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Chapter 1

Review of Probability Theory

Randomness should be taken into account in data, model, equations (PDEs), etc. This can be realized
by allowing the model to be probabilistic in nature, which is referred to as a probability model. The reference
book is [2].

1.1 Probability Space

https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics
_and_Stochastic_Processes_(Siegrist)/02%3A_Probability_Spaces/2.03%3A_Probability_Measures

https://www.stat.berkeley.edu/∼wfithian/courses/stat210a/measure-theory-basics.html. Also one can
see in kejianbeifen_latex for Stochastic_Chap5_C2.pdf

A probability theory is made up of three part, (Ω,F , P ). Suppose that we have a random experiment
with sample space (Ω,F), so that Ω is the set of outcomes of the experiment and F) is the collection of
events. When we run the experiment, a given event A either occurs or does not occur, depending on whether
the outcome of the experiment is in A or not. Intuitively, the probability of an event is a measure of how
likely the event is to occur when we run the experiment. Mathematically, probability is a function on the
collection of events that satisfies certain axioms.

1.1.1 Sample space

Ω is a sample space.

Example 1.1.1 Ω = {H(ead), T (ail)} for a coin flipping.

Example 1.1.2 Ω = {(H,H), (H,T ), (T,H), (T, T )} for flipping two coins.

Example 1.1.3 Ω = {1, 2, . . . , 6} for rolling of a die.

Example 1.1.4 Ω =


(1, 1) · · · (1, 6)
...

...
(6, 1) · · · (6, 6)

 for rolling of two dice.
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1.1.2 Events

Subset E of Ω is known as an event.

Example 1.1.5 E = {H}

Example 1.1.6 E = {2, 4, 6}. Even number appears.

• union of events. Given E1 = {1, 3, 5} and E2 = {1, 2, 3}, then E1 ∪ E2 = {1, 2, 3, 5}.
• intersection of events. Given above, then E1E2 := E1 ∩ E2 = {1, 3}.
• complement. Ec1 = {2, 4, 6}.
• mutually exclusive. E,F,G are called mutually exclusive if EF = ∅, EG = ∅, FG = ∅. For example,

E = {1, 2}, F = {3, 4}, G = {5, 6} are mutually exclusive.

Definition 1.1.7 F is a family of subsets of Ω satisfying:
(1) Ω ∈ F .
(2) E ∈ F ⇒ Ec ∈ F .
(3) Ej ∈ F ⇒

∞⋃
j=1

Ej ∈ F .

Then F is a σ-albegra of Ω. Ω,F is called a measurable space.

1.1.3 Probability space

Definition 1.1.8 P is a function defined on satisfying:
(1) non-negative. 0 ≤ P (E) ≤ 1,∀E ∈ F .
(2) completeness. P (Ω) = 1.

(3) countable additivity. For any countable mutually exclusive sets in F , P
( ∞⋃
j=1

Ej
)

=
∞∑
j=1

P (Ej).

Then P (E) is the probability (or probability measure or probability distribution) of E ∈ F . That is, P :

F → [0, 1], E 7→ P (E). The three axioms are known as the Kolmogorov axioms, in honor of Andrei
Kolmogorov who was the first to formalize probability theory in an axiomatic way. Moreover, (Ω,F , P ) is the
triple elements of a probability space.

Example 1.1.9 P ({H}) = P ({T}) = 1
2 .

Example 1.1.10 P ({1}) = · · · = P ({6}) = 1
6 .

P ({1, 3, 5}) = P ({1}) + P ({3}) + P ({5}) = 1
2 .

Example 1.1.11 P (E1∪E2∪E3) = P (E1)+P (E2)+P (E3)−P (E1E2)−P (E1E3)−P (E2E3)+P (E1E2E3).

1.1.4 The Distribution of a Random Variable

Suppose now that X is a random variable for the experiment, taking values in a set T . Recall that
mathematically, X is a function from Ω into T, and {X ∈ B} denotes the event {ω ∈ Ω : X(ω) ∈ B} for
B ⊂ T . Intuitively, X is a variable of interest for the experiment, and every meaningful statement about X
defines an event.

