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Chapter 1

Limit Theorems

1.1 Convergence in Probability

See the introduction to measure theory in Chapter 1, including the reference website:
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics

_and_Stochastic_Processes_(Siegrist)/02%3A_Probability_Spaces/2.03%3A_Probability_Measures

Figure 1.1: The relation among various of convergence.

1.1.1 Definitions

Definition 1.1.1 (Almost Surely Convergence). If there exists A ∈ F such that P (A) = 0 (A is a zero
measure set) and ∀w ∈ Ac, lim

n→∞
Xn(w) = X(w), then Xn

a.s→ X(n → ∞). Then Xn is said to be convergent
to X almost surely or almost everywhere.

Definition 1.1.2 (Convergence with Probability 1). If P ( lim
n→∞

Xn = X) = 1, then we say Xn converges

to X with probability 1, denoted by Xn
w.p.1−→ X.
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Remark 1.1.3 The above two definitions are exactly equivalent. In addition, one more equivalent definition
can be found in equation (1.37).

Definition 1.1.4 (Stochastic Convergence). The sequence {Xn} of random variables is called stochasti-
cally convergent to zero if for every ε > 0 the relation

lim
n→∞

P (|Xn| > ε) = 0 (1.1)

is satisfied.

Definition 1.1.5 (Converge in probability). If for any ε > 0, lim
n→∞

P (|Xn−X| ≥ ε) = 0, then Xn is said

to be convergent in probability to X. We denote by Xn
P−→ X,n→∞.

Remark 1.1.6 The above two definitions are completely equivalent but only with terminologies different.
Nowadays, we use terminology “convergence in probability” and rarely see terminology “stochastic convergence”
(as I understand).

Definition 1.1.7 (Weak convergence of distribution functions). The sequence {Fn(x)} of distribution
functions of random variables {Xn} is called weakly convergent to F (x), denoted by Fn

w→ F , if there exists a
non-decreasing and non-negative function F (x), which mat not be a distribution function, such that at every
continuity point of F (x), the relation

lim
n→∞

Fn(x) = F (x)

is satisfied.

Definition 1.1.8 (Converge in distribution of random variables). Let Fn and F be distribution
functions of Xn and X, respectively. If Fn

w→ F , then we say {Xn} is convergent in distribution to X,
denoted by Xn

d→ X. The distribution function F (x) is called the limit distribution function.

Example 1.1.9 F may not be a distribution function. Consider the sequence {Xn} of random variables with
the one-point distribution given by P (Xn = n) = 1, n = 1, 2, · · · . The distribution function Fn(x) of Xn is

Fn(x) =

 0 for x ≤ n,

1 for x > n,

We have for ∀x ∈ R,
lim
n→∞

Fn(x) = 0.

Thus F (x) ≡ 0. The sequence {Fn(x)} is not convergent to a distribution function.

Now let us review some properties of a CDF in the previous chapter.

Theorem 1.1.10 The single-valued function F (x) is a distribution function if and only if it is non-decreasing,
continuous at least from the left, and satisfies F (−∞) = 0, F (+∞) = 1.

Proposition 1.1.11 The set of points of discontinuity is at most countable for a CDF F (x). Hence a CDF
is almost everywhere continuous.
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Definition 1.1.12 (Norm on Probability Space). Let p ∈ (1,+∞) and Lp(Ω,F , P ) := {X : E|X|p <
+∞}, where ‖X‖p := (E|X|p)

1
p . Then ‖·‖p is a norm on Lp(Ω,F , P ), satisfying non-negativity, homogeneity

and triangle inequality.

Definition 1.1.13 (Lp convergence). Let {Xn;X} ⊂ Lp(Ω,F , P ). If lim
n→∞

‖Xn −X‖p = 0, then {Xn} is

said to be Lp convergent to X, denoted by Xn
Lp

→ X.

1.1.2 Appendix for Weak Convergence

See my local folder jiaoxue limit theorem for convergence for reference.
为什么分布函数的收敛叫弱收敛？

We now give an intuition why the convergence of distribution functions is called the weak
convergence.

Proposition 1.1.14 (The Portmanteau Theorem). The following statements are equivalent.
(1). Xn

d−→ X.

(2). E(h(Xn)) → E(h(X)) for all continuous functions h : Rd → R that are nonzero only on a closed and
bounded set.
(3). E(h(Xn))→ E(h(X)) for all bounded continuous functions h : Rd → R.
(4). E(h(Xn)) → E(h(X)) for all bounded measurable functions h : Rd → R for which P (X ∈ {x : h is
continuous at x}) = 1.

上述性质中(1)和(3)等价，从(3)的角度就理解为什么依分布收敛叫弱收敛，因为在(3)中可以 理解有界
连续函数类h是试验函数(test function).

Definition 1.1.15 For random variables Xn ∈ R and X ∈ R, Xn converges in distribution to X,

Xn
d−→ X,

if for all x such that x 7→ P (X ≤ x) is continuous,

P (Xn ≤ x)→ P (X ≤ x) as n→∞.

Definition 1.1.16 For metric space-valued random variables Xn and X, Xn converges in distribution to X
if for all bounded continuous h

E[h(Xn)]→ E[h(X)] as n→∞.

Note that boundedness of h in the Portmanteau theorem is important.

其实也有参考书中，直接把(3)作为定义，再证明定义(1)和(3)的等价性，注意定义中h有界很重要.

1.1.3 Theorems

All the followings correspond to theorems and counter-examples in Fig. 1.1.

Theorem 1.1.17 (Theorem 1). If ξn
a.s.→ ξ, then ξn

P→ ξ for n→∞.
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Proof. We have
ξn

a.s→ ξ ⇔ ∀ε > 0, P (∩∞k=1∪∞n=k [|ξn − ξ| ≥ ε]) = 0.

lim
n→∞

P (|ξn − ξ| ≥ ε) ≤ lim
k→∞

P (
∞
∪
n=k
|ξn − ξ| ≥ ε) = P (

∞
∩
k=1

∞
∪
n=k
|ξn − ξ| ≥ ε) = 0.

Thus, ξn
P→ ξ, n→∞.

Remark 1.1.18 (Theorem 2). I did not check the proof for Theorem 2.

参考 概率论复习笔记(9) – 几种收敛的关系 - 知乎

Theorem 1.1.19 (Theorem 3). Xn
P→ X ⇒ Xn

d→ X. [there is another proof using Lévy theorem
(see Appendix).]

Proof. We first prove two Lemmas.
1© P (X + Y ≤ a+ b) ≤ P ({X ≤ a} ∪ {Y ≤ b}) ≤ P (X ≤ a) +P (Y ≤ b) since {X + Y ≤ a+ b} ⊂ {X ≤

a} ∪ {Y ≤ b} and P (A ∪B ⊂ Ω) = P (A) + P (B)− P (AB).
2© P (X + Y ≤ a+ b) ≥ P (X ≤ a and Y ≤ b) since {X + Y ≤ a+ b} ⊃ {X ≤ a} and (∩){Y ≤ b}.

1. F (x) is right continuous at x0.

Fn(x0) = P (Xn ≤ x0) = P (Xn −X +X ≤ x0 − ε+ ε)

≤ P (Xn −X ≤ −ε) + P (X ≤ x0 + ε)

≤ P (|Xn −X| ≥ ε) + P (X ≤ x0 + ε)

n→∞→ 0 + P (X ≤ x0 + ε)

ε→0−→
cont. at x0

F (x0). lim
n→∞

Fn(x0) ≤ F (x0).

2. F (x) is left continuous at x0.

Fn(x0) = P (Xn ≤ x0) = P (Xn −X +X ≤ x0 − ε+ ε)

≥ P (Xn −X ≤ ε and X ≤ x0 − ε)

≥ P (X ≤ x0 − ε)− P (Xn −X > ε) (P (A and B) + P (Bc) ≥ P (A))

≥ P (X ≤ x0 − ε)− P (|Xn −X| ≥ ε)
n→∞→ P (X ≤ x0 − ε)− 0

ε→0−→
cont. at x0

F (x0).

Thus lim
n→∞

Fn(x0) = F (x0).

Theorem 1.1.20 (Theorem 3 and 4). Xn
P→ C (n → ∞) if and only if Xn

d→ C (n → ∞) for constant
C.

Proof. See proof later in Theorem 1.3.4.

Theorem 1.1.21 (Theorem 5). Xn
Lp

→ X ⇒ Xn
P→ X and E|Xn|p → E|X|p.
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Proof.
P (|Xn −X| ≥ ε)

Chebyshev

≤ 1

εp
E|Xn −X|p =

‖Xn −X‖pp
εp

→ 0, n→∞.

Thus Xn
P→ X.

|‖Xn‖p − ‖X‖p| ≤ ‖Xn −X‖p → 0, n→∞.

Thus E|Xn|p → E|X|p.

Theorem 1.1.22 (Theorem 6). ξn
Lp+1

−→ ξ ⇒ ξn
Lp

−→ ξ.

Proof. Young or Cauchy-Schwarz Inequality.

1.1.4 Appendix for Proof of Convergence in Probability to Convergence in Dis-
tribution

We now give another proof for Xn
P−→ X ⇒ Xn

d−→ X.
See references in folder limit theorem for convergence.
See my local folder jiaoxue limit theorem for convergence for reference.
See website on https://www.statlect.com/asymptotic-theory/Slutsky-theorem, equivalently Taboga, Mar-

co (2021). "Slutsky’s theorem", Lectures on probability theory and mathematical statistics. Kindle Direct
Publishing.

We first provide two important theorems in probability theory.

Theorem 1.1.23 (Continuous Mappling Theorem or CMT). Let g be continuous on a set B such that
P (x ∈ B) = 1. Then
(1) Xn

P−→ X implies g(Xn)
P−→ g(X).

(2) Xn
d−→ X implies g(Xn)

d−→ g(X).

(3) Xn
a.s.−→ X implies g(Xn)

a.s.−→ g(X).

