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Chapter 1

Limit Theorems

1.1 Convergence in Probability

See the introduction to measure theory in Chapter 1, including the reference website:
https://stats.libretexts.org/Bookshelves/Probability Theory/Probability Mathematical Statistics
_and_Stochastic_ Processes (Siegrist)/02%3A _Probability Spaces/2.03%3A _Probability Measures
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Figure 1.1: The relation among various of convergence.

1.1.1 Definitions

Definition 1.1.1 (Almost Surely Convergence). If there exvists A € F such that P(A) =0 (A is a zero
measure set) and Yw € A, lim X, (w) = X(w), then X,, 3 X(n — o0). Then X,, is said to be convergent
n— oo

to X almost surely or almost everywhere.

Definition 1.1.2 (Convergence with Probability 1). If P( lim X, = X) =1, then we say X,, converges
n—oo

w.p.1

to X with probability 1, denoted by X, — X.



Remark 1.1.3 The above two definitions are exactly equivalent. In addition, one more equivalent definition

can be found in equation (1.37).

Definition 1.1.4 (Stochastic Convergence). The sequence {X,} of random variables is called stochasti-

cally convergent to zero if for every e > 0 the relation
lim P(|X,|>¢€) =0 (1.1)
n—oo

is satisfied.

Definition 1.1.5 (Conwverge in probability). If for any e >0, lim P(|X,, — X| > €) =0, then X,, is said
n—oo

to be convergent in probability to X. We denote by X, N X,n — oo.

Remark 1.1.6 The above two definitions are completely equivalent but only with terminologies different.
Nowadays, we use terminology “convergence in probability” and rarely see terminology “stochastic convergence”
(as I understand).

Definition 1.1.7 (Weak convergence of distribution functions). The sequence {F,(x)} of distribution
functions of random variables {X,} is called weakly convergent to F(x), denoted by F,, = F, if there exists a
non-decreasing and non-negative function F(x), which mat not be a distribution function, such that at every
continuity point of F(x), the relation

lim F,(z) = F(x)

n—roo

s satisfied.

Definition 1.1.8 (Converge in distribution of random variables). Let F,, and F be distribution
functions of X,, and X, respectively. If F, = F, then we say {X,} is convergent in distribution to X,
denoted by X, 4 X. The distribution function F(z) is called the limit distribution function.

Example 1.1.9 F may not be a distribution function. Consider the sequence {X,} of random variables with
the one-point distribution given by P(X,, =n) =1,n=1,2,---. The distribution function F,(z) of X, is
0 for x <mn,
Fo(z) =
1 for x>n,
We have for Vo € R,
lim F,(z) =0.

n—oo

Thus F(x) = 0. The sequence {F,(xz)} is not convergent to a distribution function.

Now let us review some properties of a CDF in the previous chapter.

Theorem 1.1.10 The single-valued function F(x) is a distribution function if and only if it is non-decreasing,

continuous at least from the left, and satisfies F(—o0) =0, F(400) = 1.

Proposition 1.1.11 The set of points of discontinuity is at most countable for a CDF F(x). Hence a CDF

s almost everywhere continuous.



Definition 1.1.12 (Norm on Probability Space). Let p € (1,400) and LP(Q, F,P) :== {X : BE|X]P <
+oo}, where | X||, := (E|X\p)%. Then ||-||p is a norm on LP(Q), F, P), satisfying non-negativity, homogeneity
and triangle inequality.

Definition 1.1.13 (LP convergence). Let {X,; X} C LP(Q,F,P). If li_>m | X — X, =0, then {X,,} is

said to be LP convergent to X, denoted by X, Hx.

1.1.2 Appendix for Weak Convergence

See my local folder jiaoxue limit theorem for convergence for reference.
A A 2 A B B R e B s
‘We now give an intuition why the convergence of distribution functions is called the weak

convergence.

Proposition 1.1.14 (The Portmanteau Theorem). The following statements are equivalent.

(1). X, % X.

(2). E(h(X,)) = E(h(X)) for all continuous functions h : R® — R that are nonzero only on a closed and
bounded set.

(3). E(h(X,)) = E(h(X)) for all bounded continuous functions h : R — R.

(4). E(h(X,)) — E(h(X)) for all bounded measurable functions h : R — R for which P(X € {x : h is

continuous at x}) = 1.

ERMF )R 3)FN, AN(3)B AR 2R ARG5S, BEAEB)F L BAgH R
T 2 B 4 25 hoZ 1A B B8 4K (test function).

Definition 1.1.15 For random variables X, € R and X € R, X,, converges in distribution to X,
d
X, — X,
if for all x such that x — P(X < x) is continuous,
P(X, <z)— P(X <z) asn — oo.

Definition 1.1.16 For metric space-valued random variables X,, and X, X, converges in distribution to X
if for all bounded continuous h
E[h(X,)] = E[h(X)] as n — .

Note that boundedness of h in the Portmanteau theorem is important.

ExwmsEHF, BREEQ)EARX, BEHZX()MR)WENKE, EREXFhAFREER.

1.1.3 Theorems

All the followings correspond to theorems and counter-examples in Fig. 1.1.

Theorem 1.1.17 (Theorem 1). If &, %5 €, then &, = & for n — .



Proof. We have
fn a_.;? 5 54 VG > O,P(ﬂzozluzo:k Hgn - £| 2 6]) =0.

' —¢l>e)< lim P(U |en—€|>e)=P(N U & —€ >e) =0,
lim P&, €= ) < m P(Tje,—€l >0 =P(F T jea—€/>9=0
Thus, &, KR &n— o0 W
Remark 1.1.18 (Theorem 2). I did not check the proof for Theorem 2.
5E BMERETEILO) - RSB xR - 2F

Theorem 1.1.19 (Theorem 3). X, 5x=Xx,%X. [there is another proof using Lévy theorem
(see Appendix)./

Proof. We first prove two Lemmas.

DODPX+Y <a+b) <PH{X <alU{Y <b}) < P(X<a)+P(Y <b)since {X+Y <a+b} C{X <
a} U{Y <b} and P(LAUB C Q) = P(A)+ P(B) — P(AB).

@PX+Y<a+b)>P(X<aandY <b)since {X+Y <a+bd} D{X <a}and (N){Y < b}.

1. F(x) is right continuous at z.

<

(X, —X+X<z9—€+5¢)
(X, - X <—-e)+ P(X <zg+¢)
(

<P(X,—X|>€)+P(X <x+¢€)

2. F(z) is left continuous at xo.

Fn(l‘o):P(XnSwo):PXn7X+X§I07€+E)

(
(
(X <mo—€¢)— P(X,—X >¢) (P(Aand B)+ P(B) > P(A))
(

Thus lim F,(z¢) = F(zp). ®
n—oo

Theorem 1.1.20 (Theorem 3 and 4). X, Ei; (n = o) if and only if X, 4 (n — o0) for constant
C.

Proof. See proof later in Theorem 1.3.4. m

Theorem 1.1.21 (Theorem 5). X, BXx=Xx,5X and E|X,|P — E|X]P.



Proof. X X
Chebyshev 1 H n - ||£
LS N

P(IX,—X|>¢) < —EX,-X|"= 0, n— oo
€

ep
P
Thus X,, — X.
[ Xnllp = X lp] < 1 X0 — X[l =0, n— o0

Thus E|X,[? — E|X[". =
Lptt P
Theorem 1.1.22 (Theorem 6). &, — £ =&, — €.

Proof. Young or Cauchy-Schwarz Inequality. m

1.1.4 Appendix for Proof of Convergence in Probability to Convergence in Dis-

tribution

We now give another proof for X, Px= X, 4 x.

See references in folder limit theorem for convergence.

See my local folder jiaoxue limit theorem for convergence for reference.

See website on https: //www.statlect.com /asymptotic-theory /Slutsky-theorem, equivalently Taboga, Mar-
co (2021). "Slutsky’s theorem", Lectures on probability theory and mathematical statistics. Kindle Direct
Publishing.

We first provide two important theorems in probability theory.

Theorem 1.1.23 (Continuous Mappling Theorem or CMT). Let g be continuous on a set B such that
P(z € B)=1. Then

(1) X, B x implies g(X,,) N g(X).

(2) X, Ly X implies 9(Xn) N 9(X).

(3) X, &5 X implies g(X,) 5 g(X).

Theorem 1.1.24 (Slutsky’s Theorem). Slutsky’s theorem concerns the convergence in distribution of the
transformation of two sequences of random vectors, one converging in distribution and the other converging

i probability to a constant.

