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Chapter 1

Characteristic Functions

See Chapter 4 of [1] for reference.

1.1 Properties of Characteristic Functions

Let X be a random variable and F'(x) be its (cumulative) distribution function (CDF).

Definition 1.1.1 The function
o(t) = B[],
is called the characteristic function (Ch.f.) of random variable X or of the CDF F(x).

1.1.1 Case I. Discrete random variable

Let X take on values of z (k=1,2,...) with probability

P(X =x) =pr, with Zpk =1.
k=1

Then the Ch.f. of X is -
¢(t) — E[eitX} _ Zpkeitwk~
k=1
CRHe B # B D

Remark 1.1.2 Since [¢(t)] < 3, |pre’™ | = >, pe = 1 < oo, this is absolutely convergent. At the same

time, based on Weierstrass Criterion, we also have that ¢(t) is uniformly convergent!

Remark 1.1.3 The Ch.f. &(t), as the sum of a uniformly convergent series of continuous functions, is

continuous, for every real value of t.
Example 1.1.4 Let
z = -1, P(X=-1)=0.5,
o = +1, P(X =+1)=0.5.
Then the Ch.f. can be computed as

B(t) = 0.5~ + 0.5¢" = 0.5(cost — isint) 4 0.5(cost + isint) = cost.



1.1.2 Case II. Continuous random variable

Let X be a continuous random variable with density function f(x). Then the Ch.f. is
o0 =B = [ fw)eda.

Remark 1.1.5 Since |¢(t)| < [7 f(z)|e"™|dx = [ f(z)dz = 1 < oo, the integral is absolutely and
uniformly convergent (which means that one can interchange the order of limit and integral, lim;_4, f =

[ limy s, ). Hence ¢(t) is a continuous function for all t.

Example 1.1.6 Consider the random variable X with density

0, z<0
fle)=4 1, 0<z<1
0, =z>1.

Then

it 1 : it

lim $(t) = lim ° = lim S =1,

t—0 t—0 1t t—0 19
where L’Hospital was used. Thus, ¢(t) is continuous as expected.
1.1.3 properties of ch.f.

We can easily show the following properties:
(1) ¢(0) = Ee® = F1 = 1.
(2) Since |p(t)| = |E[e"X]| < E[e"X| = 1, we have
[6(t)] < 1= ¢(0).
(3) Since we compute
p(—t) = E[e "] = E(costX —isintX) = FE(costX) —iE(sintX),
o(t) = E[e"X] = FE(costX +isintX) = E(costX) + iE(sintX),

we have
$(—t) = (1)
Q: Now the question is that every Ch.f. satisfies above conditions, however, the conditions are not
sufficient. That is, not every function ¢(t) satisfying these conditions (1)-(3) is a Ch.f. of some random

variable.

Remark 1.1.7 See Marcinkiewicz in [1]. A function ¢(t), which is NOT identically constant and which, in

a neighborhood of zero, can be represented in
o(t) = 1+ 0(t**),

with a > 0 cannot be a Ch.f.



t4

Example 1.1.8 Functions ¢(t) = e~*, ¢(t) = 2z cannot be Ch.f.

14¢4

Next, we provide a sufficient and necessary condition for a function being Ch.f without detailed proof.

Theorem 1.1.9 (Bochner’s Theorem) Let the function ¢(t) defined for —oo < t < oo satisfy condition
¢(0) = 1. The function ¢(t) is the ch.f. of some distribution function if and only if
1. ¢(t) is continuous.

2. form=1,2,3,..., and every real ty,...,t, and complex ay,...,a,, we have

Z o(t; — tk)aja, > 0,

dk=1

i.e., ¢(t) satisfies the (symmetric) positive-definiteness.
The proof is hard. Thus we only give a sketch of the proof for one easy case.
Proposition 1.1.10 If g on a given Domain is positive-definite, then for every u € Domain,
9(0) =20, g(—u) =7(u), |g(w)| < g(0).

Moreover, if g is continuous at the origin, then g is uniformly continuous on the set of limit points of Domain.
(In this sense, g(t) is identical to a Ch.f. ¢(t) up to a constant.)

Proof. (1) Take {t; = 0}, then
g(0)ara; > 0= g(0) > 0.