Theorem 1.1.24 (Slutsky’s Theorem). Slutsky’s theorem concerns the convergence in distribution of the
transformation of two sequences of random vectors, one converging in distribution and the other converging
in probability to a constant.
(1) (Joint Convergence) Let Xn and Yn be two sequences of random vectors. If Xn

d−→ X and Yn
P−→ c,

where c is a constant, then (
Xn

Yn

)
d−→

(
X

c

)
.

(2) (Continuous Mapping Convergence) Let g(x, y) be a continuous function. Then,

g(Xn, Yn)
d−→ g(X, c).

(3) (Sum and Product Convergence) Above Slutsky’s theorem implies that

Xn + Yn
d−→ X + c,

XnYn
d−→ cX.

(4) If Xn
d−→ X and Xn − Zn

d−→ 0, then
Zn

d−→ X.
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I now show a proof for Xn
P−→ X ⇒ Xn

d−→ X.
Proof. We have limn→∞ P (|Xn − X| ≥ ε) = 0. For a continuous and bounded function g, we have from
Continuous Mapping Theorem that,

lim
n→∞

P (|g(Xn)− g(X)| ≥ ε) = 0.

Let |g(x)| ≤M for all x ∈ R. Then

E|g(Xn)− g(X)| =

∫
|g(Xn)− g(X)|dF (Xn, X)

=

∫
|g(Xn)−g(X)|<ε

|g(Xn)− g(X)|dF +

∫
|g(Xn)−g(X)|≥ε

|g(Xn)− g(X)|dF

≤ ε

∫
dF + 2MP (|g(Xn)− g(X)| ≥ ε)

= ε+ 2MP (|g(Xn)− g(X)| ≥ ε)→ ε.

Based on the arbitrary of ε, we have limn→∞E|g(Xn)− g(X)| = 0, which implies that

Eg(Xn)→ Eg(X),

for any bounded and continuous g. Thus, Xn
d−→ X.

In fact, there is even one more proof from website which seems correct.
Proof. For any continuous and bounded function f , by Continuous Mapping Theorem, we have

Xn
P−→ X ⇒ f(Xn)

P−→ f(X).

By Dominate Convergence Theorem, the online states that

Ef(Xn)→ E(f(X)). (1.2)

(I am not for sure this step. For DCT, we need three conditions, (i) |f(Xn)| ≤ M, a.s. for all n, (ii)
f(Xn)

P−→ f(X) or f(Xn)
a.s.−→ f(X), (iii) E(M) = M <∞. I am not for sure if the convergence in probability

in (ii) is already enough for the DCT.) (It seems answered on a forum but I have not found book or paper.
https://math.stackexchange.com/questions/206851/generalisation-of-dominated-convergence-theorem# or
https://math.stackexchange.com/questions/3374830/dominated-convergence-theorem-with-almost-surely-replaced-
by-convergence-in-p) Then one can obtain the convergence in distribution based on the Portmanteau Theo-
rem, that is, Xn converges in distribution to X if equation (1.2) holds for all bounded continuous f . The other
last step, one can take f(x) = eitx which is a bounded and continuous function. Then based on Levy-Cramer
Theorem, the convergence of Ch.f.s is equivalent to the convergence of distribution functions.

1.1.5 Counter-Examples

Example 1.1.25 (Counter-Example 1). Lp convergence ⇒ a.e. convergence?
No. For simplicity, consider the interval Ω = [0, 1] and construct a sequence of sets An such that the mea-

sures m(An) tend to 0 but every point belongs to infinitely many An. For example A1 = [0, 1/2], A2 = [1/2, 1],
A3 = [0, 1/4],. . .,A6 = [3/4, 1], A7 = [0, 1/8],. . .. If fn is the indicator function of An, that is fn(x) = 1 if x ∈
An and fn(x) = 0 else, then fn → 0 in all Lp([0, 1]) because ‖fn‖p = [1p ·m(An) + 0p · (1−m(An))]

1/p → 0

but there is no x ∈ [0, 1] with fn(x)→ 0.
See reference in https://math.stackexchange.com/questions/689664/lp-convergence-a-e-convergence
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Example 1.1.26 (Counter-Example 2). Xn
d→ X ; Xn

P→ X.
Let Xn = −X,n = 1, 2, · · · and let Xn and X have the following distributions.

X −1 +1

P 1
2

1
2

Xn −1 +1

P 1
2

1
2

Then we have
Xn

d→ X.

However,
P (|Xn −X| > ε) = P (| − 2X| > ε) = P (|X| > ε

2
) = 1 9 0,

when ε < 2, Xn
P9 X.

Example 1.1.27 (Counter-Example 3). Xn
a.s.→ X or Xn

P→ X ; Xn
Lp

→ X.
Let Ω = [0, 1], ξ(w) ≡ 0, P (ξ = 0) = 1.

ξn(w) =


n

1
p 0 ≤ w ≤ 1

n
,

0
1

n
≤ w ≤ 1.

P (ξn = n
1
p ) =

1

n
,

P (ξn = 0) = 1− 1

n
.

∀w ∈ Ω, lim
n→∞

ξn(w)→ ξ(w), ξn
a.s→ ξ.

∀ε > 0, P (|ξn(w)− ξ(w)| ≥ ε) ≤ 1

n
⇒ ξn

P→ ξ.

However, we see that
E|ξn − ξ|p = (n

1
p )p · 1

n
= 1 6= 0.

1.1.6 Appendix for Other Convergence

There are some other useful relationships between convergence in probability theory and measure theory.
Convergence in KL divergence ⇒ Convergence in total variation ⇒ strong convergence of measure ⇒

weak convergence, where
i. µn

TV−→ µ means limn→∞ ‖µn − µ‖TV = 0, where

‖µn − µ‖TV = sup
‖f‖∞≤1

{
∫
fdµn −

∫
fdµ},

which also equals
‖µn − µ‖TV = 2 sup

A∈F
|µn(A)− µ(A)|.

ii. µn → µ strongly if limn→∞ µn(A) = µ(A), ∀A ∈ F .
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1.2 Preliminary Remarks

1. Theorems of de Moivre-Laplace, Lindeberg-Lévy, Lapunov and Lindeberg-Feller.

2. Laws of large numbers.

3. Modern theory of limit distributions for sums of independent random variables has developed greatly
during 1900-1950 due mainly to Khintchin, Gnedenko, Kolmogorov and Lévy.

4. For dependent random variables, the convergence of a sequence of distribution functions is also inter-
esting. See Markov, Bernstein.

1.3 Stochastic Convergence (Convergence in Probability)

1.3.1 Part A. Example

Example 1.3.1 The random variable Yn can take on the values

0,
1

n
,

2

n
, · · · , n− 1

n
, 1

and its probability function is given by the formula

P
(
Yn =

r

n

)
=

(
n

r

)
1

2n
(r = 0, 1, · · · , n). (1.3)

Consider the random variable Xn defined by the formula

Xn = Yn −
1

2
. (1.4)

Thus Xn can take on the values

− 1

2
,

2− n
2n

,
4− n

2n
, · · · , n− 4

2n
,
n− 2

2n
,

1

2
.

The probability function of Xn is given by the formula

P

(
Xn =

2r − n
2n

)
=

(
n

r

)
1

2n
.

Let n = 2. The random variable X2 can take on the values

− 0.5, 0, 0.5

with the respective probabilities
1

4
,

1

2
,

1

4
.

Let ε = 0.3, then

P (|X2| > 0.3) = P

(
X2 = −1

2

)
+ P

(
X2 =

1

2

)
= 0.5.

Let n = 5. The random variable X5 can take on the values

− 0.5,−0.3,−0.1, 0.1, 0.3, 0.5
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with the respective probabilities
1

32
,

5

32
,

10

32
,

10

32
,

5

32
,

1

32
.

Hence
P (|X5| > 0.3) = 0.0625.

Let n = 10. The random variable X10 can take on the values

− 0.5,−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5

with the respective probabilities

1

1024
,

10

1024
,

45

1024
,

120

1024
,

210

1024
,

252

1024
,

210

1024
,

120

1024
,

45

1024
,

10

1024
,

1

1024
.

Hence
P (|X10| > 0.3) ∼= 0.02,

which is very small.
We will prove lim

n→∞
P (|Xn| > 0.3) = 0.

1.3.2 Part B. Theory

Definition 1.3.2 The sequence {Xn} of random variables is called stochastically convergent to zero if for
every ε > 0 the relation

lim
n→∞

P (|Xn| > ε) = 0 (1.5)

is satisfied.

Remark 1.3.3 If {Xn} is stochastically convergent to zero , it does not follow that for every ε > 0, we can
find a a finite n0 such that for all n > n0 the relation |Xn| < ε will be satisfied. It follows only that the
probability of the event {|Xn| ≥ ε} tends to zero as n→∞.

Theorem 1.3.4 Let Fn(x) be the distribution function of the random variable Xn. The sequence {Xn} is
stochastically convergent to zero if and only if the sequence {Fn(x)} satisfies the relation

lim
n→∞

Fn(x) = F (x) =

 0 for x ≤ 0,

1 for x > 0,
(1.6)

at every continuity point.

Proof.
(⇒). {Xn} is stochastically convergent to zero. lim

n→∞
P (|Xn| > ε) = 0.

P (Xn < −ε) = Fn(−ε)→ 0⇒ Fn(−x)→ 0, for ∀x > 0.

P (Xn > ε) = 1− Fn(ε)− P (Xn = ε)→ 0.

Since ∀ε > 0 there exists 0 < ε1 < ε, we have P (Xn = ε > ε1) ≤ P (|Xn| > ε1)→ 0. Thus

1− Fn(ε)→ 0⇒ 1− Fn(x)→ 0, for ∀x > 0.
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(⇐). ∀ε > 0,
lim
n→∞

P (Xn < −ε) = lim
n→∞

Fn(−ε) = 0.

lim
n→∞

P (Xn > ε) ≤ lim
n→∞

P (Xn ≥ ε) = lim
n→∞

[1− Fn(ε)] = 0.

Remark 1.3.5 F (x) correspond to the random variable X with a one-point distribution such that P (X =

0) = 1. F (x) is continuous at every point x 6= 0 so that Fn(x)→ F (x) at x 6= 0.