Definition 1.1.12 The function B 7→ P (X ∈ B) for B ⊂ T defines a probability measure on T .
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Figure 1.1: Here S should be changed to Ω. A set B ∈ T corresponds to the event {X ∈ B} = {ω ∈ Ω :

X(ω) ∈ B} ∈ F .

The probability measure above is called the probability distribution ofX, so we have all of the ingredients
for a new probability space.

Definition 1.1.13 A random variable X with values in T defines a new probability space:
1. T is the set of outcomes.
2. Subsets of T are the events.
3. The probability distribution of X is the probability measure on T .

This probability space corresponds to the new random experiment in which the outcome is X. Moreover,
recall that the outcome of the experiment itself can be thought of as a random variable. Specifically, if we
let T = Ω we let X be the identity function on Ω, so that X(ω) = ω for ω ∈ Ω. Then X is a random variable
with values in Ω and P (X ∈ A) = P (A) for each event A. Thus, every probability measure can be thought
of as the distribution of a random variable.

1.2 Constructions of Probability Meaures

1.2.1 Measures

How can we construct probability measures? As noted briefly above, there are other measures of the size
of sets; in many cases, these can be converted into probability measures. First, a positive measure µ on
the sample space (Ω,F) is a real-valued function defined on Ω that satisfies axioms (1) and (3) in Definition
1.1.8, and then (Ω,F , µ) is a measure space. In general, µ(A) is allowed to be infinite. However, if µ(Ω) is
positive and finite (so that µ is a finite positive measure), then µ can easily be re-scaled into a probability
measure.

Definition 1.2.1 If µ is a positive measure on Ω with 0 < µ(Ω) < ∞ then P defined below is a probability
measure,

P (A) =
µ(A)

µ(Ω)
, A ∈ F .

In this context, µ(Ω) is called the normalizing constant. In the next two subsections, we consider some
very important special cases.

1.2.2 Discrete Distributions

In this discussion, we assume that the sample space (Ω,F) is discrete. Recall that this means that the
set of outcomes Ω is countable and that F = P(Ω) is the collection of all subsets of Ω, so that every subset
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is an event. The standard uniform measure on a discrete space is counting measure #, so that #(A) is the
number of elements in A for A ⊂ Ω. When Ω is finite, the probability measure corresponding to counting
measure as constructed in above is particularly important in combinatorial and sampling experiments.

Definition 1.2.2 Suppose that Ω is a finite, nonempty set. The discrete uniform distribution on Ω is given
by

P (A) =
#(A)

#(Ω)
, A ⊂ Ω.

The underlying model is refereed to as the classical probability model, because historically the very first
problems in probability (involving coins and dice) fit this model.

In the general discrete case, if P is a probability measure on Ω, then since Ω is countable, it follows from
countable additivity that P is completely determined by its values on the singleton events. Specifically, if we
define f(x) = P ({x}) for x ∈ Ω, then P (A) =

∑
x∈A f(x) for every A ⊂ Ω. By axiom (1), f(x) ≥ 0 for x ∈ Ω

and by axiom (2),
∑
x∈Ω f(x) = 1. Conversely, we can give a general construction for defining a probability

measure on a discrete space.

Definition 1.2.3 Suppose that g : S → [0,∞). Then µ defined by µ(A) =
∑
x∈A g(x) for A ⊂ Ω is a positive

measure on Ω. If 0 < µ(Ω) <∞ then P defined as follows is a probability measure on Ω,

P (A) =
µ(A)

µ(Ω)
=

∑
x∈A g(x)∑
x∈Ω g(x)

=
∑
x∈A

g(x)∑
x∈Ω g(x)

=
∑
x∈A

f(x), A ⊂ Ω.

In the context of our previous remarks, f(x) = g(x)/µ(Ω) = g(x)/
∑
y∈Ω g(y) for x ∈ Ω. Distributions of this

type are said to be discrete. Discrete distributions will be reviewed in detail in the following sections.

Proposition 1.2.4 If Ω is finite and g is a constant function, then the probability measure P associated with
g is the discrete uniform distribution on Ω.