(2) Take {t; = 0,t2 = u}, then

{a a}[g(o) g(U)Hm]N)
P g g0) | A | T

g(—u) =7g(u)
This can also be found from the following,
0 U «a
[ a1 ap } AU ] [ ! ] = |oa|* + g(u)aras + g(—u)araz + |az|* > 0.
g(—u) g(0) 0y

This says that g(u)ayds + g(—u)a@ias is real for any complex oy, ay. First, we have
Im(g(—u)aras) = ~Im [g(u)ar ] = Im [g(w)aras| = Im[g(w)aras],

which indicates that Im(g(—u)) = Im[g(u)]. Second, take a3 = i, a9 = 1, then we have g(u)i — g(—u)i is
real, which indicates that Re[g(—u)] = Re [g(u)]. Thus we have

for any w.



(3) The determinant of above matrix is nonnegative,

(4) If g(0) = 0, based on |g(u)| < |g(0)] = 0 = g(u) = 0, which is trivial case. Let g(0) # 0, we can always
let h(u) = g(u)/g(0) to normalize the function, so that h(0) = 1.

(5) Now g is continuous at the origin. We have

The determinant is

det = 1+g(u)g(u)glu—u)+ glu)g(u')g(u —u')
—lg()* = |g(u)]® — lg(u —u')]* > 0.

Then we simplify

IN

lg(u)* + 1g(w)|® 1 —|g(u —u')* + Re[g(u)g(u)g(u — u')],
lg()]* + |g(w)]” - 2Re [g(uw)g(w)] < 1—|g(u—u)|* + Re[g(w)g(u)
l9(u) — g < 1—|g(u— )" — 2Re [g(w)g(u')(1 - Glu —u'))].

N

Since g is continuous at 0, that is, g(u — u') — ¢(0) = 1 as u — v’ — 0, then
lg(u) — g(u))* <1-1-0=0, asu—u —0,
ie., g(u) — g(u") — 0, which is uniformly continuous. m
Remark 1.1.11 g coincides on Domain with a Ch.f. up to a multiplicative constant.

Lemma 1.1.12 (Herglotz Lemma or Discrete Bochner Theorem) A function g on the set Dy =
{...,=2¢,—¢,0,4c,+2¢,...} is positive-definite if and only if it coincides on this set with a ch.f. f(u) =
f:ﬁ;c e dF (z), i.e., f(ck) = f:ﬁ;c ek dF (x), for all integers k.

Proof. Assume that ¢ > 0. For every integer n and every finite z, we have positive-definite g,

DD 9 —h)e)e UM >0,

h=1j=1

1

2mn

Let k = j — h, then the density function

n—1
1 —ikx
pie) = g X (= kgthee 20
n—1

1 |k| —
= 5 > -tk etz
E=—nt ]l — e’
a, Fourier coefficient



where we notice that when &k = n—1 only (j, h) = (n,1), and when k = n—2 there is (j, h) = (n,2),(n—1,1),

and so on. We now take the Fourier inverse transform, that is, multiplying by €?** and then taking the integral

for x from —7 to T,
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ES
~_
Na)
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o=
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mﬁ
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—
oy
ISH
)

~— n r ~—
xg S—— >0,pdf
-1
/e /e
= e*p, (cy)edy = / e*vd P, (cy).
v /w/c " —m/c i/—/
=y CDF

Let n — oo,
/e
s ~f = [ eare),

where P, (cx) = F(z) asn — co. m

Let us go back to the half part of the proof of Bochner’s Theorem: let the function ¢(0) = 1. The
function ¢ on R is a character function of some distribution function if and only if it is continuous and
positive-definite.
Proof. We only prove that ch.f. = positive-definite. Let ¢(¢) be the ch.f. and F(z) be the CDF. Then using
the definition ¢(t) = [, e"dF (x), we have

> oty — ty)aar / YT dF («)
jik B ik

/]R |Zeit1‘”aj\2dF(x) > 0.
J

The opposite direction, ch.f. <= positive-definite + continuous, of the proof is difficult. =

Remark 1.1.13 A function ¢ on R is positive-definite and Lebesque-measurable if and only if it coincides
a.e. with a Ch.f.

Remark 1.1.14 The continuity at at least one point is necessary.

1.2 Characteristic Functions and Moments

1.2.1 relation between Ch.f. and moments

Suppose fth moment of a random variable X, m, = EX* exists, i.e., E|X*| < co. Then

Discrete: Since

S litafme| = 3 Jehp] = BIXY| < o0,
k k

we can differentiate ¢ times of the Ch.f. ¢(¢),
¢O(1) =D i'afppe™s = B X "Y),
k

where we can interchange the order of the summation and the differentiation due to the uniform convergence.