Remark 1.3.6 We stress the fact that at the discontinuity point of F (x), that is, at the point x = 0, the
sequence {Fn(0)} may not converge to F (0).

Remark 1.3.7 Let Xn
d−→ c 6= 0. We can consider {Yn} = {Xn − c}. Then Yn

d−→ 0 so that {Yn} is
stochastically convergent to zero. The theorem holds.

Remark 1.3.8 Let Xn
P−→ X 6= 0 (X is a random variable). Then we have Xn

d−→ X. However, the inverse
may not hold, that is, the theorem does not hold (see Example 1.1.26).

1.4 Bernoulli’s Law of Large Numbers

Denote by {Yn} the sequence of random variables with probability functions given by the formula

P
(
Yn =

r

n

)
=

(
n

r

)
pr(1− p)n−r,

where 0 < p < 1 and r can take on the values 0, 1, 2, · · · , n. Further denote

Xn = Yn − p. (1.7)

Theorem 1.4.1 The sequence of random variables {Xn} given by (1.7) is stochastically convergent to 0,
that is, for any ε > 0 we have

lim
n→∞

P (|Xn| > ε) = 0. (1.8)

Proof. We compute
E(Xn) = 0.

σn =
√
V ar(Xn) =

√
p(1− p)/n.

By Chebyshev inequality

P (|Xn| > ε) ≤ V ar(Xn)

ε2
=
p(1− p)
nε2

<
1

nε2
→ 0, for ∀ε > 0.
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1.5 The Convergence of A Sequence of Distribution Functions

1.5.1 Part A. Example

Definition 1.5.1 The sequence {Fn(x)} of distribution functions of the random variables {Xn} is called
(weakly) convergent, if there exists a distribution function F (x) such that, at every continuity point of
F (x), the relation

lim
n→∞

Fn(x) = F (x), (at any continuity point x) (1.9)

is satisfied.

Remark 1.5.2 It is not required that {Fn(x)} converge to F (x) at the discontinuity points of F (x). See
example in Section 1.3. Fn(0) is not convergent to F (0).
Consider the subsequence of {Fn(0)} with only n = 2k + 1. X2k+1 can take on the values

−1

2
,

2− (2k + 1)

2(2k + 1)
,

4− (2k + 1)

2(2k + 1)
, · · · , 2k + 1− 4

2(2k + 1)
,

2k + 1− 2

2(2k + 1)
,

1

2
.

For every k, half of these terms are less than zero, the other half greater than zero. P (X2k+1 < 0) =

F2k+1(0) = 0.5.
lim
k→∞

F2k+1(0) = 0.5 6= 0 = F (0).

Remark 1.5.3 Recall that it may happen that a sequence of distribution functions converges to a function
that is not a distribution function.

Example 1.5.4 For example,

Fn(x) =

 0 for x ≤ n,

1 for x > n,

lim
n→∞

Fn(x) = F (x) ≡ 0 (−∞ < x <∞).

Remark 1.5.5 Let a < b be two continuity points of the limit distribution function F (x). We have

P (a ≤ Xn < b) = Fn(b)− Fn(a). (1.10)

Since lim
n→∞

Fn(a) = F (a) and lim
n→∞

Fn(b) = F (b), we have

lim
n→∞

P (a ≤ Xn < b) = F (b)− F (a). (1.11)

1.5.2 Part B. Weak Convergence for High Dimensional Distributions

Definition 1.5.6 The sequence of distribution functions {Fn(x1, · · · , xk)} of random vectors
(Xn1, Xn2, · · · , Xnk) is (weakly) convergent if there exists a distribution function F (x1, · · · , xk) such that at
every one of its continuity points

lim
n→∞

Fn(x1, x2, · · · , xk) = F (x1, x2, · · · , xk). (1.12)
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1.6 The Riemann-Stieltjes Integral

There is one-to-one map between a CDF F (x) and a Ch.f. φ(x). To prove this, we need some back-
grounds.

上确界，全变差

Definition 1.6.1 Let F (x) be a function defined on the interval [a, b], which can be either finite or infinite.
Let us take a partition of the interval [a, b] with the points

a = x0 < x1 < x2 < · · · < xn = b

and form the sum

T =

n−1∑
k=0

|F (xk+1)− F (xk)|.

The value of T may depend on the number n and on the partition into subintervals. The least upper bound
of the values of T is called the total absolute variation of the function F (x) in the interval [a, b].

Total variation = sup
n,xk

Tn,xk
.

Definition 1.6.2 If the total absolute variation of F (x) in [a, b] is finite, we say that F is a function of
bounded variation on the interval [a, b]. The set of all such functions is denoted by BV ([a, b]).

Proposition 1.6.3 Every non-decreasing bounded function is of bounded variation.

T =

n−1∑
k=0

[F (xk+1)− F (xk)] = F (b)− F (a) <∞.

Every distribution function F (x) is a function of bounded variation.

T = F (+∞)− F (−∞) = 1.

We now introduce Stieltjes integral.

Definition 1.6.4 Given a function g(x) and a function F (x) in a finite interval [a, b]. Let us form a partition
of the interval [a, b] into n parts with the points

a = x0 < x1 < · · · < xn = b.

Consider the sum

S =

n−1∑
k=0

g(x′k)[F (xk+1)− F (x)], (1.13)

where x′k is an arbitrary point in the kth interval (xk, xk+1). If as n→∞ and max(xk+1−xk)→∞ the sum
S tends to a finite limit I independent of the choice of the points x′k and the partition of the interval [a, b].
This limit is called the Stieltjes integral of the function g(x) with respect to the function F (x). We denote
the integral as

I = lim
n→∞
∆x→0

S =

∫ b

a

g(x)dF (x). (1.14)
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Remark 1.6.5 The Stieltjes integral is a generalization of the Riemann integral, since for F (x) = x, (1.14)
represents the Riemann integral.

Remark 1.6.6 When the interval of integration is infinite, we define the improper Stieltjes integral as the
limit of a sequence of proper Stieltjes integrals. Thus, if

lim
a→−∞
b→+∞

∫ b

a

g(x)dF (x)

exists as a and b tend to −∞ and +∞, respectively, this limit is called the improper Stieltjes integral of the
function g(x) with respect to the function F (x).

Proposition 1.6.7 1. If c and l are constants, then∫ b

a

cg(x)d[lF (x)] = cl

∫ b

a

g(x)dF (x).

2. If the integrals on the RHS exists, then the integrals on the LHS exist and∫ b

a

[g1(x) + g2(x)]dF (x) =

∫ b

a

g1(x)dF (x) +

∫ b

a

g2(x)dF (x),

∫ b

a

g(x)d[F1(x) + F2(x)] =

∫ b

a

g(x)dF1(x) +

∫ b

a

g(x)dF2(x).

This is satisfied for an arbitrary finite number of functions gi(x) and Fi(x).

3. If a < b < c and all three integrals∫ b

a

g(x)dF (x),

∫ c

a

g(x)dF (x),

∫ b

c

g(x)dF (x)

exist, the equation ∫ b

a

g(x)dF (x) =

∫ c

a

g(x)dF (x) +

∫ b

c

g(x)dF (x)

holds. This is satisfied for an arbitrary finite number of points a < c1 < c2 < · · · < cn < b.

Remark 1.6.8 In the theory of real functions it is proved that if g(x) is continuous and bounded over the real
axis and F (x) is a function of bounded variation, both proper and improper Stieltjes integrals exist. However,
Stieltjes integral may not exist when g(x) is not bounded.

Corollary 1.6.9 If F (x) is the distribution function of a random variable of the continuous type with the
density function f(x), ∫ b

a

g(x)dF (x) =

∫ b

a

g(x)f(x)dx, (1.15)

which reduces to the Riemann integral.

Suppose that F (x) is the distribution function of a random variable of the discrete type with jump points x′k
and jumps pk(k = 1, 2, · · · ). Then F (x) has the form

F (x) =
∑
x′k<x

[F (x′k + 0)− F (x′k)].

By (1.13) and (1.14), we obtain ∫ b

a

g(x)dF (x) =
∑
k

g(x′k)pk. (1.16)
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Proposition 1.6.10 If the expected value of Y = g(X) exists, then

E[g(X)] =

∫ +∞

−∞
g(x)dF (x), (1.17)

where F (x) denotes the distribution function of X.

Example 1.6.11 Setting g(x) = xr, we obtain the general expression for the moment of the rth order

mr = E(xr) =

∫ +∞

−∞
xrdF (x).

Example 1.6.12 g(x) = eitx, the characteristic function

φ(t) =

∫ +∞

−∞
eitxdF (x).

Proposition 1.6.13 Let FX(x), FY (y), FZ(z) be distribution functions of random variables X,Y, Z, then

1. If Z = X + Y ,

FZ(z) =

∫ +∞

−∞
FY (z − x)dFX(x) =

∫ +∞

−∞
FX(z − y)dFY (y). (1.18)

2. If Z = X − Y ,

FZ(z) =

∫ +∞

−∞
FX(z + y)dFY (y). (1.19)

3. If Z = XY and P (X = 0) = P (Y = 0) = 0,

FZ(z) =

∫ 0

−∞

[
1− FY

( z
x

)]
dFX(x) +

∫ +∞

0

FY

( z
x

)
dFX(x)

=

∫ 0

−∞

[
1− FX

(
z

y

)]
dFY (y) +

∫ +∞

0

FX

(
z

y

)
dFY (y).

(1.20)

4. If Z = X
Y and P (Y = 0) = 0,

FZ(z) =

∫ 0

−∞
[1− FX (zy)] dFY (y) +

∫ +∞

0

FX (zy) dFY (y). (1.21)

1.7 The Lévy-Cramér Theorem

1.7.1 Lemmas Before the Lévy-Cramér Theorem

非负渐升列积分定理，单调有界必收敛

Theorem 1.7.1 (Beppo Lévy Monotone Convergence Theorem). Let {fn}n be a sequence of measur-
able, non-negative functions on a measurable set E. If {fn} is monotonically increasing a.e. on E

f1 ≤ f2 ≤ · · · ≤ fk(x) ≤ · · ·

satisfying
lim
k→∞

fk(x) = f(x), a.e. x ∈ E, and
∫
E

f(x)dx <∞,

then
lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx.