1.2.3 Continuous Distributions

The probability distributions that we will construct next are continuous distributions on Rn for n ∈ N+

and require some calculus.

Definition 1.2.5 For n ∈ N+, the standard measure λn on Rn is given by

λn(A) =

∫
A

1dx, A ⊂ Rn.

In particular, λ1(A) is the length of A ⊆ R1, λ2(A) is the area of A ⊆ R2, and λ3(A) is the volume of
A ⊆ R3.

When n > 3, λn(A) is sometimes called the n-dimensional volume of A ⊂ Rn. The probability measure
associated with λn on a set with positive, finite n-dimensional volume is particularly important.

Definition 1.2.6 Suppose that Ω ⊂ Rn with 0 < λn(Ω) <∞. The continuous uniform distribution on Ω is
defined by

P (A) =
λn(A)

λn(Ω)
, A ⊂ Ω.
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Note that the continuous uniform distribution is analogous to the discrete uniform distribution, but with
Lebesgue measure λn replacing counting measure #. We can generalize this construction to produce many
other distributions.

Definition 1.2.7 Suppose again that Ω ⊂ Rn and that g : Ω→ [0,∞). Then µ defined by µ(A) =
∫
A
g(x)dx

for A ⊂ Ω is a positive measure on Ω. If 0 < µ(Ω) < ∞, then P defined as follows is a probability measure
on Ω.

P (A) =
µ(A)

µ(Ω)
=

∫
A
g(x)dx∫

Ω
g(x)dx

, A ∈ F .

Distributions of this type are said to be continuous. Continuous distributions will also be reviewed in
detail in the following sections. Note that the continuous distribution above is analogous to the discrete
distribution, but with integrals replacing sums. The general theory of integration allows us to unify these
two special cases, and many others besides.

1.3 Conditional Probability

Definition 1.3.1

P (E|F ) =
P (EF )

P (F )
.

Example 1.3.2 Choose one number from 1-10. The number is at least five, then what is the cond. probability
that it is ten?
Sol: Let E = {10} and F = {≥ 5}. Then

P (E|F ) =
P (EF )

P (F )
=

1
10
6
10

=
1

6
.

Example 1.3.3 An urn contains 7 black balls and 5 white balls. Draw two balls without replacement. Each
ball is equally drawn. What is probability that both drawn balls are black?
Sol: F={first ball is black}, E={2nd ball is black}. Since P (E|F ) = 6

11 , P (F ) = 7
12 , then

P (EF ) = P (F )P (E|F ) =
7 ∗ 6

12 ∗ 11
.

Another solution is given directly by

P (both black) =
C2

7

C2
12

=
7 ∗ 6

12 ∗ 11
.

1.4 Independent events

E,F areindependent ⇔ P (EF ) = P (E)P (F )

⇔ P (E|F ) = P (E), P (F ) 6= 0

⇔ P (F |E) = P (F ), P (E) 6= 0
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Example 1.4.1 Let a ball be drawn from an urn containing 4 balls {1,2,3,4}. Let E = {1, 2}, F = {1, 3},
G = {1, 4}. Then

P (EF ) = P (E)P (F ) =
1

4
,

P (EG) = P (E)P (G) =
1

4
,

P (FG) = P (F )P (G) =
1

4
.

However,

1

4
= P (EFG) 6= P (E)P (F )P (G) =

1

8
.

E, F,G are not jointly independ.

1.5 Discrete random variables

Definition 1.5.1 If X is discrete with probability mass function p(x), then for any real-valued function g,
the expectation is defined as

E[g(X)] =
∑

x:p(x)>0

g(x)p(x).

1.5.1 the Bernoulli random variable

An experiment, whose outcome is either a success or a failure. X = 1 is a success and X = 0 is a failure.
Then X is denoted as X ∼ B(1, p) and the pmf is

p(0) = P (X = 0) = 1− p,

p(1) = P (X = 1) = p.

Its expect and var is

EX = 1 · p+ 0 · q = p,

V ar(X) = EX2 − (EX)2 = 12 · p+ 02 · q − p2 = p(1− p).