Continuous: Similarly, since for the density f(z), we have
/ |ifxt f ()™ |dx = / |2t f(2)|dz = E|X*| < oo,
R R
thus we obtain
(b(l) (t) — / ilx,ff(l:)eitwdl: — E(?:ZXfeitX).
R
Therefore, we conclude from above that
o0 0) = {'EX' =i'my,

()
my = (bi[(o). (1.1)

Theorem 1.2.1 If the £th moment my of a random variable exists, it is expressed by equation (1.1), where
¢ (0) is the (th derivative of the Ch.f. ¢(t) of this random variable at t = 0.

Example 1.2.2 Let X be a Poisson distribution with

Ak —
The ch.f. is
> . )\Ic e (eit)\)k
_ itk A _ _—A
o) = D Mt =)
k=0 k=0

= exp(—\)exp(e’t) = exp[A(e —1)].

One can compute the derivative,

¢'(t) = Xiexp(it)exp[A(e" —1)],
mp = qb’(.O) = & = A
1 1
Similarly,
¢"(t) = —Xexp(it)exp[Me’ — 1)) + (i exp(it))* exp[A(e” — 1)]
u Y \2
M2 = ¢>i20) = A_l/\ =N+

Thus, the variance is
oZ=my—(m)* =N+ A==\

Example 1.2.3 For normal distribution with density

we have the Ch.f.

Since
t2 (0
Oty = —te =2 :>m1:¢(, ) =0.
i
2 2 ”(0) -1
") = e e T om= 2O Ty
¢ () e 2 ez ma2 72 -1
Moreover,



Remark 1.2.4 An example of a random variable whose expectation does not ezist and whose Ch.f. is dif-

ferentiable at t = 0 is given in Problem 4.9 of Fisz book.

Remark 1.2.5 If the Ch.f. ¢(t) has a finite derivative of an even order 2k at t = 0, then the moment of
order 2k of the corresponding random variable exists (Problem 4.8 of Fisz book). In this case, all the moments

of order smaller than 2k exist.

1.2.2 Linear transformation

Translation.
Y =X+0b.
Then the Ch.f. is
by () = B(elY) = B(etXF0) = ¢itbgy (1),
Scalar Multiplication.
Y =aX.
Then the Ch.f. is
by (t) = BE(e™) = BE(e"Y) = ¢x(at).

In particular, if a = —1,

¢y (1) = ox(~t) = ox (b).
Linear transformation.

Y = aX +0.
oy (t) = eox(at).

In particular, let m; be the mean and o be the standard deviation,

Y,:A)(—Trll7

then

1.3 Semi-invariants
Sometimes it is convenient to deal with a set of parameters other than the set of moments. Consider

P(t) =log ¢(t),

where ¢(t) is the Ch.f. Let us expand ¢(¢) in a neighborhood of ¢ = 0,

o(t) = 1+Z%(it)s =11 2 (1.2)
s=1 :
Then , , .
P(t) =log p(t) =log(l +2) = 2 — % n % =y %(it)s. (1.3)
s=1 "



Definition 1.3.1 The coefficients ks in above (1.3) are called semi-invariants.

By combining (1.2) and (1.3), one can further observe that

(t)

s!

143" " (it)* = exp ((1) = exp

2 3
Oons,sloons_s looss
- ey S 3 S +![28!(t) ‘e 14
By comparing (1.4), we have
K1 = T,
Ko = Mg — m% = 0'2,
Ky = m3—3mims + Qm?,
Ky = My — 3m§ —4dmims + 12m%m2 — 6m‘11.
Also,
my = Ki,
mo = K2 —+ KZ%,
mz = Kz+ 3Kiko + K:{),
my = Kg-+ 3/1% + 4K1Kk3 + 6&%&2 + /ﬁ‘ll.
Example 1.3.2 Compute the semi-invariants of the Poisson distribution.
o(t) = exp[A(e” —1)],
i -~ (it)" o (it)*
W(t) = logqb(t):)\(ef—l):A(Z oL =AY
k=0 k=1

Thus,

1.4 The characteristic function of the sum of independent random
variables
Let X and Y be two independent random variables. Find the Ch.f. of
Z=X+Y.
Let ¢, ¢1, @2 denote the respective Ch.f. of Z, X, Y,
o) = EeitZ — peit(X+Y) independence p ip X p ity _ b1 (H)da(t).