This means that the order of integral and limit can be interchanged.
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Proof. Since fk ≤ fk+1 ≤ f , we have∫
E

fkdx ≤
∫
E

fk+1dx ≤
∫
E

fdx <∞.

Thus lim
k→∞

∫
E
fkdx is well defined such that

lim
k→∞

∫
E

fkdx ≤
∫
E

fdx.

To prove the opposite inequality, we need more background and knowledge.

Definition 1.7.2 A measurable function f : E → Rn is simple (or a simple function) if the size of the range
|f(E)| is finite and assumes only a finite number of values.

In particular, f(x) =
∑p
i=1 ciχAi(x),

p
∪
i=1
Ai = Rn, Ai ∩

i 6=j
Aj = φ. Thus any simple function is a linear

combination of finitely many indicator functions. Moreover, the integral can be defined as∫
E

f(x)dx =

p∑
i=1

cim(E ∩Ai),

where m(·) is the Lebesgue measure.

Lemma 1.7.3 Let {Ek ⊂ Rn} be a sequence of increasing measurable sets. Let f(x) be a non-negative
measurable simple function over Rn. Then∫

E

f(x)dx = lim
k→∞

∫
Ek

f(x)dx, E =
∞
∪
k=1

Ek.

Proof. Let f(x) takes on values of ci(i = 1, · · · , p) on sets Ai(i = 1, · · · , p). Then

lim
k→∞

∫
Ek

f(x)dx = lim
k→∞

p∑
i=1

cim(Ek ∩Ai)

=

p∑
i=1

ci lim
k→∞

m(Ek ∩Ai)

=

p∑
i=1

cim(E ∩Ai)

=

∫
E

f(x)dx.

Definition 1.7.4 Let f(x) be a non-negative measurable function on E ⊂ Rn. Define∫
E

f(x)dx = sup
h(x)≤f(x)

x∈E

{∫
E

h(x) : h(x) is a non-negative measurable simple function over Rn
}
.

If
∫
E
f(x)dx < +∞, f(x) is said to be integrable over E.

Now we continue to prove the Beppo Lévy Monotonic Convergence Theorem 1.7.1.
Proof. Let 0 < c < 1 and h(x) be a non-negative measurable simple function over Rn with h(x) ≤ f(x) a.e.
x ∈ E. Let fk ↗ f and

Ek = {x ∈ E : fk(x) ≥ ch(x)} , (k = 1, 2, · · · ).
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Then Ek is an increasing measurable set such that

lim
k→∞

Ek = E.

Using lemma,
lim
k→∞

c

∫
Ek

h(x)dx = c

∫
E

h(x)dx.

Then ∫
E

fk(x)dx ≥
∫
Ek

fk(x)dx ≥
∫
Ek

ch(x)dx = c

∫
Ek

h(x)dx.

lim
k→∞

∫
E

fk(x)dx ≥ lim
k→∞

c

∫
Ek

h(x)dx = c

∫
E

h(x)dx.

Let c→ 1,
lim
k→∞

∫
E

fk(x)dx ≥
∫
E

h(x)dx.

Using definition of
∫
E
f(x)dx,

lim
k→∞

∫
E

fk(x)dx ≥
∫
E

f(x)dx.

Theorem 1.7.5 (Fatou’s Lemma). Let fk(x) be non-negative measurable functions on E ⊂ Rn, then∫
E

lim inf
k→∞

fk(x)dx ≤ lim inf
k→∞

∫
E

fk(x)dx. (1.22)

In above formula, we can denote lim
k→∞

by lim inf
k→∞

.

Proof. Let gk(x) = inf {fj(x) : j ≥ k}, then

gk(x) ≤ gk+1(x), (k = 1, 2, · · · )

and
lim inf
k→∞

fk(x) = lim
k→∞

gk(x).∫
E

lim inf
k→∞

fk(x)dx =

∫
E

lim
k→∞

gk(x)dx = lim
k→∞

∫
E

gk(x)dx = lim inf
k→∞

∫
E

gk(x)dx ≤ lim inf
k→∞

∫
E

fk(x)dx.

一般可测函数的积分

Definition 1.7.6 Let f(x) be a measurable function on E ⊂ Rn. If
∫
E
f+(x)dx < ∞,

∫
E
f−(x)dx < ∞，

then f(x) is said to be Lebesgue integrable over E and∫
E

f(x)dx =

∫
E

f+(x)dx−
∫
E

f−(x)dx.

Here, f+(x) = max{f(x), 0} ≥ 0, f−(x) = −min{f(x), 0} ≥ 0. All integrable functions on E are denoted by
L(E).
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Theorem 1.7.7 (Lebesgue Dominated Convergence Theorem). Let fk ∈ L(E), (k = 1, 2, · · · ), such
that

lim
k→∞

fk(x) = f(x) a.e. x ∈ E.

If there exists an integrable function F (x) over E such that,

|fk(x)| ≤ F (x) a.e. x ∈ E, (k = 1, 2, · · · ).

Then
lim
k→∞

∫
E

fk(x)dx =

∫
E

f(x)dx. (1.23)

Here F (x) is called the control function of {fk(x)}.

F (x)称为{fk(x)} 控制函数
Proof. f(x) is measurable over E. Since |fk(x)| ≤ F (x) (a.e. x ∈ E), then |f(x)| ≤ F (x) (a.e. x ∈ E).
Thus f(x) is integrable over E. Set

gk(x) = |fk(x)− f(x)|, (k = 1, 2, · · · )

then gk(x) ∈ L(E) and 0 ≤ gk(x) ≤ 2F (x) a.e. x ∈ E, (k = 1, 2, · · · ).
Using Fatou’s Lemma, ∫

E

lim
k→∞

(2F (x)− gk(x))dx ≤ lim inf
k→∞

∫
E

(2F (x)− gk(x))dx.

Since F (x) and {gk(x)} are all integrable,∫
E

2F (x)dx−
∫
E

lim
k→∞

gk(x)dx ≤
∫
E

2F (x)dx− lim sup
k→∞

∫
E

gk(x)dx.

Notice that lim
k→∞

gk(x) = lim
k→∞

|fk(x)− f(x)| = 0 a.e. x ∈ E. Thus,

0 ≤ lim sup
k→∞

∫
E

gk(x)dx ≤ 0.

Last,
|
∫
E

fk(x)dx−
∫
E

f(x)dx| ≤
∫
E

|fk(x)− f(x)|dx =

∫
E

gk(x)dx→ 0 as k →∞.

Remark 1.7.8 In fact, from above we have stronger conclusion

lim
k→∞

∫
E

|fk(x)− f(x)|dx = 0. (1.24)

Corollary 1.7.9 (Bounded Convergence Theorem). Let {fk(x)} be a sequence of measurable functions.
m(E) < +∞. For a.e. x ∈ E, lim

k→∞
fk(x) = f(x), |fk(x)| < M , (k = 1, 2, · · · ). Then f ∈ L(E) and

lim
k→∞

∫
E

fk(x) =

∫
E

f(x). (1.25)

Proof. Set the bounded function F (x) = M in Dominated Convergence Theorem.
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1.7.2 Dominated Convergence Theorem in Measure Theory

When a.s. convergence implies L1 convergence. Monotone convergence (MCT), Dominated convergence
(DCT).

Let X and {Xn} be random variables on the same probability space (Ω,F , P ). If Xn (ω) → X (ω) for
each ω ∈ Ω (a.s. convergence), does it follow that E[Xn] → E[X]? That is, may we exchange expectation
and limits in th equation,

lim
n→∞

E[Xn]
?−→ E[ lim

n→∞
Xn]?

As we know, we cannot always interchange such order as seen from counter-example 1.1.27. However,
when we have some resctriction for Xn, we can do interchange. We see the following corresponding theorems
in probability theory.

Theorem 1.7.10 (Monotone Convergence Theorem or MCT). Let X and Xn ≥ 0 be random variables
(not necessarily simple) for which Xn (ω)↗ X (ω) for each ω ∈ Ω. Then

lim
n→∞

E[Xn] = E[ lim
n→∞

Xn] = EX.

If E|X| <∞, then also E|Xn −X| → 0.

Theorem 1.7.11 (Fatou’s Lemma). Let Xn ≥ 0 be random variables. Then

E[ lim
n→∞

inf Xn] ≤ lim
n→∞

inf E[Xn].

Theorem 1.7.12 (Dominate Convergence Theorem or DCT). Let X and Xn be random variables
(not necessarily simple or positive) for which P (limn→∞Xn = X) = 1 (a.s.) [or Xn

P−→ X (in probability)
(not for sure?)], and suppose that P (|Xn| ≤ Y ) = 1 a.s. for all n and for some integrable random variable
Y with EY <∞. Then

lim
n→∞

E[Xn] = E[ lim
n→∞

Xn] = EX.

That is, above equality holds if {Xn} is “dominated” by Y ∈ L1. Moreover, E|Xn −X| → 0.

1.7.3 Main Theorem

Go back to Lévy-Cramér Theorem.

Theorem 1.7.13 If the sequence {Fn(x)}(n = 1, 2, · · · ) of distribution functions is convergent to the distri-
bution function F (x), then the corresponding sequence of characteristic functions {φn(t)} converges at every
point t (−∞ < t < ∞) to the function φ(t) which is the characteristic function of the limit distribution
function F (x), and the convergence to φ(t) is uniform with respect to t in every finite interval on the t-axis.

Proof.
φn(t) =

∫ +∞

−∞
eitxdFn(x), φ(t) =

∫ +∞

−∞
eitxdF (x).
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Let a < 0 and b > 0 be continuity points of F (x), we have

φn(t) =

∫ a

−∞
eitxdFn(x) +

∫ b

a

eitxdFn(x) +

∫ +∞

b

eitxdFn(x)

= In1 + In2 + In3,

φ(t) =

∫ a

−∞
eitxdF (x) +

∫ b

a

eitxdF (x) +

∫ +∞

b

eitxdF (x)

= I1 + I2 + I3.