1.5.2 the Binomial random variable

Suppose there are n trials of Bernoulli experiments. That is, If X1, . . . , Xn are samples from B(1, p),
then
(1) Y = X1 + · · ·+Xn ∼ B(n, p).
(2) pdf is given by p(i) = Cinp

i(1− p)n−i, i = 0, . . . , n.
(3) EY =

∑n
i=0 ip(i) =

∑n
i=0 iC

i
np
iqn−i =

∑n
i=1 i

n!
i!(n−i)!p

iqn−i = np
∑n
i=1

(n−1)!
(i−1)!(n−i)!p

i−1qn−i = np.

V ar(Y ) = npq.

Example 1.5.2 Suppose each independent engine of an airplane will fail, when in flight, with probability
1 − p. Suppose that the airplane will make a successful flight if at least 50 percent of its engines remain

7



operative. For what values of p is a four-engine plane preferable to a two-engine plane?
Sol: A four-engine plane makes a successful flight with probability

C2
4p

2(1− p)2 + C3
4p

3(1− p)1 + C4
4p

4(1− p)0

= 6p2(1− p)2 + 4p3(1− p) + p4.

The probability for a two-engine plane is

C1
2p

1(1− p)1 + C2
2p

2(1− p)0 = 2p(1− p) + p2.

Hence a four-engine plane is safer if

6p2(1− p)2 + 4p3(1− p) + p4 ≥ 2p(1− p) + p2

6p3 − 12p2 + 6p+ 4p2 − 4p3 + p3 ≥ 2− p

3p3 − 8p2 + 7p− 2 ≥ 0

(p− 1)2(3p− 2) ≥ 0.

p ≥ 2

3
.

1.5.3 the geometric random variable

Suppose that independent trials, each having probability p of being a success, are performed until a
success occurs. Let X be the number of trials required until the first success. The pmf is given by

p(n) = P (X = n) = (1− p)n−1p, n = 1, 2, . . .

To check it is a pmf
∞∑
n=1

p(n) = p

∞∑
n=1

(1− p)n−1 =
p

1− (1− p)
= 1.

The expect. and var is

EX =

∞∑
i=1

iqi−1p = p

∞∑
i=1

dqi

dq
= p

(
q

1− q

)′
=

p

(1− q)2
=

1

p
.

V ar(X) =
1− p
p2

.

1.5.4 the Poisson random variable

X is said to be a Poisson random variable with parameter λ, denoted by X ∼ P (λ),

p(i) = P (X = i) = e−λ
λi

i!
, i = 0, 1,

Check it is pmf
∞∑
i=0

p(i) = e−λ
∞∑
i=0

λi

i!
= e−λeλ = 1.

(1) EX = λ, V ar(X) = λ.

(2) If X1, . . . , Xn are indepen, Xi ∼ P (λi), then

X1 + · · ·+Xn ∼ P (λ1 + · · ·+ λn).
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Pf. By induction.

P (X1 +X2 = i) =

i∑
k=0

P (X1 = k)P (X2 = i− k)

=

i∑
k=0

e−λ1
λk1
k!
e−λ2

λi−k2

(i− k)!
= e−(λ1+λ2) 1

i!

i∑
k=0

i!

k!(i− k)!
λk1λ

i−k
2

= e−(λ1+λ2) 1

i!
(λ1 + λ2)i ∼ P (λ1 + λ2).

Example 1.5.3 Suppose that the number of typo errors on a single page of a book has a Poisson distr. with
parameter λ = 1. Calculate the probability that there is at least one error on this page.
Sol: P (X ≥ 1) = 1− P (X = 0) = 1− e−1 = 0.633.

1.6 Continuous Random variable

Definition 1.6.1 The cumulative distribution function (cdf) (or sometimes just distribution function) F (·)
is defined by, F (b) = P (X ≤ b), satisfying (i) F (b) is a nondecreasing function of b, (ii) limb→∞ F (b) =

F (∞) = 1, (iii) limb→−∞ F (b) = F (−∞) = 0.