Theorem 1.4.1 The Ch.f. of the sum of an arbitrary finite number of independent random variables equals
the product of their Ch.f., i.e.,

Z=X1+ --+X, Xi,...,X, are independent,



then
¢z (t) = P1(t)a(t) - -~ P (t).

Example 1.4.2 Let Xy ~Poisson(A1) and Xy ~Poisson(Az2),

AT A
P(Xlzr):rillei)\l’ P(X2:r):??ei>\2’ (T:07172a"')'

Consider the random variable Z = X1 — Xo,

X2 . (]52(t) = exp[)\g(eit - 1)]
Using scalar property, the Ch.f. of — X5 is
¢2(—t) = exp[)\g(efit — 1)]

Then
d(t) = P1(t)P2(—t) = exp[Are” + Aage ™" — Ay — o).

Ezxpanding into power series,

o(t) = exp[Ai(1+it+ @ + )+ A1 —it+ (i;)z — )= A= A
¥(t) = logo(t) = (A1 — )\2)% + (A1 + A2) (2;)2 + (M —A2) (l;')g 4.

we have that all semi-invariants of odd order of Z equal A1 — Ao and all semi-invariants of even order of Z

equal A1 + Xo. In particular, the mean and variance of Z are
mlzfﬁ:)\l—)\% 0'2:/€2:)\1+)\2.

Remark 1.4.3 The converse of Theorem 1.4.1 is not true. That is, the Ch.f. of the sum of dependent

random variables may equal the product the of their Ch.f.s.
Example 1.4.4 The joint distribution of the random variable (X,Y) is given by the density:

1 +azy(x? —y?)], for x| <1,|yl <1

1
4
0, else.

f('ray):{

(1) X,Y are dependent.

The marginal distributions in || <1 and |y| <1 are

+1

1 1 . 1 1
fx(x) = ) f(z,y)dy = Z(Z/ + 51733/2 - 19394) ;:1_1 =5
+1
1 1 1 1
fr(y) = . fz,y)dz = 1(95 + Zw‘ly - 593293) 2, = 3

Since

Fles) # Fx () v () = 1

10



thus X and'Y are NOT independent.
(2) Ch.f. of X and Y.

1 it 11 it i .
o=} [ a1 et

Similarly,

(8) The density of Z = X +Y. We compute by the following formula,

fz(z) = / flz,z — x)dx,
where the variables

-1 < <1

)

-1 < y=z—z<1lsz-1<z<z+1.
Then

ifz—1 < —-1,z<0=-1<z<z+1.

ifz—1 > —-1,z>0=2z—-1<zx<1.

The density is given by if —2 < z <0,

z+1 z+1
fz(2) / f(a:,z—:v)dx:/ i[l—i—x(z—x) (2% — (2 — 2)?)]dx

-1 -1

z+1 z+1
1
/ 1[1 + (22 — 2%) (222 — 2°)]dz = 1 / [1+ 22227 — 22° — 222 + 222%]dx
—1 -1

1 1 1
I (m 42322 — §m223 - 2x4z> [

1 1 1 1 1
= 4((z+1)+(2+1)322—2(z+1)223—2(z+1)4z—[—1—22—2z3—22]>
= 1(z—l—l—i—é—i— 32 —i—3,z?’—i—z2—1 5—24—123

-
4 ~~ ? 2 ~~ 2
L s 04 a3 o2 1 o 15 1
—=2° 22" —32"=22" — —z4+ 1422+ -2° 4+ =2)
2 N~ 2 2 2
1

11



If 0 < z <2, then

fz(2)

I
—
| —
AR
=
&
IS
|
K
N—
QU
=

1
1
= / 1[1 + 32222 — 2232 — 22%|dx
z—1

1 1
- §$42 - 2x223) [—

1 1 1 1
+ 525 —22% + 3_23)—222 +-z+ §z5 2+ 223)
~— <~ =
1
= 1(2 - z)
Thus, the density is computed by
1(2+2), -2<2<0,
fz(z2) =9 1(2-2), 0<=z<2,
0, |z] > 2.

oz(t) =

Thus,

however, X and Y are dependent.

1 [2e* , ze'® 1 [? .
- . _ _ 1 Zd
+4< it =0T Ty Z—°+z’t/ ¢
1 2 2 —2it 2 —2it
L2 2 T BT Lo,
4 \ it it it t2
1 [/2e%t 2 202 1 00
+- - - - 5P
4 it it it t
1/1 9 1, 5
4(t2(1 2t) 152(62151))
L(2 e 2t Q21 = i(2 — 2cos 2t)
4t2 4¢2
sin“t _ sint 2
2\t

12



1.5 Determination of the distribution function by the character

function

1.5.1 Lévy Theorem

We have known that

distribution function = character function

<  ?Yes.