(1.26)

Consider the difference

In2 − I2 =

∫ b

a

eitxdFn(x)−
∫ b

a

eitxdF (x).

Integrating by parts, we obtain

In2 − I2 = eitx
{

[Fn(x)]
b
a − [F (x)]

b
a

}
− it

∫ b

a

[Fn(x)− F (x)] eitxdx.

Hence,

|In2 − I2| ≤ |Fn(b)− F (b)|+ |Fn(a)− F (a)|+ |t|
∫ b

a

|Fn(x)− F (x)|dx.

For ∀ε > 0, since a and b are continuity points of F (x), we have

|Fn(b)− F (b)| < ε

9
, |Fn(a)− F (a)| < ε

9
.

Using Lebesgue Dominated Convergence Theorem, |Fn(x)−F (x)| ≤ 2 is uniformly bounded in every interval,
we have

lim
n→∞

∫ b

a

|Fn(x)− F (x)|dx =

∫ b

a

lim
n→∞

|Fn(x)− F (x)|dx = 0.

For some fixed t satisfying T1 < t < T2, set K(t) = max(|T1|, |T2|). Then for sufficiently large n and all t, we
have

|t|
∫ b

a

|Fn(x)− F (x)|dx ≤ K(t)

∫ b

a

|Fn(x)− F (x)|dx ≤ ε

9
. (1.27)

Thus we obtain
|In2 − I2| <

ε

3
. (1.28)

Now consider the difference

In1 − I1 =

∫ a

−∞
eitxdFn(x)−

∫ a

−∞
eitxdF (x).

We have
|In1 − I1| ≤

∫ a

−∞
dFn(x) +

∫ a

−∞
dF (x) = Fn(a) + F (a).

Thus if a is sufficiently large in absolute value, and a is the continuity of F (x),

F (a) <
ε

6
, Fn(a) ∼ F (a) <

ε

6
.

Thus
|In1 − I1| <

ε

3

for all t and sufficiently large n. Similarly, |In3 − I3| < ε
3 .
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Theorem 1.7.14 (Helly’s Selection Theorem). For every sequence {Fn(x)} of distribution functions,
there exists a subsequence {Fnk

(x)} and a non-decreasing right continuous function F∞ such that Fnk
(x)→

F∞(x) as k → ∞ at all continuity points x of F∞, that is Fnk
(x)

w→ F∞(x). Moreover, F∞ is a distri-
bution function if and only if {Fn} is tight. (see Slutsky Theorem Apr5.pdf)

Theorem 1.7.15 If the sequence of characteristic functions {φn(t)} converges at every point t (−∞ < t <

∞) to a function φ(t) continuous in some interval |t| < τ , then the sequence {Fn(x)} converges to F (x)

corresponding to φ(t).

Proof. The proof has two parts. Part 1.
First, we select a subsequence by Helly’s Selection Theorem, Fnk

→ F as k → ∞. It does not, however,
follow from the Helly’s theorem that F (x) is a distribution function. We have 0 ≤ F (x) ≤ 1, but we do not
know if F (−∞) = 0 and F (∞) = 1. We now prove them.
Suppose that

α = F (+∞)− F (−∞) < 1. (1.29)

Since φn(t)→ φ(t) and φn(0) = 1, we have φ(0) = 1. By the assumption that the function φ(t) is continuous,
it follows that in some neighborhood of the origin t = 0 it will differ little from 1. Thus for sufficiently small
τ we have the inequality

1

2τ

∣∣∣∣∫ τ

−τ
φ(t)dt

∣∣∣∣ > 1− ε

2
> α+

ε

2
, (1.30)

where the number ε is chosen in such a way that α+ ε < 1. Since the subsequence Fnk
(x) are CDFs, we know

Fnk
(+∞)− Fnk

(−∞) = 1.

We can choose sufficiently large a > 4
ετ such that a and −a are continuity points of F (x), and a number K

such that for k > K,

k →∞, Fnk
(x)→ F (x) ⇒ Fnk

(a)− F (a) <
ε

16
, F (−a)− Fnk

(−a) <
ε

16
, (k →∞).

F (+∞) exists ⇒ F (a)− F (+∞) <
ε

16
, F (−∞)− F (−a) <

ε

16
, (k →∞).

⇒
Fnk

(a)− Fnk
(−a)︸ ︷︷ ︸

:=αk

−F (+∞) + F (−∞) <
ε

4
.

Then
αk := Fnk

(a)− Fnk
(−a) < F (+∞)− F (−∞) +

ε

4
= α+

ε

4
.

On the other hand, since φn(t)→ φ(t) in |t| < τ , it follows from (1.30) that there exists sufficiently large k,

1

2τ

∣∣∣∣∫ τ

−τ
φnk

(t)dt

∣∣∣∣ > α+
ε

2
. (1.31)

We now show that this inequality is not satisfied. Indeed, we have∫ τ

−τ
φnk

(t)dt =

∫ τ

−τ

[∫ +∞

−∞
eitxdFnk

(x)

]
dt

Fubini since |
∫∫
|<2τ

=

∫ +∞

−∞

[∫ τ

−τ
eitxdt

]
dFnk

(x).
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Since ∣∣∣∣∫ τ

−τ
eitxdt

∣∣∣∣ =

∣∣∣∣∣
[
eitx

ix

]∣∣∣∣τ
t=−τ

∣∣∣∣∣
=
|(cos τx+ i sin τx)− (cos τx− i sin τx)|

|x|

=
|2 sin τx|
|x|

≤ 2

|x|

<
2

a
, for |x| > a.

Then ∣∣∣∣∫ +∞

−∞

[∫ τ

−τ
eitxdt

]
dFnk

(x)

∣∣∣∣
≤

∣∣∣∣∣
∫
|x|≤a

[∫ +τ

−τ
eitxdt

]
dFnk

(x)

∣∣∣∣∣+

∣∣∣∣∣
∫
|x|>a

[∫ +τ

−τ
eitxdt

]
dFnk

(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|x|≤a

2τdFnk
(x)

∣∣∣∣∣+

∣∣∣∣∣
∫
|x|>a

2

a
dFnk

(x)

∣∣∣∣∣
=2ταk +

2

a
.

Thus
1

2τ

∣∣∣∣∫ τ

−τ
φnk

(t)dt

∣∣∣∣ ≤ 1

2τ

∣∣∣∣∫ +∞

−∞

[∫ τ

−τ
eitxdt

]
dFnk

(x)

∣∣∣∣
≤ 1

2τ
(2ταk +

2

a
) = αk +

1

aτ
≤ αk +

ε

4

< α+
ε

4
+
ε

4
= α+

ε

2
.

This is a contradiction to equation (1.31). Hence F (x) is a distribution function. From Theorem 1.7.13, it
follows that φ(t) is its characteristic function.
Part 2.
We last prove that not only {Fnk

(x)}, but the whole {Fn(x)} converges to F (x). If this were not so there
would be another subsequence {F̃nk

(x)} convergent to a limit function F̃ (x) 6= F (x). One can show F̃ (x) is
also a distribution function and moreover, F̃ (x) has the same characteristic function as F (x). Hence by Lévy
Theorem ??, F̃ (x) ≡ F (x). Thus {Fn(x)} → F (x).

Theorem 1.7.16 (Lévy-Cramér). The conclusions from both Theorem 1.7.15 and Theorem 1.7.13. The
convergence of CDFs ⇔ the convergence of Ch.f.s.

Remark 1.7.17 Theorem 1.7.16 remains true if we assume the continuity of the limit function φ(t) only at
the point t = 0.

Remark 1.7.18 In general, we cannot replace the convergence at every point t in (−∞,+∞) by conver-
gence in some interval on the t-axis containing the origin. (In order to determine the distribution, we need
information of φ(t) for −∞ < t <∞. If not, Part 2 proof may fail.)
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1.8 The de Moivre-Laplace Theorem

1.8.1 Part A

{Xn} is a sequence of binomial random variables. For every n, Xn takes on the values 0, 1, . . . , n,

P (Xn = r) = Crnp
rqn−r,

where 0 < p < 1 and q = 1− p. The moments are

EXn = np, V ar(Xn) = npq.

Consider {Yn} of standardized random variables

Yn =
Xn − np√

npq
.

Theorem 1.8.1 (de Moivre-Laplace theorem). Let {Fn(y)} be the sequence of distribution functions of Yn
above. If 0 < p < 1, then for every y we have the relation

lim
n→∞

Fn(y) =
1√
2π

∫ y

−∞
e−

s2

2 ds.

Proof. The Ch.f. of Xn is

φX(t) = EeitXn =
∑
r

eitrCrnp
rqn−r = (q + peit)n.

Notice that if Y = aX + b, then φY (t) = eibtφX(at). Then the Ch.f. of Yn is

φX(t) = exp

(
− np
√
npq

it

)(
q + pe

it√
npq

)n
=

(
q exp(− pit

√
npq

) + p exp(
qit
√
npq

)

)n
.

Let us expand eiz in the neighborhood of z = 0 with the Peano remainder,

p exp(
qit
√
npq

) = p

(
1 +

qit
√
npq
− 1

2

q2t2

npq
+ o(

t2

n
)

)
= p+ it

√
pq

n
− 1

2

qt2

n
+ o(

t2

n
).

q exp(− pit
√
npq

) = q

(
1− pit
√
npq
− 1

2

p2t2

npq
+ o(

t2

n
)

)
= q − it

√
pq

n
− 1

2

pt2

n
+ o(

t2

n
),

where
lim
n→∞

n · o( t
2

n
) = lim

n→∞
o(1) = 0.

Then the Ch.f.

φY (t) = (p+ q − 1

2

(p+ q)t2

n
+ o(

t2

n
))n =

(
1− t2

2n
+ o(

t2

n
)

)n
→ e−

t2

2 .
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The Ch.f. converges to that of a standard normal distribution. By Lévy-Cramér theorem, we have the
convergence of the distribution function for every y, since the limit Gaussian distribution function has no
discontinuity points.