(1) (Joint Convergence) Let X,, and Y, be two sequences of random vectors. If X, 4 X and Y, £, c,

() =)

(2) (Continuous Mapping Convergence) Let g(x,y) be a continuous function. Then,

where ¢ is a constant, then

d
9(Xn, Yn) — g(X, 0).
(8) (Sum and Product Convergence) Above Slutsky’s theorem implies that

X0 +Y, 5 X+
X,Y, -5 eX.

(4) If X, -5 X and X, — Z, -5 0, then
Zn — X.



I now show a proof for X, Pox = X, NS
Proof. We have lim, ., P(|X,, — X| > ¢) = 0. For a continuous and bounded function g, we have from
Continuous Mapping Theorem that,
lim_P(g(X,) — g(X)] 2 ) = 0.

Let |g(x)] < M for all € R. Then

Elg(Xn) — g9(X)|

/ 19(X) — g(X)|dF (X, X)

/ 90%,) - 9()laF + | 9X) — g(X)IdF
l9(Xn)—g(X)|<e l9(Xn)—g(X)|=e

< e [ar 2Py, - g()| 2 o
= e MP(g(X,) — g(X)] 2 ) = e

Based on the arbitrary of €, we have lim,_,o E|g(X,) — g(X)| = 0, which implies that
Eg(Xn) = Eg(X),

. d
for any bounded and continuous g. Thus, X,, — X. =
In fact, there is even one more proof from website which seems correct.

Proof. For any continuous and bounded function f, by Continuous Mapping Theorem, we have
P P
X, — X = f(Xn) — f(X).
By Dominate Convergence Theorem, the online states that
Ef(Xn) = E(f(X)). (1.2)

(I am not for sure this step. For DCT, we need three conditions, (i) |f(X,)| < M, a.s. for all n, (ii)
f(Xn) £, f(X)or f(X,)E3 f(X), (ili) E(M) = M < co. T am not for sure if the convergence in probability

in (ii) is already enough for the DCT.) (It seems answered on a forum but I have not found book or paper.
https://math.stackexchange.com/questions/206851 /generalisation-of-dominated-convergence-theorem# or
https://math.stackexchange.com/questions/3374830/dominated-convergence-theorem-with-almost-surely-replaced-
by-convergence-in-p) Then one can obtain the convergence in distribution based on the Portmanteau Theo-

rem, that is, X,, converges in distribution to X if equation (1.2) holds for all bounded continuous f. The other

last step, one can take f(z) = €“* which is a bounded and continuous function. Then based on Levy-Cramer

Theorem, the convergence of Ch.f.s is equivalent to the convergence of distribution functions. m

1.1.5 Counter-Examples

Example 1.1.25 (Counter-Example 1). LP convergence = a.e. convergence?

No. For simplicity, consider the interval = [0, 1] and construct a sequence of sets A,, such that the mea-
sures m(Ay,) tend to 0 but every point belongs to infinitely many A,,. For example Ay = [0,1/2], Ay =[1/2,1],
As =[0,1/4],...,A¢ = [3/4,1], A7 =[0,1/8],.... If fn is the indicator function of A, that is fp,(x) =1 ifx €
Apn and fo(z) =0 else, then f, — 0 in all LP([0,1]) because || fnl, = [17 - m(An) + 0P - (1 — m(An))]l/p -0
but there is no x € [0,1] with f,(x) — 0.

See reference in hitps://math.stackexchange.com/questions/689664 /lp-convergence-a-e-convergence



Example 1.1.26 (Counter-Example 2). X, A x X, £ x.
Let X, = —X,n=1,2,--- and let X,, and X have the following distributions.

X -1 41
Py 3
X, -1 +1
P o5 3
Then we have
X, % x

Howewver,
P(|X, - X| > ) = P(| = 2X| > ) = P(IX| > 5) =1 0,

when € < 2, Xn—lsz.

Example 1.1.27 (Counter-Example 3). X, X or X, Exe» X, 2 x.
Let @ = [0,1],£(w) = 0, P(€ = 0) = 1.

IN
S
IN

I

=

£

I
si= ©
A
S
A
3

= 3

1
o

o)

—

aa)
3
\

(an)

=2
I

78"
3
ik
A

Yw € Q, li_)m &n(w) — &(w)

Ve > 0, Pllga(w) @) > O < ~ = & B e.

However, we see that )
Bl — &P = (n#)? - = =1 0.
n

1.1.6 Appendix for Other Convergence

There are some other useful relationships between convergence in probability theory and measure theory.

Convergence in KL divergence = Convergence in total variation = strong convergence of measure =

weak convergence, where

i v, p means limy, o0 [|tn — ptf| 7, = 0, where

i — pllpy = sup { fdun—/fdu},

£l o<1

which also equals
[t = pllpyy = 2 sup [pn(A) — p(A)].
AcF

. pn, — pstrongly if limy, o0 pn(A) = u(A), VA € F.



1.2 Preliminary Remarks

1.

2.

Theorems of de Moivre-Laplace, Lindeberg-Lévy, Lapunov and Lindeberg-Feller.

Laws of large numbers.

. Modern theory of limit distributions for sums of independent random variables has developed greatly

during 1900-1950 due mainly to Khintchin, Gnedenko, Kolmogorov and Lévy.

. For dependent random variables, the convergence of a sequence of distribution functions is also inter-

esting. See Markov, Bernstein.

1.3 Stochastic Convergence (Convergence in Probability)

1.3.1 Part A. Example

Example 1.3.1 The random variable Y,, can take on the values

2 n—1
y 9T T )
n n

0,

S|

and its probability function is given by the formula

P(Yn:;):C:);n (r=0,1,--- ,n). (1.3)

Consider the random variable X, defined by the formula

1
Xn =Yy~ 3. (1.4)

Thus X,, can take on the values

1 2—-n4-—n n—4 n—21
2" 2n " 2n 7 7 2n 7 2n 2’

The probability function of X,, is given by the formula

2r—n n\ 1
(v~ ()

Let n = 2. The random variable X5 can take on the values

~0.5,0,0.5

with the respective probabilities

i

DO =
A~ =

1
4’

Let € = 0.3, then

1 1
P(| Xy >03) =P <X2 = 2> +P (X2 = 2) =0.5.

Let n = 5. The random variable X5 can take on the values

—0.5,-0.3,-0.1,0.1,0.3,0.5

10



with the respective probabilities
1 5 10 10 5 1

Hence
P (] X5| > 0.3) = 0.0625.

Let n = 10. The random variable X9 can take on the values
-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5

with the respective probabilities

1 10 45 120 210 252 210 120 45 10 1
1024710247 10247 10247 10247 10247 1024 1024 1024 1024 1024°

Hence
P(‘Xlol > 03) = 0.02,

which is very small.

We will prove lim P (] X,| > 0.3) =0.
n—oo

1.3.2 Part B. Theory

Definition 1.3.2 The sequence {X,} of random variables is called stochastically convergent to zero if for
every € > 0 the relation
lim P(|X,|>¢) =0 (1.5)
n—oo

1s satisfied.

Remark 1.3.3 If {X,} is stochastically convergent to zero , it does not follow that for every e > 0, we can
find a a finite ng such that for all n > ng the relation | X,| < e will be satisfied. It follows only that the
probability of the event {|X,,| > €} tends to zero as n — co.

Theorem 1.3.4 Let F,(z) be the distribution function of the random variable X,. The sequence {X,} is

stochastically convergent to zero if and only if the sequence {F,(x)} satisfies the relation

0 for = <0,
lim F,(z) = F(x) = (1.6)
oo 1 for x>0,

at every continuity point.

Proof.
(=). {X,} is stochastically convergent to zero. lim P(|X,| >¢€) =0.
n—0oo

P(X, <—-¢)=F,(—€¢) > 0= F,(—z) =0, forVa >0.

P(X,>e)=1—F,(e) — P(X,=¢) = 0.

Since Ve > 0 there exists 0 < €1 < €, we have P(X,, = ¢ > ¢;) < P(|X,,| > €1) — 0. Thus

1—F,(e) > 0=1—F,(x) -0, for Vx> 0.

11



(«). Ve > 0,
lim P(X,, < —¢) = lim F,(—¢) =0.

n—oo n—oo

lim P(X,, >¢) < lim P(X, >¢€)= lim [l - F,(¢)] =0.

n—roo n— oo n— oo

Remark 1.3.5 F(z) correspond to the random wvariable X with a one-point distribution such that P(X =
0) = 1. F(x) is continuous at every point x # 0 so that F,,(x) — F(x) at x # 0.