Lévy Theorem states that the converse is also true. From the Ch.f., we can uniquely determine the distribution

function.

Theorem 1.5.1 The single-valued function F(x) is a distribution function if and only if it is
(1) nondecreasing,
(2) continuous at least from the left,
(8) satisfies
F(—00) = 0, F(+00) = 1.

From this result it follows immediately that the values of the distribution function at the points of

continuity determine this function everywhere. The CDF is almost everywhere continuous.
Proposition 1.5.2 The set of points of discontinuity is at most countable.

Proof. Denote by H,, set of points at which the distribution function F(z) has a jump not smaller than 1/n.
Then we have
H=HUHyU---

For every n the set H, is finite; hence the set H is at most countable. m

Theorem 1.5.3 (Lévy Theorem) Let F(x) and ¢(t) be CDF and Ch.f. of the random variable X. If a + h
and a — h (h > 0) are continuity points of the CDF F(x), then

F(a+h) — F(a—h) = lim 1/Tsin(ht)

—ita
B e UL (1.5)

Before proving the theorem, we first see the application of the theorem. Since a and h are arbitrary,
equation (1.5) gives
F(xg) — F(x1) = P(r; < X < x9),

for arbitrary continuity points z; and zo. Let x = x5 be a given continuity point and let 1 — —oo. Hence
the sequence of differences

P - Fley = fim - [ =5

1 T sin( =51t . a4
/ ST it gy,

is determined by the Ch.f. and is convergent to F(z). Thus, the CDF F(x) is determined at every continuity

point. Hence by Proposition 1.5.2, it is determined almost everywhere.

13



Proof. Only consider X of continuous type with density function f(x). Denote

T .
J= l/ SIn(ht) —ita g4

T J_T t

By definition of the Ch.f.,

3|

T %)
/ bm ht _”“/ e f(x)dadt

/ X [ / ~ sin ht) eit@=a) f(x)dx} dt.

dm:/m
n [ s

eit(m_“)f(x)’ dx} dt < ﬁ2T < 00.
T

3|

By Fubini’s Theorem, since
/ > |sin(ht) sin(h
—0o0

. eit(mfa)f(x)

\ fla

IN

sin(ht)
t

1 T [e's)
% /—T |:/—oo
Then we can interchange the order of integration,
1 (= [ (7 sin(ht) |
J = 7/ / Sm(t)e”(I“)f(:r)dt] dx

T J -0 =T

1 T sin(ht) e inl(z —
= / / cos[(x — a)t] +isin[(z — a)t] p f(x)dt| dx

e _T:tgn_/ even odd
_ % /_ O:O | /0 ' Siniht) {cos|(x — a)t]} f(x)dt] da

By triangular formula, sin A cos B = [sin(A + B) + sin(A — B)] where A = ht, B = xt — at, we have

<1
b=/
e T

_ / gl 1) f(@)da.

— 00

f(z)dx

/OT {sin((ﬂf SR CRLE 00 } at

=g(z,T)

Since (1) the integral fOT SILZ 4y is bounded for all T,

(2) hmT—>DO fOT sizw €T = gv

then (1) |g(z,T')| is bounded for all T', assuming that |g(z,T)| < Cy,
(2) [7 lg(@, T) f(z)| dx < Cy [72 f(z)dz = Cy,

which mean that J = [ fooo g(xz,T) f(x)dx is uniformly convergent with respect to T. Hence we can interchange

limr_,o and [, to obtain

oo o

lim J = lim g(LT)f(x)dx:/ lim g(z,T)f(z)dz.

T— 00 T—oo J_ oo I'—00

14



Finally we need to compute limp_, o, g(z,T),

1 (T sin((z —a+ h)t 1 (T sin((z—a—h)t
lim g(z,T) = lim 7/ sin((z —a+ h) )dt— lim 7/ sin((z — a ))dt.
T—o0 T—oo T Jo t T—oo T Jy t

Notice that

1
2 ifa>0
1 (7 sin(at 1 (7 sin(at > ’
fm L[S0 oy L[St 0, ifa=0,
T—oo T Jq t T—oo T Jo at
—%, if a <0,
where the convergence is uniform with respect to a if || = |x —a £ h| > § > 0. (Here is the proof for
the uniform convergence using Dirichlet discriminant. (1) ‘fOT sin(at)dt‘ =|L(—cosal +1)| < %‘ < 2 for