We see that

lim
n→∞

P (y1 < Yn < y2) = lim
n→∞

[Fn(y2)− Fn(y1)] =
1√
2π

∫ y2

y1

e−
s2

2 ds

= lim
n→∞

P (y1 <
Xn − np√

npq
< y2)

= lim
n→∞

P (y1
√
npq + np < Xn < y2

√
npq + np)

:= lim
n→∞

P (x1 < Xn < x2).

We say that Xn has an asymptotically normal distribution N(np, npq).
Replacing y1 and y2 with

y1 +
1

2
√
npq

and y2 −
1

2
√
npq

,

we get a somewhat better approximation.

Example 1.8.2 We throw a coin n = 100 times. 1 =head and 0 =tail. Let p = q = 0.5. What is the
probability that heads will appear more than 50 times and less than 60 times?
Solution. We have

EXn = np = 50, V ar(Xn) = npq = 25.

Then

P (50 < Xn < 60) = P (
50− 50√

25
<
Xn − 50√

25
<

60− 50√
25

)

= P (0 < Yn < 2) ∼= P (0 +
1

2
√

25
< Yn < 2− 1

2
√

25
)

= P (0.1 < Yn < 1.9) =
1√
2π

∫ 1.9

0.1

e−
s2

2 ds ≈ 0.4315.

1.8.2 Part B

From the de Moivre-Laplace limit theorem, we obtain an analogous theorem for

Un =
Xn

n
,

with EUn = p, V ar(Un) = pq
n . We have

Zn =
Un − p√

pq
n

=
Xn − np√

npq
= Yn.

Then
lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−

s2

2 ds.

For z1 < z2, we have.

lim
n→∞

P (z1 < Zn < z2) =
1√
2π

∫ z2

z1

e−
s2

2 ds

= lim
n→∞

P (z1 <
Un − p√

pq
n

< z2)

= lim
n→∞

P (u1 = z1

√
pq

n
+ p < Un < z2

√
pq

n
+ p = u2).
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We say that Un has an asymptotically normal distribution N(p, pqn ).

Example 1.8.3 IBM cards correspond to the workers. Of the workers 20% are minors and 80% adults.
Before choosing the next card, we always return the first one to the box, so that the probability of selecting
the card corresponding to a minor remains 0.2. We observe n cards in this manner. What value should n
have in order that the probability will be 0.95 that the frequency of cards corresponding to minors lies between
0.18 and 0.22?

Denote the frequency of the appearance of the card corresponding to a minor by Un. We then have

EUn = 0.2, V ar(Un) =
pq

n
=

0.16

n
.

Consider the probability

P (0.18 < Un < 0.22) = P (
−0.02

0.4√
n

<
Un − 0.2

0.4√
n

<
0.02
0.4√
n

)

= P (−0.05
√
n <

Un − 0.2

0.4

√
n < 0.05

√
n) ∼= 0.95.

From tables of the normal distribution we obtain 0.05
√
n ∼= 1.96; consequently n ∼= 1537.

1.9 The Lindeberg-Lévy Theorem

1.9.1 Part A

The de Moivre-Laplace theorem is, as we shal see later, a particular case of a more general limit theorem,
namely, the Lindeberg-Lévy Theorem.

Consider a sequence {Xn} of i.i.d. random variables whose second order moment exists. For every k,

EXk = m, V ar(Xk) = σ2.

Consider
Yn = X1 + . . .+Xn

We have
EYn = nm, V ar(Yn) = nσ2.

Let
Zn =

Yn − nm√
nσ

.

Then we have the following Central Limit Theorem.

Theorem 1.9.1 (Lindeberg-Lévy Theorem). If X1, X2, . . . are independent, identically distributed random
variables, whose standard deviation σ 6= 0 exists, then the distribution functions {Fn(z)} of Zn = Yn−nm√

nσ
,

satisfies, for every z, the equality

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−

s2

2 ds.
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Proof. Let us write

Zn =
1√
nσ

n∑
k=1

(Xk −m).

All Xk −m are i.i.d., hence the same Ch.f. φX(t). Thus Xk−m√
nσ

has Ch.f. φX( t√
nσ

) and φZ(t) of Zn is

φZ(t) =

[
φX

(
t√
nσ

)]n
.

Since we have
E(Xk −m) = 0, V ar(Xk −m) = σ2,

we can expand φX(t) in a neighborhood of t = 0 according to the MacLaurin formula:

φX(t) = 1− 1

2
σ2t2 + o(t2).

Then

φZ(t) =

[
1− 1

2
σ2

(
t√
nσ

)2

+ o(
t2

n
)

]n

=

[
1− t2

2n
+ o(

t2

n
)

]n
−→ e−

t2

2 ,

which is the Ch.f. of the standard normal distribution. By Lévy-Cramér theorem (Ch.f. is a one-to-one map
to CDF), we prove the Lindeberg-Lévy Theorem.

1.9.2 Part B

For z1 < z2, we have

lim
n→∞

P (z1 < Zn < z2) = lim
n→∞

[Fn(z2)− Fn(z1)] =
1√
2π

∫ z2

z1

e−
s2

2 ds

= lim
n→∞

P (z1 <
Yn − nm√

nσ
< z2)

= lim
n→∞

P (z1
√
nσ + nm < Yn < z2

√
nσ + nm).

Let y1 = z1
√
nσ + nm, y2 = z2

√
nσ + nm. We say that Yn has an asymptotically normal distribution

N(nm, σ2n).
When a sum of random variables has an asymptotically normal distribution, we say that it satisfies the

central limit theorem (CLT).

Example 1.9.2 Xn are independent and each of them has the Poisson distribution given by

P (Xn = r) =
2r

r!
e−2 (r = 0, 1, 2, · · · ) λ = 2.

Find the probability that the sum Y100 = X1 + · · ·+X100 is greater than 190 and less than 210.
Solution. Notice that

EYn = 100λ = 200, V ar(Yn) = 100λ = 200.

Then Y100 ∼ N(200, 200). Thus

P (190 < Y100 < 210) = P (
−10

10
√

2
<
Y100 − 200

10
√

2
<

10

10
√

2
) ∼= 0.52.
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1.9.3 Part C

From the above Lindeberg-Lévy Theorem, we have the following analogous theorem.

Theorem 1.9.3 Suppose that X1, X2, · · · are i.i.d. with standard deviation σ 6= 0. Let Un be

Un =
X1 +X2 + · · ·+Xn

n
.

Let Fn(v) be the distribution function of

Vn =
Un − EUn√
V ar(Un)

.

Then
lim
n→∞

Fn(v) =
1√
2π

∫ v

−∞
e−

s2

2 ds.

Proof. We see that EUn = m,V ar(Un) = σ2

n . We have

Vn =
Un −m√

σ2

n

=

∑n
k=1Xk − nm
σ
√
n

= Zn.

For z1 < z2, we have.

lim
n→∞

P (v1 < Vn < v2) =
1√
2π

∫ v2

v1

e−
s2

2 ds

= lim
n→∞

P (v1 <
Un −m√

σ2

n

< v2)

= lim
n→∞

P (v1
σ√
n

+m < Un < v2
σ√
n

+m)

:= lim
n→∞

P (u1 < Un < u2) .

We say that Un has an asymptotically normal distribution N(m, σ
2

n ).

Example 1.9.4 Let {Xn} be i.i.d. with uniform distribution with pdf

f(x) =

{
1, x ∈ [0, 1],

0, else.

We know that m = 1
2 and σ2 = 1

12 . Consider

Yn =
X1 + · · ·+Xn

n
.

For n = 48, compute the probability that Yn is less than 0.4.

P (Yn < 0.4) = P (
Yn − 1

2√
1
12/
√

48
<

0.4− 1
2√

1
12/
√

48
)

= P (ξ < −2.4) = 0.0082.

As we see, although the random variable Xk (k = 1, 2, · · · ) have a uniform distribution in the interval [0, 1],

their arithmetic mean has, for large n, approximately a distribution in which values that are less than m = 0.5

by more than 0.1 appear extremely rarely.
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Example 1.9.5 Let {Xn} be i.i.d. Each of them can take on the values k = 0, 1, 2, . . . , 9 with P (Xn = k) =

0.1 for ever k. Then

m = 4.5,

σ2 = EX2
n − (EXn)

2
=

1

10

9∑
k=0

k2 −m2 = 28.5− 20.25 = 8.25,

σ = 2.87.

Consider
Y100 =

X1 + · · ·+X100

100
.

What is the probability that Y100 will exceed 5?

P (Y100 > 5) = P (
Y100 − 4.5

2.87√
100

>
5− 4.5

2.87√
100

) = P (ξ > 1.74)

≈ 0.041.

1.9.4 Part D

If their moment of the second order does not exist, CLT may not be satisfied.

Example 1.9.6 Let {Xk} be i.i.d. Cauchy distribution with pdf

f(y) =
1

π

1

1 + y2
.

The Ch.f. function

φ(t) =
1

π

∫ ∞
−∞

eity
1

1 + y2
dy.

To fund φ(t) consider first the pdf density

f1(y) =
1

2
e−|y|.

The reader may verify that the above expression is a density. The Ch.f. of the random variable with the
density is

φ1(t) =
1

2

∫ ∞
−∞

eitye−|y|dy =
1

2

∫ ∞
−∞

(cos ty + i sin ty)e−|y|dy

=

∫ ∞
0

cos(ty)e−ydy.

Integrating by parts, we obtain∫ ∞
0

cos(ty)e−ydy = − cos(ty)e−y|∞y=0 − t
∫ ∞
0

sin(ty)e−ydy

= 1− t
∫ ∞
0

sin(ty)e−ydy.

Similarly, ∫ ∞
0

sin(ty)e−ydy = − sin(ty)e−y|∞y=0 + t

∫ ∞
0

cos(ty)e−ydy

= t

∫ ∞
0

cos(ty)e−ydy.
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Hence we obtain ∫ ∞
0

cos(ty)e−ydy = 1− t2
∫ ∞
0

cos(ty)e−ydy.