Remark 1.3.6 We stress the fact that at the discontinuity point of F(x), that is, at the point x = 0, the
sequence {F,(0)} may not converge to F(0).

Remark 1.3.7 Let X, % ¢ # 0. We can consider {Y,} = {X,, —c}. Then Y, %0 so that {Y,.} is

stochastically convergent to zero. The theorem holds.

Remark 1.3.8 Let X,, = X #0 (X is a random variable). Then we have X, 4 x. However, the inverse
may not hold, that is, the theorem does not hold (see Example 1.1.26).

1.4 Bernoulli’s Law of Large Numbers

Denote by {Y,,} the sequence of random variables with probability functions given by the formula

P(Ya=1)= (Z) PL=p)

where 0 < p < 1 and r can take on the values 0,1,2,--- ,n. Further denote

X,=Y,—p. (1.7)

Theorem 1.4.1 The sequence of random wvariables {X,} given by (1.7) is stochastically convergent to 0,
that is, for any € > 0 we have
lim P(|X,|>¢€) =0. (1.8)

n—oo

Proof. We compute
E(X,)=0.

on =+/Var(X,) = v/p(1 —p)/n.

By Chebyshev inequality

Vv X, 1- 1
< a?“(2 ):p( p)<n7—>0, for Ve > 0.

P(|X,| >¢) .

12



1.5 The Convergence of A Sequence of Distribution Functions

1.5.1 Part A. Example

Definition 1.5.1 The sequence {F,(x)} of distribution functions of the random wvariables {X,} is called
(weakly) convergent, if there exists a distribution function F(x) such that, at every continuity point of
F(x), the relation

lim F,(z) = F(x), (at any continuity point x) (1.9)

n—oo

s satisfied.

Remark 1.5.2 It is not required that {F,(x)} converge to F(x) at the discontinuity points of F(x). See
example in Section 1.3. F,(0) is not convergent to F(0).
Consider the subsequence of {F,(0)} with only n =2k + 1. Xoxy1 can take on the values

12-(2k+1) 4—(2k+1) %+1—4 2%k+1-2 1

27 22k+1) 1 202k+1) T T 202k+1) 2(2k+1) 2

For every k, half of these terms are less than zero, the other half greater than zero. P(Xopt1 < 0) =
F5,11(0) = 0.5.
k— o0

Remark 1.5.3 Recall that it may happen that a sequence of distribution functions converges to a function

that is mot a distribution function.

Example 1.5.4 For example,

Fo() 0 for x <mn,
n\T) =
1 for x>n,

lim F,(z)=F(z)=0 (—o0 < & < 00).

n—oo

Remark 1.5.5 Let a < b be two continuity points of the limit distribution function F(x). We have
Pla < X,, <b)=F,(b) — F,(a). (1.10)
Since le F,(a) = F(a) and ILm F,(b) = F(b), we have

lim P(a < X, <b)=F(b) — F(a). (1.11)

n—oo

1.5.2 Part B. Weak Convergence for High Dimensional Distributions

Definition 1.5.6 The sequence of distribution functions {F,(x1, - ,x)} of random vectors
(Xn1, Xno, -+, Xnk) is (weakly) convergent if there exists a distribution function F(x1,--- ,xk) such that at

every one of its continuity points

lim F,(z1,22, - ,2) = F(z1, 22, , k). (1.12)

n—oQ

13



1.6 The Riemann-Stieltjes Integral

There is one-to-one map between a CDF F(z) and a Ch.f. ¢(z). To prove this, we need some back-

grounds.

tHFE, X E

Definition 1.6.1 Let F(z) be a function defined on the interval [a,b], which can be either finite or infinite.
Let us take a partition of the interval [a,b] with the points

a=xg< 1 <Ta< - <xp=>

and form the sum
n—1
7= 3" [Flan) - Flag)l.
k=0

The value of T may depend on the number n and on the partition into subintervals. The least upper bound

of the values of T is called the total absolute variation of the function F(x) in the interval [a,b].

Total variation = sup T, 4, -
n,Tk

Definition 1.6.2 If the total absolute variation of F(x) in [a,b] is finite, we say that F is a function of
bounded variation on the interval [a,b]. The set of all such functions is denoted by BV ([a,b]).

Proposition 1.6.3 Fvery non-decreasing bounded function is of bounded variation.

n—1

T = [F(axs1) — F(zy)] = F(b) — F(a) < .
k=0

Every distribution function F(z) is a function of bounded variation.
T = F(+00) — F(—00) = 1.
We now introduce Stieltjes integral.

Definition 1.6.4 Given a function g(x) and a function F(x) in a finite interval [a,b]. Let us form a partition

of the interval [a,b] into n parts with the points
a=x9g<x1<--<xTp =0.

Consider the sum
n—1

S= 9@ )F(zen) — F(x)], (1.13)
k=0

where x. is an arbitrary point in the kth interval (zx, xp11). If as n — co and max(zy41 — k) — 00 the sum
S tends to a finite limit I independent of the choice of the points x}, and the partition of the interval [a,b].
This limit is called the Stieltjes integral of the function g(x) with respect to the function F(x). We denote

the integral as
b
I'=lim S= [ g(z)dF(x). (1.14)
Az S0 a
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Remark 1.6.5 The Stieltjes integral is a generalization of the Riemann integral, since for F(x) =z, (1.14)

represents the Riemann integral.

Remark 1.6.6 When the interval of integration is infinite, we define the improper Stieltjes integral as the

limit of a sequence of proper Stieltjes integrals. Thus, if

b
lim g(z)dF(z)

exists as a and b tend to —oo and +o00, respectively, this limit is called the improper Stieltjes integral of the

function g(x) with respect to the function F(z).

Proposition 1.6.7 1. If ¢ and l are constants, then

b b
/ cg(x)d[LF ()] = / o(2)dF(x).
2. If the integrals on the RHS exists, then the integrals on the LHS exist and

/ab[gl(iv) + go(2)]dF (z) = /

a

b b
01(2)dF (z) + / 02(2)dF (z),

b b b
| s@ilF@) + B@) = [ g@ifi@ + [ @)
This is satisfied for an arbitrary finite number of functions g;(x) and F;(x).

3. If a < b < ¢ and all three integrals

b c b
| s@ir@). [ g, [ s@are
exist, the equation
b c b
[ s@ar@) = [ g@ar@ + [ g@dre)
a a (&
holds. This is satisfied for an arbitrary finite number of points a < ¢1 < cg < -+ < ¢, < b.

Remark 1.6.8 In the theory of real functions it is proved that if g(x) is continuous and bounded over the real
azis and F(x) is a function of bounded variation, both proper and improper Stieltjes integrals exist. However,

Stieltjes integral may not exist when g(x) is not bounded.

Corollary 1.6.9 If F(x) is the distribution function of a random variable of the continuous type with the
density function f(x),

b b
/ o(2)dF(z) = / o(2) f(z)dz, (1.15)
which reduces to the Riemann integral.

Suppose that F(z) is the distribution function of a random variable of the discrete type with jump points z,
and jumps pg(k =1,2,---). Then F(z) has the form

F(z) =) [F(x} +0) = Fla})].

By (1.13) and (1.14), we obtain
b
/ g(2)dF(z) = 3 g(zh)pr. (1.16)

15



Proposition 1.6.10 If the expected value of Y = g(X) exists, then

/ :o (1.17)

where F(x) denotes the distribution function of X.
Example 1.6.11 Setting g(x) = a”, we obtain the general expression for the moment of the rth order

my = B(z") = / T raF (),

— 00

Example 1.6.12 g(x) = ¢®, the characteristic function

—+oo
o(t) = / e dF (x).
Proposition 1.6.13 Let Fx(x), Fy (y), Fz(2) be distribution functions of random variables X,Y, Z, then

1. IfZ=X+Y,

+o0 +oo
Fz(2) :[ Fy(z — 2)dFx (x) :[ Fx(z —y)dFy (y). (1.18)
2 fZ=X—-Y, X
Folo)= [ Fx(z+p)dFr(y), (1.19)

3. IfZ=XY and P(X =0) = P(Y =0) =0,

=/ Py (2)] arx(a) + /mFy( ) dFx (x)
o 0 . (1.20)
b [ (o
4. IfZ:—andP( =0)=0,
Fz(z) = OOO [1— Fx (zy)| dFy (y) + /;OO Fx (zy) dFy (y). (1.21)

1.7 The Lévy-Cramér Theorem

1.7.1 Lemmas Before the Lévy-Cramér Theorem
FR#FA R RE, EREAFFLREK

Theorem 1.7.1 (Beppo Lévy Monotone Convergence Theorem). Let {f,}, be a sequence of measur-

able, non-negative functions on a measurable set E. If {f,} is monotonically increasing a.e. on E
<ol < frlz) <
satisfying

k—o0

lim fi(z) = f(x), ae.z € E, and / fz)dr < oo,
E

then
dim [ fiede = /E f(2)dz

This means that the order of integral and limit can be interchanged.

