(y) = L(52) nTm? e )
INCINE Y (ny +m)™="
Definition 1.3.29 If F ~ F(n,m), then = ~ F(m,n)
g 5 Probability density function (dfi =1,df> =1)
L2
- = :) — 2
—d1=1, d2=1 Mfl 10, df> ())
o | — d1=2, d2=1
e d1=5, d2=2
d1=100, d2=1

e d1=100, d2=100
=1 S~ (df =5,df, = 4)

| | | | | |

0 1 2 3 4 5 o 1 2 3 1 !

Figure 1.4: Comparison of F' distribution for different (n,m).

Proof. We now compute the pdf of F(n,m) distribution. The pdf of £/n is

#(nx)g_le_%, x>0,
Pepm(x) =4 202
0, r < 0.

The pdf of n/m is

w3

—1 _m=z
2

e , x>0,

%(mx)
Poym(x) = 2TM/2)
n/m(®) { 0, z < 0.

18



Then the pdf of F' distribution becomes

Pr(y)

— 0o

n

[ = st

(nyw)®~

9n/2T (n/2) 2m/2T (m2)

n m

()* )3 [Te @i @ e

/ |z| p(yz, z)dx = / wp(yz, z)ds = / TPe ) (Y)Pry o () de
0 0

_ nyw m % 1 mz

ATy )T

nyr _ mazx

n/2,,,m/2 o0
_ i i (13! / pEHE L mag,
2n/2+m/21(n,/2)T (1 /2) 0
Let z(ny + m) = t, then
nn/2mm/2 g [e’) ¢ w'gm_l ., dt
= 2 a4 m, ’
pF(y) 2”'/2+7’L/2F(n/2)F(m/2) ) /0 <ny + m) € ny +m
_ n"/2mm/? y?~ /Oot"%”fle*édt
2n/2+m/2f‘(n/2)r(m/2) (ny 4 m) g 0

Notice that the following is pdf of x*(25™),

1

ndm _q _t
t dt = 1.
SO ((n + m)/2) /0 oo

Then the pr(y) becoms

pr(y) = n"/2mm/? y%_l 2(7L+7rl)/2F(M)
2n/2+m/21(n /2)T(m/2) (ny + m)# 2
reetmy L, . 31
= 7(L 2 7r)L nim? y2 n+m

I(3)(3) (ny+m) 2
|
Applications
Example 1.3.30 Let Xi,...,X,, ~ N(my,0?) and Y1,..., Yy, ~ N(mz,03) be independent random vari-
ables with normal distributions. Let

ni n2

Y =
5721,1 =

Then when o2 and o3 are known,

(n1—1)o?
’I’Lzs;‘;”z
(n2—1)o3

is a statistic with F(ny — 1,ny — 1) distribution. In particular, when o? and o3 are unknown but o3 = 03,

F =

nlsf%

(nlfll) . ny(ng — 1)5721,1
n28ts  na(ng —1)S2,’
(n2—1) ’

is a statistic with F(ny — 1,ne — 1) distribution.
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1.4 Quantile
BARE, BAFAEK, HRa-o MK
Definition 1.4.1 Let X1,...,X,, be a random sample from a population whose CDF is F(x). Let Xy <
... < X(n) be the corresponding order statistics. The sample range is defined to be
Bn =X@m) =X,
and the sample median is defined to be

X(n/2), if n is even,

Me=0 (x b 2, if n is odd
((anl)“r (HTH))/’ anZSO .

For 0 < a <1, let x4 be the a-quantile of the population of F(x), if
P(X <z,) =a.

The order statistic mq = Xy + [(n + 1)a — k][ X (141) — X(w)] is called sample a-quantile, k = |[(n + 1)a].
Here, |-] means the floor integer function of the enclosed number. (see Zongshu Wei and
https: //mathworld.wolfram.com/Quantile.html)

In real applications, the order statistic of some population is very complicated, so that we would like
to know the limit distribution of the sample a-quantile as n — co. We show the following theorem without

justification. The proof can be found in reference in Wei Zongshu.

Theorem 1.4.2 Suppose X1, ..., X, be a random sample from a population X with pdf f(z). For0 < a <1,
let xo be the a-quantile of X. If f(xzq) > 0 and f(x) is continuous at x = x,, then the following statements
hold for the sample a-quantile m,, as n — oo:

(1) mey converges to x, in probability;

(2) mq, has an asymptotic normal distribution (converges in distribution to a normal distribution)

¥ (o i)
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