Finally, we obtain

φ1(t) =

∫ ∞
0

cos(ty)e−ydy =
1

1 + t2
.

The Ch.f. is absolutely integrable over the interval (−∞,∞). Hence by (??) its corresponding density is

f1(y) =
1

2
e−|y| =

1

2π

∫ ∞
−∞

e−ity

1 + t2
dt.

Thus we obtain
e−|y| =

1

π

∫ ∞
−∞

e−ity

1 + t2
dt.

Changing e−ity into eity under the integral sign and changing the roles of t and y, we obtain

e−|t| =
1

π

∫ ∞
−∞

eity

1 + y2
dy.

Thus we obtain
φ(t) =

1

π

∫ ∞
−∞

eity
1

1 + y2
dy = e−|t|.

Then the Ch.f. of
Yn =

X1 + · · ·+Xn

n
,

is
φYn

(t) =
(
e−
|t|
n

)n
= e−|t|.

Yn also has the Cauchy distriubtion for arbitrary n, which does not have an asymptotic normal distribution.
(Note that Cauchy distribution does not have a standard deviation.)

1.9.5 Part E

Let the random variables Xk (k = 1, 2, . . .) satisfy the assumptions of Lindeberg-Lévy Theorem and let
EXk = 0. Consider for every n the partial sums

Sj =

j∑
k=1

Xk (j = 1, 2, . . . , n).

Erdös and Kac [1,2] have found the limit distributions for the sequences of random variables

{
max
1≤j≤n

Sj√
n

}
,

{
max
1≤j≤n

|Sj |√
n

}
,

 1

n2

n∑
j=1

S2
j

 ,

 1

n3/2

n∑
j=1

|Sj |

 .

These papers began a seris of fruitful investigations concerning the limit distributions of a large class of
functionals definds on the vectors (S1, . . . , Sn),even with much more general assumptions concerning the
random variables Xk than those considered here. We shall not discuss these results. The reader can find
them in the papers of Erdös and Kac [1,2], Donsker [1], Prohorov, Skorohod, Spitzer, Baxter and Donsker,
Varadarjan, Lamperti, Bartoszynski, and Billingsley.
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1.9.6 Part F. Substitution of Sample Variance

For the CLT, we know that Zn =
√
n(X − µ)/σ is approximately N(0, 1). However, we rarely know

σ. We may estimate σ2 by unbiased sample variance S∗2n = 1
n−1

∑n
i=1(Xi − X)2. This raises the following

question: if we replace σ with Sn, is the central limit theorem still true? The answer is yes.

Theorem 1.9.7 Assume the same conditions as the CLT. Then
√
n(X − µ)

S∗n

d−→ N(0, 1).

You might wonder, how accurate the normal approximation is. The answer is given in the Berry-Esseen
theorem.

Theorem 1.9.8 (the Berry-Esseen inequality). Suppose that E |X1|3 <∞. Then

sup
z
|P (Zn ≤ z)− Φ(z)| ≤ 33

4

E |X1 −X|3√
nσ3

.

1.10 The Lapunov Theorem

The distribution of a sum of independent random variables may not converge to the normal distribution,
if the terms do not have the same distribution, even if all the random variables have standard deviations.

1.10.1 Part A

We now provide the Lapunov theorem, which gives a sufficient condition for a sum of independent
random variables to have a limiting normal distribution. Consider a sequence {Xk} of independent random
variables whose moments of the third order exist.

Theorem 1.10.1 (Lapunov Theorem). Let {Xk} (k = 1, 2, . . .) be a sequence of independent random vari-
ables whose moments of the third order exist, and let mk, σk 6= 0, ak, and bk denote the expected value,
standard deviation, central moment of the third order, adn the absolute central moment of the third order of
Xk, respectively. Furthermore, let

Bn = 3

√√√√ n∑
k=1

bk, Cn =

√√√√ n∑
k=1

σ2
k.

If the relation
lim
n→∞

Bn
Cn

= 0

is satisfied, the sequence {Fn(z)} of the distribution functions of the random variables Zn, defined as

Zn =

∑n
k=1(Xk −mk)

Cn
, (1.32)

satisfies, for every z, the relation

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−

s2

2 ds. (1.33)

The proof is ignored since it is too long.
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1.10.2 Part B

We present the theorem of Lindeberg-Feller, giving a necessary and sufficient condition.
(Lindeberg-Feller Theorem). Let {Xk} (k = 1, 2, . . .) be a sequence of independent random variables

whose variances exist, and let Gk(x),mk, σk 6= 0 denote, respectively, the distribution function, the expected
value, standard deviation of the random variable Xk, and let Fn(z) denote the distribution function of the
standardized random variable Zn given by formula (1.32).

Then the relations

lim
n→∞

max
1≤k≤n

σk
Cn

= 0, lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−

s2

2 ds,

hold if and only if, for every ε > 0,

lim
n→∞

1

C2
n

n∑
k=1

∫
|x−mk|>εCn

(x−mk)2dGk(x) = 0.

Let {Xk} (k = 1, 2, . . .) be a sequence of independent, uniformly bounded random variables, that is,
there exists a constant a > 0 such that for every k,

P (|Xk| ≤ a) = 1,

and suppose that V ar(Xk) 6= 0 for every k. Then a necessary and sufficient condition for relation (1.33)
to hold is

lim
n→∞

C2
n =∞.

1.11 The Gnedenko Theorem

The sequence of pdf’s (in continous case) and the sequence of pmf’s (in discrete case) may not converge
to the corresponding limit pdf or pmf (see Problems 6.25 and 6.26 in Fisz book). We need more conditions
to interchange limitation lim and derivative d

dx ,

lim
n→∞

Fn(x) = F (x)
interchange−→ d

dx
F (x) =

d

dx
lim
n→∞

Fn(x)? = lim
n→∞

d

dx
Fn(x).

Here we present a case where a local limit theorem holds true.

Theorem 1.11.1 (Gnedenko). Suppose that the independent and equally distributed random variables Xi

(i = 1, 2, . . .) of the discrete type can take on with positive probability only integer values, and let E(Xi) = m

and V ar(Xi) = σ2 > 0. Then the relation

lim
n→∞

[
σ
√
nPn(k)− 1√

2π
exp

(
−z

2
nk

2

)]
= 0,

where

Pn(k) = P (

n∑
k=1

Xi = k),

znk =
k − nm
σ
√
n

,

is satisfied uniformly w.r.t. k in the interval (−∞ < k < ∞) if and only if the maximum span of the
distribution of Xi is equal to one.
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Remark 1.11.2 A particular case of this theorem is the local limit theorem of de Moivre-Laplace when Xi

can take the values 0 and 1, with with probabilities 1− p and p, respectively.

1.12 Poisson’s Chebyshev’s and Khintchin’s laws of large number

1.12.1 Part A. Chebyshev Theorem

History. The Bernoulli law of large numbers, historically the oldest, is only a particular case of more
general theorems which are known under the common name of laws of large numbers.

Consider {Xk} (k = 1, 2, . . .) the only assumption is that for every k, the first two moments exist,

EXk = mk, E(Xk −mk)2 = σ2
k.

Xk may or may not be independent.
By Chebyshev inequalities, we have for ∀k, ∀ε > 0,

P (|Xk −mk| > ε) ≤ σ2
k

ε2
.

If the Markov condition
lim
k→∞

σ2
k = 0, (1.34)

then
lim
k→∞

P (|Xk −mk| > ε) = 0.

Theorem 1.12.1 (Chebyshev theorem). Let {Xk} be an arbitrary sequence of random variables with variance
σ2
k. If the Markov condition (1.34) is satisfied, the sequence {Xk −mk} is stochastically convergent to zero.

Corollary 1.12.2 (Corollary of Chebyshev theorem). Let {Xk} be a sequence of random variables pairwise
uncorrelated and let EXk = mk and V ar(Xk) = σ2

k. If condition

lim
n→∞

1

n2

n∑
k=1

σ2
k = 0, (1.35)

is satisfied, then {
Yn −

m1 +m2 + · · ·+mn

n

}
(n = 1, 2, · · · )

is stochastically convergent to zero.

Proof. Let
Yn −

X1 +X2 + · · ·+Xn

n
.

We have
EYn =

m1 +m2 + · · ·+mn

n
.

Since Xi are pairwise uncorrelated, we have

V ar(Yn) = Cov(
X1 +X2 + · · ·+Xn

n
,
X1 +X2 + · · ·+Xn

n
) =

1

n2

n∑
k=1

σ2
k.

Since V ar(Yn)→ 0, then by Chebyshev Theorem, we have Yn −EYn is stochastically convergent to zero.

33



1.12.2 Part B. Poisson law of large number

We consider sum of n independent random varibles Xk(k = 1, 2, . . .) with the zero-one distribution,
where

P (Xk = 0) = 1− pk, P (Xk = 1) = pk.

Since V ar(Xk) = pk(1 − pk) ≤ 1/4, Condition (1.35) is satisfied. Then we have the Poisson law of large
numbers following the corollary of the Chebyshev theorem.

Theorem 1.12.3 (Poisson law of large numbers). If the random variables Yn is the arithmetic mean of the
random variables Xk in the Poisson scheme,

Yn =
X1 +X2 + · · ·+Xn

n
,

then the sequence {
Yn −

p1 + p2 + · · ·+ pn
n

}
(n = 1, 2, . . .)

is stochastically convergent to 0.

1.12.3 Part C. Chebyshev law of large numbers

Consider the pairwise uncorrelated Xk have the same expected value and the same standard deviation.
For every k, we write

EXk = m, V ar(Xk) = σ2.

If Yn = X1+X2+···+Xn

n , we have

EYk = m, V ar(Yk) =
σ2

k
.

Thus,
lim
k→∞

V ar(Yk) = 0.

Theorem 1.12.4 Let {Xk} be pairwise uncorrelated with the same expected value and the same standard
deviation, and let Yn = X1+X2+···+Xn

n . Then {Yn} is stochastically convergent to the common expected value
m.