16



Proof. Since f; < fr11 < f, we have

/Efkdwé/Ekade[Efdw<oo.

Thus klim J frdz is well defined such that
—00

lim / frdx < / fdz.

To prove the opposite inequality, we need more background and knowledge.

Definition 1.7.2 A measurable function f: E — R"™ is simple (or a simple function) if the size of the range

|f(E)| is finite and assumes only a finite number of values.

In particular, f(z) = > b_; cixa, (), ALIlei = R", A; Q A; = ¢. Thus any simple function is a linear
i= i#£]

combination of finitely many indicator functions. Moreover, the integral can be defined as

/Ef(x)dx = Zcim(E NA;),

where m(-) is the Lebesgue measure.

Lemma 1.7.3 Let {Ey C R™} be a sequence of increasing measurable sets. Let f(x) be a non-negative

measurable simple function over R™. Then
/f ac—hm f()x, E:OLjEk.

Proof. Let f(x) takes on values of ¢;(i =1,--- ,p) on sets A;(¢ =1,---,p). Then

k—o0 E

p
li =1 m(E, N A;
im /kf(m)dx kl)n;o;clm( e N A;)
P
= Zci lim m(E, N A;)
2 k—o0
chz (ENA;)

/f

Definition 1.7.4 Let f(x) be a non-negative measurable function on E C R™. Define

/ f(x)dr = sup {/ h(x) : h(z) is a non-negative measurable simple function over ]R"} .
E h(2)<f(2)
z€EE

If [, f(x)dx < 400, f(x) is said to be integrable over E.

Now we continue to prove the Beppo Lévy Monotonic Convergence Theorem 1.7.1.
Proof. Let 0 < ¢ < 1 and h(z) be a non-negative measurable simple function over R” with h(x) < f(z) a.e
r € F. Let fr /f and

Ey,={z e E: fp(x) >ch(x)},(k=1,2,---).

17



Then Fj is an increasing measurable set such that

lim E = E.

k—o0

Using lemma,

lim ¢ h(z)dz = c/ h(z)dx
k—o0 Ep E

Then
/ fr(z)dz > fre(z)dz > / ch(z)dx = c/ h(z)dz.
E Ey Ey, Ey
lim / fr(x)dx > hm c/ h(z)dx = c/ h(x)dx.
k—o0 Ej E
Let ¢ — 1,

kli_)rgo/Efk(x)dxz/Eh(x)da:
lerr;o/Iﬂfk(x)dzZ/Ef(w)dx

Theorem 1.7.5 (Fatou’s Lemma). Let fr(x) be non-negative measurable functions on E C R™, then

Using definition of [, f(x)dz,

/Eliminffk(x)dm Slikriiorclf/Efk(x)dm. (1.22)

k—o0

In above formula, we can denote lim by lim 1nf
k—o0 k—

Proof. Let gi(z) =inf {f;(x) : j > k}, then

gk(x) < gk-l-l(x)’ (k =12, )

and
lim inffk(x) = lim gk(x).

/hmmffk( )dm—/ hm gk (z)dx = hm /gk dm-hmlnf/ k(x dx<hm1nf/ fr(x
E

k—o0 k—o0

— f 7T ] B By AR

Definition 1.7.6 Let f(x) be a measurable function on E C R™. If [ f*(x)dx < oo, [, f~(x)dx < oo,
then f(x) is said to be Lebesque integrable over E and

/Ef(x)dm:/Eer(x)dwf/Ef*(x)d:E

Here, fT(z) = max{f(z),0} >0, f~(x) = —min{f(z),0} > 0. All integrable functions on E are denoted by
L(E).
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Theorem 1.7.7 (Lebesgue Dominated Convergence Theorem). Let f, € L(E),(k = 1,2,---), such
that

lim fi(z) = f(z) ae z€ckE.

k—o0

If there exists an integrable function F(x) over E such that,
|fe(z)| < F(x) ae zeBE, (k=1,2,---).

Then

lim / fr(x)dx —/ flx (1.23)
k—o0
Here F(x) is called the control function of {fi(x)}.

F(x) 8 A {fr(x)} #EH B
Proof. f(x) is measurable over E. Since |fx(z)| < F(x) (a.e. z € E), then |f(x)| < F(z) (a.e. z € E).
Thus f(x) is integrable over E. Set

gr(x) = [fr(x) = f(2)], (k=1,2,---)

then gr(z) € L(F) and 0 < g(x) <2F(z) ae. z € E, (k=1,2,---).

Using Fatou’s Lemma,

/E lim (2F(z) — gr(z))de <liminf [ (2F(z) — gx(x))dz.

k—oco k—oo Jg

Since F'(z) and {gr(z)} are all integrable,

/2F(:v)dxf/ lim gi(x )dmg/ QF(x)dxflimsup/ gk (x)dx.
E E koo E k—oo JE

Notice that lim gx(x) = lim |frx(z) — f(z)] =0 a.e. € E. Thus,
k—o0 k—o0

0 < lim sup/ gk (z)dz < 0.
E

k—o0

|/fk dff—/f d$|</|fk |da:—/Egk(m)dx—>0 as k — oo.

Remark 1.7.8 In fact, from above we have stronger conclusion

Last,

lim / | fi(z x)|dz = 0. (1.24)

k—o0

Corollary 1.7.9 (Bounded Convergence Theorem). Let {fr(x)} be a sequence of measurable functions.
m(FE) < +oco. For a.e. x € E, klim fe(x) = f(x), |fe(z)| <M, (k=1,2,--+). Then f € L(E) and
hade el

dn [ @)= [ fa). (1.25)

Proof. Set the bounded function F(z) = M in Dominated Convergence Theorem. ®
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1.7.2 Dominated Convergence Theorem in Measure Theory

When a.s. convergence implies L! convergence. Monotone convergence (MCT), Dominated convergence
(DCT).

Let X and {X,} be random variables on the same probability space (2, F, P). If X, (w) = X (w) for
each w € Q (a.s. convergence), does it follow that E[X,] — FE[X]? That is, may we exchange expectation
and limits in th equation,

lim E[X,] — E[lim X,]?

n—oo n—oo
As we know, we cannot always interchange such order as seen from counter-example 1.1.27. However,
when we have some resctriction for X,,, we can do interchange. We see the following corresponding theorems

in probability theory.

Theorem 1.7.10 (Monotone Convergence Theorem or MCT). Let X and X,, > 0 be random variables
(not necessarily simple) for which X, (w) /X (w) for each w € Q. Then

lim E[X,] = E[ lim X,] = EX.

n—00 n—oo

If E|X| < o0, then also E|X,, — X| — 0.
Theorem 1.7.11 (Fatou’s Lemma). Let X,, > 0 be random variables. Then

E[ lim inf X,,] < lim inf E[X,,].

n—oo n—oo

Theorem 1.7.12 (Dominate Convergence Theorem or DCT). Let X and X,, be random variables
(not necessarily simple or positive) for which P(lim, . X, = X) =1 (a.s.) for X, I x (in probability)
(not for sure?)], and suppose that P(|X,| <Y) =1 a.s. for all n and for some integrable random variable
Y with EY < oco. Then

lim E[X,] = E[ lim X,] = EX.

n—00 n—oo

That is, above equality holds if {X,} is “dominated” by Y € L'. Moreover, E|X,, — X| — 0.

1.7.3 Main Theorem

Go back to Lévy-Cramér Theorem.

Theorem 1.7.13 If the sequence {F,(z)}(n=1,2,--) of distribution functions is convergent to the distri-
bution function F(x), then the corresponding sequence of characteristic functions {¢n(t)} converges at every
point t (—oo < t < o0) to the function ¢(t) which is the characteristic function of the limit distribution

function F(z), and the convergence to ¢(t) is uniform with respect to t in every finite interval on the t-axis.
Proof. too foo
On(t) = / e dF,(z), o(t) = / e dF(z).

—00 — 00
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Let a < 0 and b > 0 be continuity points of F'(x), we have

a b oo
Pn () :/ eitzan(I) JF/ eitxan(x) + /l;+ eitxan(x)

—00 a

=In1 + In2 + In?n

o(t) = / ’ e dF (z) + / bemdF(xH /b o e dF (z)

— 00 a

(1.26)

=1 +1;+ Is.