1 o . 1 7T sin(at)
lof > 6. (2) § — 0 uniformly w.rt. a. Thus, limp_o 7 o %

|a] > ¢ > 0.) Hence,

dt is uniformly convergent w.r.t. « for

(-3)— (%) =0, ifz>a—h,
0—(-1)=1, ife=a-—h,
Tli_r)r;og(x,T): s—(—3) =1, ifr—h<z<a+h,
$-0=41, if z=a+h,
i-1=0, if z > a+ h.
Then
Jim g = /_ Jim g, ) (x)da
at+h
:/ f(z)dx = F(a+ h) — F(a—h).
a—h
[

Remark 1.5.4 For discrete type random wvariables, the proof is similar. It’s only necessary to replace

the integrals by series.

1.5.2 Simplification in Specific Cases

Proposition 1.5.5 Moreover, if the Ch.f. ¢(t) is absolutely integrable over (—oo,0), i.e., [~ |p(t)|dt <

00, then the corresponding density function f(x) can be determined by ¢(t).

Proof. Since ¢(t) is absolutely integrable, the improper integral (1.5) exists,

1 T
lim f/
T—oo T T

In (1.5) dividing both sides by 2h,

oo

e—itd¢(t)‘ dt < %/ |p(t)] dt < 0. (1.6)

— 00

sin(ht)
t

e~ (t)dt.

F(z+h)— F(x—h) _ i/oo sin(ht)
2h 2m ht

—0o0

Since RHS is uniformly convergent w.r.t. h (due to Weierstrass comparison discriminant and (1.6)), and also

%e’imd)(t) is continuous w.r.t. ¢t and h (due to the continuity of the Ch.f. ¢(t)), then we can interchange
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. o0
limy, o and [,

. Flx+h)—F@—h) 1 [*  sin(ht) ,,
po 2h - %/_00;1136 e ¢ oWt
1 [~
= —_— eiltx(b(t)dt,
2 J_ o

where the RHS is well-defined (so that LHS is well-defined and F is differentiable). Thus,

F@) =10 =5 [ T gy, (L.7)

:% N

where the pdf f(z) is the Fourier inverse transform of the Ch.f. ¢(¢). From the absolute and uniform
convergence of the RHS, it follows that F’(z) exists. Moreover, since e ~**¢(t) is continuous w.r.t. = and ¢,
and f(z) = 5= [T e "®@(t)dt is uniformly convergent w.r.t. z, then f(z) is a continuous function. m

Therefore, equation (1.5) allows us to determine the density f(z) from the Ch.f. ¢(¢) under the assump-
tion that ¢(t) is absolutely integrable.

Example 1.5.6 (continuous random variable) The Ch.f. of random variable X is given by
o(t) ="/,

Find the density function of X.
Solution. Notice that ¢(t) is absolutely integrable, so that

1 e it 2
flay = — e "TeT T dt
21 J_
1 [ _Gi? o)
= — e e
21 J_ o

1 =2 1 X (tin)? 1 z2
—e 2 —— e 2 dt 2
V2T V2T J oo V2w

This is the density of the standard normal distribution.

Example 1.5.7 (discrete random variable) If X is of discrete type and can take on only integer values, then
its probability mass function (pmf) can be easily obtained from the Ch.f.

For every integer k, let

where py, > 0 for all k. Then we have

o0
o) = > pwe™,
k'=—o0

which is the Fourier series. Multiplying by e~ ***,

o

eiikt(ﬁ(t) _ Z pk/efi(kfk’)t+pk'
k'=—o00

K £k

Integrating ffﬂ dt, using the fact for k' # k, we have

/7r e tk=K) gt — 0.

16



Thus,

ekt (t)dt

—T

pk:%

which can be regarded as the Fourier coefficient.

Example 1.5.8 Moreover, if Ch.f. ¢(t) is not absolutely integrable but is a periodic function, then the
corresponding random variable is discrete. If the period of ¢(t) is 2w, then the random variable takes on only

integer values (spacing with distance 1). In general, if the period of ¢(t) is w, then the random variable has

a lattice distribution spacing with distance 27 /w.

1.5.3 Ch.f. in a Finite Inverval

Gnedenko proved that the values of the Ch.f. in a finite interval do not uniquely determine the distri-

bution function. (This means that the distribution function cannto be uniquely determined by the values of

the Ch.f. in any finite interval.)
(1) Let us find the density function of X, whose Ch.f. is

1- ‘t|7
0,

for |t| <1,
for |¢t| > 1.