Remark 1.12.5 Bernoulli law is a special case of the Chebyshev law of large numbers.

1.12.4 Part D. Khintchin’s law of large numbers

In all above, the variances are assumed to exist. For the NEXT one, no assumption is made about the
existence of the variances.

Theorem 1.12.6 (Khintchin’s law of large numbers). Let {Xk} be independent random variables with the
same distribution and with expected value EXk = m. Then Yn = X1+X2+···+Xn

n is stochastically convergent
to m.
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Proof. Let φ(t) be Ch.f. of Xk. By independence of Xk, the Ch.f. of Yn is[
φ(
t

n
)

]n
.

We can expand φ(t) around t = 0 according to Maclaurin,

φ(t) = 1 +mit+ o(t).

Then [
φ(
t

n
)

]n
=

[
1 +

mit

n
+ o(

t

n
)

]n
→ emit,

which is the Ch.f. of the one-point distribution such that

P (Y = m) = 1.

By Lévy-Cramér theorem, {Fn(y)} of distribution function of Yn converges to the distribution function of Y .
By the equivalence of convergence in distribution and convergence in probability when Y is a constant, we
see that {Yn} is stochastically convergent to m.

Example 1.12.7 For a Cauchy distribution with Ch.f. φ(t) = e−|t|. The expected value does not exist. Thus
the law of large numbers does not apply to {Yn}.

1.12.5 Part E. The strong law of large numbers

Definition

The laws of large numbers considered until now state that under certain conditions the sequence {Zn}
of random variables defined by the formula

Zn =
1

n

n∑
k=1

Xk − cn, (1.36)

where cn = 1
n

∑n
k=1EXk and the random variables Xk are independent, is stochastically convergent to zero.

Thus for arbitrary ε > 0 and η > 0 we can find an N such that, for n > N , we have P (|Zn| > ε) < η. It does
not follow, however, that for arbitrary ε > 0 and η > 0 we can find an N such that

P ( sup
n≥N
|Zn| > ε) < η. (1.37)

We observe that relation (1.37) implies that the probability of occurrence of the inequality |Zn| > ε for at
least one value n ≥ N is smaller than η; thus, instead of the probability of one event (|Zn| > ε) we have here
the probability of an alternative of events

(|ZN | > ε) ∪ (|ZN+1| > ε) ∪ (|ZN+2| > ε) ∪ · · ·

We show in the following Appendix that relation (1.37) is equivalent to the relation

P ( lim
n→∞

Zn = 0) = 1. (1.38)

If (1.38) holds, we say that the sequence {Zn} is convergent to zero almost everywhere or almost surely.
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So far, the laws of large numbers considered in the previous sections are called weak laws of large
numbers since in the conclusion we only arrive at the convergence in probability instead of the
convergence almost surely.

We say that the sequence {Xk} (k = 1, 2, . . .) of random variables obeys the strong law of large numbers
if there exists a sequence of constants {cn} (n = 1, 2, . . .) such that, for the random variables Zn defined by
formula (1.36), relation (1.37) holds for all ε > 0 and η > 0.

Theorem

It is important for the solution of the problem of necessary and sufficient conditions for the validity of
the strong law of large numbers for a sequence of independent random variables. Detailed information on
the present state of investigations in this field can be found in the monograph by Loeve [1] and in the paper
of Chung [1]. The most advanced results have been obtained by Prohorov. We shall present the theorem
of Kolmogorov [2] giving sufficient conditions for the validity of the strong law of large numbers. The proof
of this theorem is based on a generalization of the Chebyshev inequality which was proved by Kolmogorov
[1]. In the Fisz book, also proved is the Borel-Cantelli lemma (Borel [1], Cantelli [1]), which is used in the
proof of the theorem of Kolmogorov [7], stating that for a sequence of independent, identically distributed
random variables the existence of the expected value is a necessay and sufficient condition for the validity of
the strong law of large numbers.

E. Kolmogorov [7] proved the following theorem concerning the validity of the strong law of large numbers
for identically distributed random variables; it is called the Kolmogorov law of large numbers.

Theorem 1.12.8 Let {Yi} (i = 1, 2, . . .) be a sequence of independent random variables with the same
distribution function F (y). Then the relation

P

[
lim
n→∞

(
1

n

n∑
k=1

Yk − c

)
= 0

]
= 1,

holds for some c if and only if the expected value E(Y ) of a random variable Y with the distribution function
F (y) exists; here c = EY .

Appendix

We now prove that relations (1.37) and (1.38) are equivalent.
Denote by AN the event that supn≥N |Zn| > ε, where ε > 0, and by A the product of the events AN ,

that is,
A =

⋂
N

AN .

We observe that for every N ,
AN+1 ⊂ AN ,

and hence we have
P (A) = lim

N→∞
P (AN ). (1.39)

The event AN , the complement of the event AN , occurs if and only if, for every n ≥ N, we have the
relation |Zn| ≤ ε. Thus we have for every N ,

AN+1 ⊃ AN ,
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hence
P (A) = P (

∑
N

AN ) = lim
N→∞

P (AN ). (1.40)

Suppose now that relation (1.37) is not satisfied. Then there exist ε > 0 and η > 0 such that for every N ,

P (AN ) ≥ η.

From the last relation and from relation (1.39) we obtain the inequality

P (A) ≥ η > 0, (1.41)

from which it follows that relation (1.38) is not satisfied; for if it were satisfied, then for every ε > 0 the
probability would be zero that for every N there exists an n ≥ N such that |Zn| > ε. Hence P (A) = 0, in
contradiction to (1.41).

Suppose, now, that relation (1.38) is not satisfied. Then there exist ε > 0 and η > 0 such that the
probability of occurrence of the event AN is smaller than 1− η for every N , or

P (A) < 1− η. (1.42)

It follows from the last inequality that relation (1.37) is not satisfied; for if it were satisfied, then for any
ε > 0 and η > 0 there would exist an N such that P (AN ) ≥ 1 − η, so that from the fact that the sequence{
An
}
is nondecreasing and from formula (1.40) we would obtain P (A) ≥ 1− η, in contradiction to (1.42).

The equivalence of relations (1.37) and (1.38) is proved.
At the end of this section we give an example of a sequence of random variables which converges to zero

stochastically but does not converge to zero almost everywhere (see also Problem 6.38).

Example 1.12.9 Let us consider the sequence {Zn} (n = 1, 2, . . .) of independent random variables, where

P (Zn = 1) =
1

n
, (1.43)

P (Zn = 0) = 1− 1

n
.

The sequence {Zn} converges to zero stochastically, since from the equality P (|Zn| > ε) = P (Zn = 1), which
holds for every 0 < ε < 1, we obtain, for any ε > 0,

lim
n→∞

P (|Zn| > ε) = lim
n→∞

1

n
= 0.

However, the considered sequence {Zn} does not satisfy relation (1.38); for, denoting by An the event (Zn =

1), it follows from (1.43) that
∞∑
n=1

P (An) =∞.

From the independence of the An and from the Borel-Cantelli lemma it follows that the probability that an
infinite number of the An will occur equals one; hence with probability one there will exist a subsequence of
the sequence {Zn} which is not convergent to zero. This obviously contradict relation (1.38).
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1.13 Multi-Dimensional Limit Distribution and The Delte Method

Theorem 1.13.1 Multivariate Central Limit Theorem (MCLT). If X1, . . . ,Xn are i.i.d. k × 1 random
vectors with E(X) = µ and Cov(X,X) = Σ, then

√
n(Xn − µ)

d−→ Nk(0,Σ),

where the sample mean

Xn =
1

n

n∑
i=1

Xi,

with

Xi =


Xi1

...
Xik

 ∈ Rk, Σ ∈ Rk×k.

If Yn has a limiting Normal distribution then the delta method allows us to find the limiting distribution
of g(Yn) where g is any smooth function.

Theorem 1.13.2 (The Delta Method). Suppose that
√
n(Yn − µ)

σ

d−→ N(0, 1),

and that g is a differentiable function such that g′(µ) 6= 0. Then
√
n(g(Yn)− g(µ))

|g′(µ)|σ
d−→ N(0, 1).

In other words, Yn ≈ N(µ, σ
2

n ) implies that g(Yn) ≈ N(g(µ), (g′(µ))2 σ
2

n ).

Consider what if g′(µ) = 0? As I guess, when g(x) = x2 then the limit distribution should be
related to χ2 distribution. For other functions, one may follow the derivation of χ2 distribution.

There is also a multivariate version of the delta method.

Theorem 1.13.3 (The Multivariate Delta Method). Suppose that Yn = (Yn1, ..., Ynk) is a sequence of random
vectors such that

√
n(Yn − µ)

d−→ N(0,Σ).

Let g : Rk → R and let

∇g(y) =


∂g
∂y1

...
∂g
∂yk

 .

Let ∇µ denote ∇g(y) evaluated at y = µ and assume that the elements of ∇µ are nonzero. Then

√
n(g(Yn)− g(µ))

d−→ N(0,∇>µΣ∇µ).

Example 1.13.4 Let (
X11

X21

)
,

(
X12

X22

)
, . . . ,

(
X1n

X2n

)
,
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be i.i.d. random vectors with mean µ = (µ1, µ2)> and variance Σ. Let

X1 =
1

n

n∑
i=1

X1i, X2 =
1

n

n∑
i=1

X2i,

and define Yn = X1X2. Thus, Yn = g(X1, X2) where g(s1, s2) = s1s2. By the central limit theorem,

√
n

(
X1 − µ1

X2 − µ2

)
d−→ N(0,Σ).

Now

∇g(s) =

(
∂g
∂s1
∂g
∂s2

)
=

(
s2

s1

)
,

and so

∇>µΣ∇µ =
(
µ2 µ1

)( σ11 σ12

σ12 σ22

)(
µ2

µ1

)
= µ2

2σ11 + 2µ1µ2σ12 + µ2
1σ22.

Therefore,
√
n
(
X1X2 − µ1µ2

) d−→ N(0, µ2
2σ11 + 2µ1µ2σ12 + µ2

1σ22).
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