Consider the difference . )
Lo — Iy :/ e dF, () 7/ e dF (x).

Integrating by parts, we obtain

Lo = I = & {[F(@)]; — [F()]; } it / ' (Bule) — (&) e d.

Hence,

Lz — o] < |Fu(b) = F(8)| + |Fu(a) — F(a)| + [t| [ |Fu(a) — F(a)|da.

For Ve > 0, since a and b are continuity points of F(x), we have

€

[Fa(4) = FO) < 5. |Fula) = F(@)] < 5.

Using Lebesgue Dominated Convergence Theorem, |F),(z) — F(z)| < 2 is uniformly bounded in every interval,

we have

b b
lim / |Fn(x)_p<x)\dx:/ lim [Fy(x) — F(@)|de = 0,

n—oo

For some fixed t satisfying 71 < ¢t < T, set K (t) = max(|T1],|T2|). Then for sufficiently large n and all ¢, we
have
b b .
[ 1Fu(o) = Plalide < K() [ |Fole) - F@)lds < . (1.27)
Thus we obtain
€

|In2 —.[2‘ < 3

(1.28)

Now consider the difference
I —1 = / e dF, (r) — / e dF (x).
— 00 — 00
We have " "
i = 1| g/ dF, (z) +/ dF(2) = Fy(a) + Fla).

—00 — 00

Thus if a is sufficiently large in absolute value, and a is the continuity of F(z),
F(a) < g, Fula) ~Fla) <
Thus

€
|11 — 1] < 3

for all ¢ and sufficiently large n. Similarly, [I,3 — I3/ < 5. =
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Theorem 1.7.14 (Helly’s Selection Theorem). For every sequence {F,(x)} of distribution functions,
there exists a subsequence {Fy,, ()} and a non-decreasing right continuous function Fy, such that F,, () —
Foo(x) as k — oo at all continuity points x of Fu,, that is F, (z) = Fx(x). Moreover, Fy, is a distri-
bution function if and only if {F,} is tight. (see Slutsky Theorem Apr5.pdf)

Theorem 1.7.15 If the sequence of characteristic functions {¢,(t)} converges at every point t (—oco < t <
o0) to a function ¢(t) continuous in some interval |t| < 7, then the sequence {F,(x)} converges to F(x)

corresponding to ¢(t).

Proof. The proof has two parts. Part 1.
First, we select a subsequence by Helly’s Selection Theorem, F,, — F as k — oo. It does not, however,
follow from the Helly’s theorem that F'(z) is a distribution function. We have 0 < F(z) < 1, but we do not
know if F/(—oo) = 0 and F(oo) = 1. We now prove them.
Suppose that

a = F(4+00) — F(—0) < 1. (1.29)

Since ¢, (t) — ¢(t) and ¢,,(0) = 1, we have ¢(0) = 1. By the assumption that the function ¢(t) is continuous,
it follows that in some neighborhood of the origin ¢ = 0 it will differ little from 1. Thus for sufficiently small

7 we have the inequality

1 T € €
— t)dt 1— - — 1.30
27‘4¢U ’> 5>ty (1.30)

where the number € is chosen in such a way that a+¢ < 1. Since the subsequence F,,, (x) are CDFs, we know

Fy, (+OO) - F’Vlk:(_oo) =1

We can choose sufficiently large a > % such that a and —a are continuity points of F(z), and a number K
such that for k > K,

k— o0, F,, (x) = F(z) = F,.(a)—F(a) < 1—66, F(—a) — Fp, (—a) < 1—667 (k — 00).
F(+00) exists = F(a) — F(+00) < 1% F(—00) — F(—a) < 1% (k — o).
=
Fuy (a) = oy (—a) =F(+00) + F(=00) < 7.
Then |

= Fry (@) = Fr (—a) < F(+00) = F(=00) + 7 = a+ 7.

On the other hand, since ¢, (t) — ¢(¢) in [¢| < 7, it follows from (1.30) that there exists sufficiently large k,

1

2T 2

T¢M@m4>a+€. (1.31)

—T

We now show that this inequality is not satisfied. Indeed, we have

T T +oo s s +o0 T
¢)nk (t)dt _ / |:/ eitIank (x):| dt Fubini smg | [f <27 / |:/ eitwdt:| ank (.T)

-7 —oo —oo -7

22



Since
-

/ " eitegg| = | [€
—r 1T

|(cosTa 4+ isinTx) — (cos T — isinTx)|

t=—1

||
_ [2sinTz|

]

IN
T

<

ISHE

, for |z| > a.

/[ [ eeat]ar @
/Iwga Uj emdt] el /|x|>a [/_+ emdt} 0, (x)

/ ngnk (z)
|z|>a O

Then

IA

+

+

< / 27dF,, ()
[z|<a

2
=27 + —.
a

T 1 +o00 T
st < L|[ ][ eta im0
-7 T /-0 -7

< Lorap+ 2 + <t S
—2rap+-)=ar+— < ap+ -
- 27 k a k ar — k 4

Thus
1

2T

<a++i-aqs
at-+-=a+ .
171 2

This is a contradiction to equation (1.31). Hence F(z) is a distribution function. From Theorem 1.7.13, it
follows that ¢(t) is its characteristic function.

Part 2.

We last prove that not only {F,, (z)}, but the whole {F,(z)} converges to F(x). If this were not so there
would be another subsequence {F,, ()} convergent to a limit function F(z) # F(x). One can show F(z) is

also a distribution function and moreover, F'(z) has the same characteristic function as F(z). Hence by Lévy
Theorem ??, F(z) = F(x). Thus {F,(z)} — F(z). =

Theorem 1.7.16 (Lévy-Cramér). The conclusions from both Theorem 1.7.15 and Theorem 1.7.13. The
convergence of CDFs < the convergence of Ch.f.s.

Remark 1.7.17 Theorem 1.7.16 remains true if we assume the continuity of the limit function ¢(t) only at
the point t = 0.

Remark 1.7.18 In general, we cannot replace the convergence at every point t in (—oo,+00) by conver-
gence in some interval on the t-azis containing the origin. (In order to determine the distribution, we need

information of ¢(t) for —oo <t < oo. If not, Part 2 proof may fail.)
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1.8 The de Moivre-Laplace Theorem

1.8.1 Part A

{X,} is a sequence of binomial random variables. For every n, X,, takes on the values 0,1,...,n,

P(Xy =7)=Cop"q"",
where 0 < p <1 and ¢ =1 — p. The moments are
EX, =np, Var(X,)=npq.

Consider {Y;,} of standardized random variables
Y, = Xn 1P
v pq
Theorem 1.8.1 (de Moivre-Laplace theorem). Let {F,(y)} be the sequence of distribution functions of Yy,
above. If 0 < p < 1, then for every y we have the relation

: 1 (v 2
nh_}n;o F.(y) = W [m e~ 7 ds.
Proof. The Ch.f. of X,, is

¢X(t) _ EeitX" _ Zeitrc;;prqnfr _ (q+peit)n'
s

Notice that if Y = aX + b, then ¢y (t) = e®®*¢x (at). Then the Ch.f. of Y, is

np . _it _\T
exp | — it (q—i—peW)

NGT
= ex _7pit ex _ait '
= (q p( qu)er p( qu)> :

Let us expand e'* in the neighborhood of z = 0 with the Peano remainder,

ox (1)

it it 1 ¢%t? 12
pexp(—L ) = p@+ / —q+d0
V/1pq Vnpq 2 npq n
. 1 gt? 2
= p+it @—fq——i—o(—).
n 2 n n

de(-LL) = q(1- L _2PE o)
V/pq Vpg 2 npg n
_[pqg 1pt? t2
= — t —_ = = — —_
- Vn 2n ol n ),
where )
nh_{réon . O(E) = n11_>n;0 o(1) =0.
Then the Ch.f.
(p+qt* 1 t? 2 \"
t) = _Z W= (1 - — o
o) = (a5 0 1o(h)) —+ol)
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The Ch.f. converges to that of a standard normal distribution. By Lévy-Cramér theorem, we have the
convergence of the distribution function for every y, since the limit Gaussian distribution function has no
discontinuity points. m
We see that
. . 1 V2.2
lim Plyy, < Y, <wyz)= lim [F,(y2) — Fn(y1)] = —/ e zds
n—oo Y1

n—oo

X, —np
= lim Ply) < ———
n—00 (1 /npq

= lim P(yi1+/npq + np < X, < y2/npq + np)

n—oo

= lim P(J?1 <X, < 1‘2).

n—oo

<2)

We say that X,, has an asymptotically normal distribution N (np, npq).