$1(t) = {

Notice that ¢;(t) is absolutely integrable over (—oo, 00). Thus,

[te~itrdt =

1 oo i+ 1 0
_ —1x t .
f@) =52 [ o= g [
First, one can compute [e~"®dt = e_:: and
o L (gemite e~ dt) = —-L (te " + 67 en
P e ) = ()
1 efit:c tefit:r 1 Cite
fla) = Qﬂ(_mjiq|&_lyﬁef|&4)
1 e—ztr te—’Lt:E 1 el
o It 0+ ——lizo — 2¢ li=0
B 1 e—im ei:E el 1 1 i N e—iw 1
o o \—iz  —iz iz a2 2 ix
1 ) ) 1 —cosx
— = (1 —e® loe @)= "%
2mx? ( et ¢ ) Tx?
(2) Let us consider Y of disrete type with pmf by
1
PY = 0)==
( )=
2
PY = (2k—1Dm)=—" (k=0,+1,42, -
¥ = k=1 = G )
The Ch.f. is
1 > 2 _
¢ - = it(2k—1)m
¢1( ) 2 + kgoo (2k _ 1)271'2

cos [(2k — 1)mt] + isin [(2k — 1)mt]

) 1 )
1+ ¢t)e dt + — 1 —t)e "2 d¢.
e+ 5o [ -1

oo
=Y

4
72
k=

(2k — 1)

s [(2k — 1)7t]
(2k — 1)2

17



#1(t)

Figure 1.1: Comparison of Ch.f.s ¢;(t) and ¢2(t). Notice that ¢1(t) = ¢a(t) for t € (—1,1). However,
@1(t) # ¢2(t) for all t € (—o0, 00).

We shall show that for [¢t] < 1, we have
$1(t) = da(1).

Expanding ¢ (t) = |¢| in the interval for |[t| < 1 in a Fourier series, we have

o0 o0
0 . agp
> + E a, cosnnt + b, sinnnt = > + E Q. COs N,

n=1 n=1

b(t) =

where we notice that b, = 0 for all n since 1(¢) is even. The other coefficients are

1
a0 /tdt:f
2 0

1 . 1
2t sinnt 2
an = 2/ t cosnrtdt = {W] ho— — / sin nwtdt
0 nm nm Jo
B 2 [—cosnmt] ;  2(cosnm—1)
B nm nm =0 n2m?
Then we see that
For even n, an = 0.
Foroddn =2k —1, ast_1 = —W

Thus,

14 [(2k — 1)7t
v =l =5~ 75 > i,
k=1

For |t| <1, we find that
P1(t) = ¢2(t),

~—— ~——
continuous discrete

where ¢2(t) is not absolutely integrable and is a periodic function whereas ¢ (¢) is absolutely integrable and
¢1(t) =0 for |t| > 1.
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1.6 Character Function of Multi-Dimensional Random Variables

Let (X,Y) be a two-dimensional random variables and let F'(X,Y") be its distribution function. Let t, s

be two real numbers. The Ch.f. is
o(t,s) = EettX+sY),

Example 1.6.1 There are 4 points (+1,+1)(+1,-1)(—1,+1)(—1,—1). The probability is

1 1

P(X = +1,Y:+1):§, P(X:+1,y:_1):§7

1 1

PX = —1,}/:-1—1):67 P<X:_1’Y:_1):6'

The Ch.f. is
bt.s) = B(IXH)) = L ictrs) n i) n Lites) n 1t
’ 3 3 6 6
1 . . . 1 . ) )
— gezt (ezs 4 efzs) 4 667” (ezs 4 677,5)

1. 1 .
= —¢"2coss+ —e "2cos s
3 6

COS S
—(

2 , A
= g oos s(2e" +e7) = 3cost +isint).

Proposition 1.6.2 (1) ¢(0,0) = Eel0X+0Y) — 1,
(3) 9(1, )] = | B0X+9)| < B[eitx )| 2 1
(3) ¢(7t7 73) = Eeii(tXJrSY) = ¢(t7 5)'

(4) If all the moments of order k of a multi-dimensional random variable exist, then the derivatives

0 o(t, s
W forl=0,1,... k,
exist and can be obtained from the formula
0%(t, 5) = o Eel(tX+sY)
oF-lost  —  attlos "

_ ikp [kalylei(tX+sY)} _
The moment my_;; is

1 [6k¢>(t, )

k—Iv/1
mr—iy = E[X"'Y!] = = 816’“1(951] |t=0,5=0-

(5) By putting t = 0, we have the Ch.f. of Y,

$(0,5) = B(e"™Y) = ¢y (s).
Similarly,

o(t,0) = E(e"™) = ¢x(t).