Replacing y; and y, with
1

2./npq’

Y1+ and y2 —

1
2y/npq
we get a somewhat better approximation.
Example 1.8.2 We throw a coin n = 100 times. 1 =head and 0 =tail. Let p = q = 0.5. What is the
probability that heads will appear more than 50 times and less than 60 times?

Solution. We have
EX, =np=50, Var(X,)=npg=25.

Then
50—-50 X, —50 60 — 50
P00 < X, <60)=P < <
( ) ( V25 V25 V25 )
1 1
= PO<Y,<2)2P0+—<Y,<2—-—
( ) ( 2v25 2\/25)
1 1.9 2
= P01<Y,<19) =— e~ T ds ~ 0.4315.
( ) ) e |
1.8.2 Part B

From the de Moivre-Laplace limit theorem, we obtain an analogous theorem for

with EU,, = p,Var(U,) = 1. We have

Zn = = - Yn
o Vpq
Then
1 ? 2
lim F,(z) = — e”2ds
n—o0 2 o
For z1 < zo, we have.
lim P(z1 < Z,<2z)=— e 2ds
n—o00 2 2
Un - D
= nILrI;O Pz < = < 22)



We say that U, has an asymptotically normal distribution N(p, 22).

Example 1.8.3 IBM cards correspond to the workers. Of the workers 20% are minors and 80% adults.
Before choosing the next card, we always return the first one to the box, so that the probability of selecting
the card corresponding to a minor remains 0.2. We observe n cards in this manner. What value should n
have in order that the probability will be 0.95 that the frequency of cards corresponding to minors lies between
0.18 and 0.229

Denote the frequency of the appearance of the card corresponding to a minor by U,. We then have

0.16
EU, =02, Var(Uy,) = % = —.

Consider the probability

002 U,—02 002
1 o1 < 0a)

P(0.18 < U, <0.22)=P(

0
Vi Vi Vi
U, — 0.2
= P(-0.05y/n <~/ < 0.05V7) = 0.95.

From tables of the normal distribution we obtain 0.05y/n = 1.96; consequently n = 1537.

1.9 The Lindeberg-Lévy Theorem

1.9.1 Part A

The de Moivre-Laplace theorem is, as we shal see later, a particular case of a more general limit theorem,
namely, the Lindeberg-Lévy Theorem.

Consider a sequence {X,,} of i.i.d. random variables whose second order moment exists. For every k,

EX, =m, Var(Xy)=o>

Consider
Y,=X1+...+ X,
We have
EY, =nm, Var(Y,)=no>.
Let

Then we have the following Central Limit Theorem.

Theorem 1.9.1 (Lindeberg-Lévy Theorem). If X1, Xos,... are independent, identically distributed random

Y,—nm

Vno

variables, whose standard deviation o # 0 exists, then the distribution functions {F,(2)} of Z, =

satisfies, for every z, the equality

1 z 52
lim F,(z) = — e 2ds.
n—oo ( ) vV 2T ~/—oo

26



Proof. Let us write

1
Zn = N kZ:l(Xk —m).

All X), —m are i.i.d., hence the same Ch.f. ¢x(¢). Thus Xﬁ;” has Ch.f. ¢X(ﬁ) and ¢z(t) of Z, is

o2(t) = [0 (fw)]

E(X)—m)=0, Var(X),—m)=o02,

Since we have

we can expand ¢x (t) in a neighborhood of ¢ = 0 according to the MacLaurin formula:
1
bx(t) =1— 502152 + o(t?).

Then

which is the Ch.f. of the standard normal distribution. By Lévy-Cramér theorem (Ch.f. is a one-to-one map

to CDF), we prove the Lindeberg-Lévy Theorem. m

1.9.2 Part B
For z; < z5, we have
. . 1 22
nh_{go Plz1 < Zn<z)= 7}520 [Fn(22) — Fr(21)] = Von /Z1 e Zds
. Y, —nm
= lim P(z1v/no +nm <Y, < 20y/no +nm).
n— oo

Let y1 = 214/no + nm, ya = 29y/no + nm. We say that Y,, has an asymptotically normal distribution
N(nm,a*n).

When a sum of random variables has an asymptotically normal distribution, we say that it satisfies the
central limit theorem (CLT).

Example 1.9.2 X, are independent and each of them has the Poisson distribution given by

P(X,=r1)= Fe_Q (r=0,1,2,---) A=2.
Find the probability that the sum Y190 = X1 + - -+ + X100 18 greater than 190 and less than 210.
Solution. Notice that

EY,, =100\ =200, Var(Y,) = 100A = 200.
Then Y190 ~ N(200,200). Thus

—-10 _ Y100 — 200 _ 10
102 102 10v2

P(190 < Y100 < 210) = P( ) = (0.52.

27



1.9.3 Part C

From the above Lindeberg-Lévy Theorem, we have the following analogous theorem

Theorem 1.9.3 Suppose that X1, Xs, -+ are i.i.d. with standard deviation o # 0. Let U, be

X +Xo4 -+ X,
U, — 1+ Xo+ + '
n
Let F,,(v) be the distribution function of
U, — EU,
Vo =
Var(U,)

Then

Proof. We see that EU,, = m, Var(U,) = %2 We have

v Up—m Zzzl‘(k nm
n — -
o2 ovn

=7,

For z; < z3, we have.

1 v2
lim Plvi < V,<w :—/ -
Aim P(vn 2) V27 Jo,

= lim P(Ul < M < ’Ug)

n— 00 o2

n

= nlLH;OP(U17+m<U <'U2\/ﬁ+m)

= lim P(u; < U, <u2).

n—oo

We say that U,, has an asymptotically normal distribution N(m, %2)

Example 1.9.4 Let {X,} be i.i.d. with uniform distribution with pdf

ﬂ@:{1,xemm

0, else.

We know that m = % and 02 = % Consider

For n =48, compute the probability that Y, is less than 0.4.

2 04-3
P(Y, < 04)

f/f f/f

= P(¢ < —2.4) = 0.0082.

As we see, although the random variable Xj, (k= 1,2,---) have a uniform distribution in the interval [0, 1]

their arithmetic mean has, for large n, approximately a distribution in which values that are less than m = 0.5
by more than 0.1 appear extremely rarely.

28



Example 1.9.5 Let {X,,} be i.i.d. Each of them can take on the values k =0,1,2,...,9 with P(X,, = k) =
0.1 for ever k. Then

m = 4.5,
1 9
2 _ 2 2 _ - 2 _ 2 _ . _
o> = EX?—(EX,) 102k m? = 28.5 — 20.25 = 8.25,
k=0
o = 2.81T.

Consider

X1+ -+ X100
Yipo = 100

What is the probability that Y199 will exceed 57

Yioo—45 _ 5-45
P(Yigo > 5)=P(Fom— > Z5e) = P(€ > 1.74)

100 100

~ 0.041.

1.9.4 Part D

If their moment of the second order does not exist, CLT may not be satisfied.

Example 1.9.6 Let { Xy} be i.i.d. Cauchy distribution with pdf

1 1
fly) = P11
The Ch.f. function
— l ~ ity 1
To fund ¢(t) consider first the pdf density
1
fily) = 56_‘”

The reader may verify that the above expression is a density. The Ch.f. of the random variable with the
density is
1

f/ e Wldy = f/ (costy + isinty)e” ¥ dy
2) . 2) .

$1(t)

= / cos(ty)e Ydy.
0

Integrating by parts, we obtain
o0 oo
/ cos(ty)e Vdy = —cos(ty)e Y|;2 — t/ sin(ty)e Ydy
0 0

= 17t/ sin(ty)e Ydy.
0

Similarly,
oo o0
/ sin(ty)e Ydy = —sin(ty)e Y[;o + t/ cos(ty)e™Ydy
0 0

= t/ cos(ty)e Ydy.
0
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Hence we obtain
(o) o0
/ cos(ty)e Ydy =1 — t2/ cos(ty)e Ydy.
0 0

Finally, we obtain

1
1+t

or(0) = [ costy)e vy =
0
The Ch.f. is absolutely integrable over the interval (—oo,00). Hence by (77?) its corresponding density is

1 1 [ ety

fily) = 57 = .

— —dt.
2 o | o 1412

Thus we obtain )
1 [ ey

Ry B
¢ 7r/_oo1—|—t2

Changing e~ into €™ under the integral sign and changing the roles of t and y, we obtain

1 oo ity
eIt = f/ £ _dy.
T J oo 1+ 42

Thus we obtain

Then the Ch.f. of

18
~E" = el
by, () = (=) =M.
Y, also has the Cauchy distriubtion for arbitrary n, which does not have an asymptotic normal distribution.