Example 1.6.3 The moment can be computed by

S 1 [8(?(1&,5)} o eco, oL = 1 [aqb(t, s)} 0 0o
7 ot s 7 0s =s=
S 1{6%(7&,5)}'_ - :1[6¢(t,s)]|_ -
20 2| oz | 1t=0.s=05 =52 | " ots t=0,5=05
S 1 [aw(t,s)} o .eco.
72 Os2 ’
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Theorem 1.6.4 Let ¢(t,s) be the Ch.f. of the random variable (X,Y"). If the rectangle (a —h < X < a+ h,
b—g <Y <b+g) is a continuity rectangle (see Definition 2.5.6 in Fiesz), then

Pla—h < X<a+hb—g<Y<b+yg)

T 4T
- hmA—/j / wlm”m()*%ﬂ%ﬁﬂtgﬁ@ (1.8)

S

Theorem 1.6.5 Let F(x,y), Fx(x), Fy (y) be distribution functions of (X,Y), X,Y, respectively. Let ¢(t,s),
x(t), &y (s) be Ch.f.s of (X,Y), XY, respectively. The random variables X andY are then independent if
and only if

o(t,s) = ox(t)oy (s),
holds for all t and s.

Proof. = X and Y are independent, then
(t,5) = B/ XTY) — B X B = ¢ (t)gy (s)-
< Now ¢(t, s) = ¢x(t)py (s), then by definition,

Pla—h < X<a+hbfg<Y<b+m

+T +T ht )
= lim = / / sin( Sm( 95) (itat+9) g1, 5)dtds

) 1 T sin(ht) Ciat . 1 (T sin(gs) .
= i <W/T — ¢ Tox(tdt )] fim ;/T — ¢ or(eds

= Pla—h<X<a+hPb-g<Y <b+y),

which is valid for arbitrary continuity rectangles. m

The following Cramér-Wold theorem is useful in the theory of random vectors.

Theorem 1.6.6 The CDF F(x,y) of a two-dimensional random variable (X,Y") is uniquely determined by

the class of all one-dimensional distribution functions of tX + sY , where t,s run over all possible real values.
Proof. Suppose we are given for all real ¢ and s, the Ch.f. ¢z (v) of Z =tX + sY,
¢Z(U) _ Eeiv(tX-ﬁ-sY).
Let v = 1, we obtain Ee!X+sY) which is the Ch.f. ¢(t,s) of the distribution function F(z,y). Since ¢(t, s)
uniquely determines F'(z,y), then the proof is complete. m
CESeaE )
1.7 Probability-Generating Functions

When investigating random variables which take on only the integers k = 0,1,2,--- | it is simpler to deal

with probability generating functions than with Ch.f.s. Let X be a random variable and let
pk?:P(X:k) (k:051,27"')7

where ), pr = 1.
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Definition 1.7.1 The function defined by the formula
U(s) = pps" = Es¥, (1.9)
k

where —1 < s <1 is called the probability generating funciton of X.

Remark 1.7.2 Since ¢(1) =Y, pr = 1 < 00, ¥(s) is absolutely and uniformly convergent in |s| < 1. Thus

(s) is continuous.

Remark 1.7.3 It determines the pmf uniquely since 1)(s) can be represented in a unique way as a power
series of the form (1.9).

Example 1.7.4 X has a binomial distribution, that is,
pe=Cp*(L=p)" " (k=0,1,...,n)
Thus,

G(s) =Y CrpF(1—p)" " = (ps+q)"
k=0

Example 1.7.5 X has a Poisson distribution, that is,

_ N

pe=e" 0 (k=0,1,2,...).

Thus,
\F
Y(s) = E e Mgk = et = g7 A1m9),

Proposition 1.7.6 The moments of X can be determined by the derivatives at the point 1 of the generating

Sfunction.

Example 1.7.7 Let ¢(s) be the probability generating function. Then
W(s) = D kprs™Th
k
W(s) = ) k(k—1)ppstT2
k
Thus,
V(1) = ) kpp = EX,
k
Y1) = > k(k—1)pr = EX*> - EX.
k

Then
EX? = 4"(1) + /(1)
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