(Note that Cauchy distribution does not have a standard deviation.)

1.9.5 Part E

Let the random variables X}, (k =1,2,...) satisfy the assumptions of Lindeberg-Lévy Theorem and let

E X, = 0. Consider for every n the partial sums

J
S;=> Xk (j=12...,n).
k=1

Erdés and Kac [1,2] have found the limit distributions for the sequences of random variables

S |S| 1 n 1 n
(o b {emS) 59 (e

These papers began a seris of fruitful investigations concerning the limit distributions of a large class of
functionals definds on the vectors (Si,...,Sy),even with much more general assumptions concerning the
random variables X than those considered here. We shall not discuss these results. The reader can find
them in the papers of Erdés and Kac [1,2], Donsker [1], Prohorov, Skorohod, Spitzer, Baxter and Donsker,

Varadarjan, Lamperti, Bartoszynski, and Billingsley.
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1.9.6 Part F. Substitution of Sample Variance

For the CLT, we know that Z,, = /n(X — p)/o is approximately N(0,1). However, we rarely know
o. We may estimate o by unbiased sample variance S;? = —L= 3" | (X; — X)2. This raises the following

question: if we replace o with S, is the central limit theorem still true? The answer is yes.

Theorem 1.9.7 Assume the same conditions as the CLT. Then

V(X — p)

= 45 N(0,1).

You might wonder, how accurate the normal approximation is. The answer is given in the Berry-Esseen

theorem.

Theorem 1.9.8 (the Berry-Esseen inequality). Suppose that E \X1|3 < oo. Then

33E|X, — X
Slip|P(Zn <z2)-0(2)| < T et

1.10 The Lapunov Theorem

The distribution of a sum of independent random variables may not converge to the normal distribution,

if the terms do not have the same distribution, even if all the random variables have standard deviations.

1.10.1 Part A

We now provide the Lapunov theorem, which gives a sufficient condition for a sum of independent
random variables to have a limiting normal distribution. Consider a sequence {X}} of independent random

variables whose moments of the third order exist.

Theorem 1.10.1 (Lapunov Theorem). Let {X} (k= 1,2,...) be a sequence of independent random vari-
ables whose moments of the third order exist, and let my,or # 0,ap, and by denote the expected value,
standard deviation, central moment of the third order, adn the absolute central moment of the third order of

X, respectively. Furthermore, let

If the relation

is satisfied, the sequence {F,(z)} of the distribution functions of the random variables Z,, defined as

Z, = ZZ:1(XI€ — my)

1.32
Teom), (132
satisfies, for every z, the relation
1 # 52
lim F,(z) = — e 2 ds. 1.33
n—o00 ( ) \ 21 [m ( )

The proof is ignored since it is too long.
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1.10.2 Part B

We present the theorem of Lindeberg-Feller, giving a necessary and sufficient condition.

(Lindeberg-Feller Theorem). Let {X;} (k = 1,2,...) be a sequence of independent random variables
whose variances exist, and let Gi(x), mg, o # 0 denote, respectively, the distribution function, the expected
value, standard deviation of the random variable Xy, and let F,(z) denote the distribution function of the
standardized random variable Z,, given by formula (1.32).

Then the relations

) Ok . 1 2 2
Jim e 2 =0, i R = o [ s

hold if and only if, for every ¢ > 0,

n

1

lim — / (& — my)2dG (z) = 0,
n—00 0721 kZ:l |z—my|>eC,,

Let {X:} (k = 1,2,...) be a sequence of independent, uniformly bounded random variables, that is,

there exists a constant a > 0 such that for every k,
P(| Xk <a)=1,

and suppose that Var(Xy) # 0 for every k. Then a necessary and sufficient condition for relation (1.33)
to hold is

lim C? = .
n—0o0

1.11 The Gnedenko Theorem

The sequence of pdf’s (in continous case) and the sequence of pmf’s (in discrete case) may not converge
to the corresponding limit pdf or pmf (see Problems 6.25 and 6.26 in Fisz book). We need more conditions

to interchange limitation lim and derivative %,

lim F,(z) = F(x) iterchange iF(m) = i lim F,(z)? = lim iFn(Jc)

n—oo dx dx n—oo n—oo dx

Here we present a case where a local limit theorem holds true.

Theorem 1.11.1 (Gnedenko). Suppose that the independent and equally distributed random variables X;
(i=1,2,...) of the discrete type can take on with positive probability only integer values, and let E(X;) = m
and Var(X;) = 0% > 0. Then the relation

1 22
li P _ _“nk —_
Jim o/nP, (k) \/ﬁexp( 5 )} 0,

where
Pu(k) = PO _Xi=k),
k=1
k —nm
Znk = T/,
b ovn

is satisfied uniformly w.r.t. k in the interval (—oo < k < o0) if and only if the mazimum span of the

distribution of X; is equal to one.
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Remark 1.11.2 A particular case of this theorem is the local limit theorem of de Moivre-Laplace when X;

can take the values 0 and 1, with with probabilities 1 — p and p, respectively.

1.12 Poisson’s Chebyshev’s and Khintchin’s laws of large number

1.12.1 Part A. Chebyshev Theorem

History. The Bernoulli law of large numbers, historically the oldest, is only a particular case of more
general theorems which are known under the common name of laws of large numbers.

Consider {X;} (k=1,2,...) the only assumption is that for every k, the first two moments exist,
EXk:mk, E(Xk—mk)QZO'i.

X} may or may not be independent.

By Chebyshev inequalities, we have for Vk, Ve > 0,
o
P(‘Xk 7mk| > 6) < 872
If the Markov condition

lim o} =0, (1.34)

k—o0

then
lim P(| X} —mi| >¢e) =0.
k— o0

Theorem 1.12.1 (Chebyshev theorem). Let { X} be an arbitrary sequence of random variables with variance

O'i. If the Markov condition (1.34) is satisfied, the sequence {X) — my} is stochastically convergent to zero.

Corollary 1.12.2 (Corollary of Chebyshev theorem). Let {X} be a sequence of random variables pairwise
uncorrelated and let EXy, = my, and Var(Xy) = oi. If condition

1 n
lim — Y "o =0, (1.35)

1s satisfied, then

1s stochastically convergent to zero.

Proof. Let
Xi+Xo+--+ X,
Y, — .
n
We have
EYn:m1+m2+”.+m".

n

Since X; are pairwise uncorrelated, we have

X4 Xod 4 Xy X1+ Xod- X, 1
Var(Y,) = Cou( p , p )= EZ 2

Since Var(Y,) — 0, then by Chebyshev Theorem, we have Y,, — EY}, is stochastically convergent to zero. m
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1.12.2 Part B. Poisson law of large number

We consider sum of n independent random varibles Xy (k = 1,2,...) with the zero-one distribution,

where
P(Xk:()):lfpk, P(inl):pk.

Since Var(Xg) = pr(1 — pr) < 1/4, Condition (1.35) is satisfied. Then we have the Poisson law of large

numbers following the corollary of the Chebyshev theorem.

Theorem 1.12.3 (Poisson law of large numbers). If the random variables Yy, is the arithmetic mean of the

random variables X}, in the Poisson scheme,

X+ X et X,
y, - XitXat- 4 Xy

then the sequence

1s stochastically convergent to 0.

1.12.3 Part C. Chebyshev law of large numbers

Consider the pairwise uncorrelated X have the same expected value and the same standard deviation.
For every k, we write

EXy=m, Var(Xy)=o>

Ify, = W’ we have

o2
EY,=m, Var(Yy) = T
Thus,

lim Var(Yy) =0.
k—oo

Theorem 1.12.4 Let {Xy} be pairwise uncorrelated with the same expected value and the same standard

X1+ Xo+e 4+ Xp
n

deviation, and let Y, = . Then {Y,} is stochastically convergent to the common expected value

m.

Remark 1.12.5 Bernoulli law is a special case of the Chebyshev law of large numbers.

1.12.4 Part D. Khintchin’s law of large numbers

In all above, the variances are assumed to exist. For the NEXT one, no assumption is made about the

existence of the variances.

Theorem 1.12.6 (Khintchin’s law of large numbers). Let {Xi} be independent random wvariables with the
same distribution and with expected value EX; = m. Then Y, = W is stochastically convergent

to m.

34



Proof. Let ¢(t) be Ch.f. of Xj. By independence of X}, the Ch.f. of ¥}, is

. n
|
We can expand ¢(t) around ¢ = 0 according to Maclaurin,
o(t) = 1+ mit + o(t).
Then

t.]" mit t.]" ,
e =1 e e mat
)| =1+ o] e,
which is the Ch.f. of the one-point distribution such that

PY=m)=1

By Lévy-Cramér theorem, { F},(y)} of distribution function of Y;, converges to the distribution function of Y.
By the equivalence of convergence in distribution and convergence in probability when Y is a constant, we

see that {Y},} is stochastically convergent to m. m

Example 1.12.7 For a Cauchy distribution with Ch.f. ¢(t) = e~ |!l. The expected value does not exist. Thus
the law of large numbers does not apply to {Y,}.

1.12.5 Part E. The strong law of large numbers
Definition

The laws of large numbers considered until now state that under certain conditions the sequence {Z,}

of random variables defined by the formula
Zn = 1 En X (1.36)
n n P k Cn, .

where ¢, = % ZZ=1 FE X}, and the random variables X}, are independent, is stochastically convergent to zero.
Thus for arbitrary ¢ > 0 and n > 0 we can find an N such that, for n > N, we have P(|Z,| > ¢) < n. It does
not follow, however, that for arbitrary € > 0 and 7 > 0 we can find an N such that

P(sup |Z,| >¢€) <n. (1.37)
n>N

We observe that relation (1.37) implies that the probability of occurrence of the inequality |Z,| > ¢ for at
least one value n > N is smaller than 7; thus, instead of the probability of one event (|Z,| > €) we have here

the probability of an alternative of events
(1Zn] > ) U (1Zn41] > €) U (| 2N > €) U -
We show in the following Appendix that relation (1.37) is equivalent to the relation
P(nlirrgc Z,=0)=1. (1.38)

If (1.38) holds, we say that the sequence {Z,,} is convergent to zero almost everywhere or almost surely.
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So far, the laws of large numbers considered in the previous sections are called weak laws of large
numbers since in the conclusion we only arrive at the convergence in probability instead of the
convergence almost surely.

We say that the sequence {X} (k= 1,2,...) of random variables obeys the strong law of large numbers
if there exists a sequence of constants {c,} (n =1,2,...) such that, for the random variables Z,, defined by
formula (1.36), relation (1.37) holds for all € > 0 and n > 0.

Theorem

It is important for the solution of the problem of necessary and sufficient conditions for the validity of
the strong law of large numbers for a sequence of independent random variables. Detailed information on
the present state of investigations in this field can be found in the monograph by Loeve [1] and in the paper
of Chung [1]. The most advanced results have been obtained by Prohorov. We shall present the theorem
of Kolmogorov [2]| giving sufficient conditions for the validity of the strong law of large numbers. The proof
of this theorem is based on a generalization of the Chebyshev inequality which was proved by Kolmogorov
[1]. In the Fisz book, also proved is the Borel-Cantelli lemma (Borel [1], Cantelli [1]), which is used in the
proof of the theorem of Kolmogorov [7], stating that for a sequence of independent, identically distributed
random variables the existence of the expected value is a necessay and sufficient condition for the validity of
the strong law of large numbers.

E. Kolmogorov [7] proved the following theorem concerning the validity of the strong law of large numbers

for identically distributed random variables; it is called the Kolmogorov law of large numbers.

Theorem 1.12.8 Let {Y;} (i = 1,2,...) be a sequence of independent random wvariables with the same

distribution function F(y). Then the relation

(1
nl;n;o (nZYk —c) = O] =1,
k=1
holds for some c if and only if the expected value E(Y) of a random variable Y with the distribution function
F(y) exists; here c = EY.

P

Appendix

We now prove that relations (1.37) and (1.38) are equivalent.
Denote by Ay the event that sup,y |[Zn| > ¢, where € > 0, and by A the product of the events Ay,
that is,

A=(An.
N
We observe that for every N,
AN+1 - AN7
and hence we have
P(A)= lim P(Apn). (1.39)
N—oo

The event Ay, the complement of the event Ay, occurs if and only if, for every n > N, we have the

relation |Z,| < e. Thus we have for every N,

Any1 D An,
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hence

P(A) = P()_Ay) = lim P(Ay). (1.40)
N

Suppose now that relation (1.37) is not satisfied. Then there exist € > 0 and 7 > 0 such that for every N,
P(An) = .
From the last relation and from relation (1.39) we obtain the inequality
P(A) >n >0, (1.41)

from which it follows that relation (1.38) is not satisfied; for if it were satisfied, then for every ¢ > 0 the
probability would be zero that for every N there exists an n > N such that |Z,| > . Hence P(A) = 0, in
contradiction to (1.41).

Suppose, now, that relation (1.38) is not satisfied. Then there exist ¢ > 0 and n > 0 such that the

probability of occurrence of the event Ay is smaller than 1 — 7 for every N, or
P(A) <1—n. (1.42)

It follows from the last inequality that relation (1.37) is not satisfied; for if it were satisfied, then for any
e > 0 and n > 0 there would exist an N such that P(Ay) > 1 — 7, so that from the fact that the sequence
{4,} is nondecreasing and from formula (1.40) we would obtain P(A) > 1 — 7, in contradiction to (1.42).
The equivalence of relations (1.37) and (1.38) is proved.
At the end of this section we give an example of a sequence of random variables which converges to zero

stochastically but does not converge to zero almost everywhere (see also Problem 6.38).
Example 1.12.9 Let us consider the sequence {Z,} (n =1,2,...) of independent random variables, where

; (1.43)

The sequence {Z,} converges to zero stochastically, since from the equality P(|Z,| > ¢) = P(Z, = 1), which
holds for every 0 < € < 1, we obtain, for any € > 0,

1
lim P(|Z,] >¢)= lim — =0.

n— oo n—oo n

However, the considered sequence {Z,} does not satisfy relation (1.38); for, denoting by A, the event (Z, =
1), it follows from (1.43) that

Y P(Ay) = oo

From the independence of the A, and from the Borel-Cantelli lemma it follows that the probability that an
infinite number of the A,, will occur equals one; hence with probability one there will exist a subsequence of

the sequence {Z,} which is not convergent to zero. This obviously contradict relation (1.38).
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1.13 Multi-Dimensional Limit Distribution and The Delte Method

Theorem 1.13.1 Multivariate Central Limit Theorem (MCLT). If Xy,...,X,, are i.i.d. k x 1 random
vectors with E(X) = p and Cov(X,X) = X, then

VX, — p) ~5 Ni(0,3),

where the sample mean

_ 1 <&
X, = - ;X
with
Xi1
X; = : €RF, X e RFF
Xik

If Y,, has a limiting Normal distribution then the delta method allows us to find the limiting distribution

of g(Y,,) where ¢ is any smooth function.

Theorem 1.13.2 (The Delta Method). Suppose that

Y, —

V(Yo —p) d N(0,1),
o

and that g is a differentiable function such that g'(u) # 0. Then

Vi(g(Yn) —g(p) d
e Ve

In other words, Y, ~ N(p, %2) implies that g(Yy,) =~ N(g(n), (g'(ﬂ))Q%z).
Consider what if ¢/(u) = 07 As I guess, when g(z) = 22 then the limit distribution should be
related to x? distribution. For other functions, one may follow the derivation of y? distribution.

There is also a multivariate version of the delta method.

Theorem 1.13.3 (The Multivariate Delta Method). Suppose that Y, = (Y1, ..., Yar) is a sequence of random
vectors such that
Vi(Ya — 1) <5 N(0,2).

Let g : RF — R and let
99
Oy1
Vgly) = |
99
Yk

Let V,, denote Vg(y) evaluated at y = p and assume that the elements of V,, are nonzero. Then

Valg(Ya) = g(n) -5 N(0, V] £V,,).

X1 X2 Xin
Xop )\ Xoo )7\ Xop )
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be i.i.d. random vectors with mean p = (u1,po) ' and variance ¥. Let

n . 1 n
;Xln Xo = ﬁ;X%’

3=

X, =

and define Y, = X1X5. Thus, Y,, = g(X1, X3) where g(s1,s2) = s152. By the central limit theorem,

X, —
val 2P ) 4 N, ).
Xo — po

Now
o9
Vo = % = 7).
s 51

and so
011 012 H2
012 022 M1

~ ~ d
\/ﬁ (X1X2 — ,ulﬂ2) — N(O,ugan + 2#1#20’12 + ,U%O’QQ).

P3011 + 21 12012 + [ 020,

Therefore,
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