One can see obviously that

P (a ≤ X ≤ b) = F (b)− F (a), for all a < b.

Definition 1.6.2 If there exists a nonnegative function f(x), defined for all real x ∈ (−∞,∞), having the
property that for any set B,

P (X ∈ B) =

∫
B

f(x)dx.

The function f(x) is called the probability density function (pdf) of X.

The relation bw the cdf F and the pdf f is

F (a) = P (X ≤ a) =

∫ a

−∞
f(x)dx,

and
dF (a)

da
= f(a).

Definition 1.6.3 If X is continuous random variable with pdf f(x), then for any real-valued function g, its
expectation is defined by

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx.

1.6.1 Uniform random variable

Definition 1.6.4 A random vari X is said to be uniformly distributed over (0, 1), if its pdf is given by

f(x) =

{
1, 0 < x < 1,

0, otherwise.

Denote by X ∼ U(0, 1). Its expectation and variance are

EX =

∫ 1

0

xf(x)dx =
1

2
, V ar(X) = EX2 − (EX)2 =

1

3
− 1

4
=

1

12
.
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1.6.2 Exponential random variable

Definition 1.6.5 A continuous random variable whose pdf is given, for some λ > 0, by

f(x) =

{
λe−λx, if x ≥ 0,

0, if x < 0.

is said to be an exponential random variable with rate parameter λ. Denote by X ∼ E(λ).

The cdf can be calculated by

F (a) =

∫ a

0

λe−λxdx = 1− e−λa, a ≥ 0.

F (∞) =

∫ ∞
0

λe−λxdx = 1.

(1) EX = 1
λ and V ar(X) = 1

λ2 .

(2) P (X > t) = e−λt, t ≥ 0.

(3) Y is an exponential random variable if and only if EY > 0 and for ∀s, t > 0, such that

P (Y > s+ t|Y > s) = P (Y > t),

where this condition is called memoryless. Denote F (t) = P (Y > t), then above Eq. is equivalent to

F (t+ s) = F (t)F (s).

Proof. One can easily check ⇒ by noticing that F (t) = e−λt. For the opposite direction, we want to
prove F (t) is an exponential function. We first prove if f(t + s) = f(t) + f(s), then f is linear function.
For integers t and s, we have f(n) = nf(1). For rational numbers t and s, qf(p/q) = f(p) = pf(1), then
f(p/q) = p/qf(1). Since rational numbers are dense in real numbers, one can show f(x) = xf(1) for all x
real. Finally, F (t) = ef(t) = etf(1), which is an expon. function.

Example 1.6.6 Suppose a clock or a watch has a lifetime with exponential distribution with expectation 1
year. If it already works for 2 months, what’s its remaining lifetime? (1 year since memoryless).

Example 1.6.7 Assume that the customer comes with interarrival time being exponential dist. If a cashier
wants to go washroom, he/she goes right now or later on? (Right now since memoryless).

1.6.3 Gamma ranodm variable

Definition 1.6.8 A continuous random variable whose pdf is given, for some λ > 0, α > 0, by

f(x) =

{
λe−λx(λx)α−1

Γ(α) , if x ≥ 0,

0, if x < 0.

is said to be a gamma random variable with rate parameters λ and α. Denote by X ∼ Γ(α, λ). A Gamma
function is defined by

Γ(α) =

∫ ∞
0

e−xxα−1dx.

The expectation and var of gamma vari is given by

EX =
α

λ
, V ar(X) =

α

λ2
.
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1.6.4 Normal random variable

Definition 1.6.9 X is normal random variable with parameters µ and σ2 if the density of X is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

,−∞ < x <∞.

The density is bell-shaped curve that is symmetric around µ.

Definition 1.6.10 multivariate normal distribution. ε = (ε1, . . . , εm)T . If X = µ+Bε, then

X ∼ N (µ,Σ),

where Σ = BBT is the covariance matrix of X.

(1) X = (X1, . . . , Xn)T ∼ N (µ,Σ) if and only if ∀a1, . . . , an,
∑n
j=1 ajXj is normally distributed.

(2) Let X ∼ N (µ,Σ). Then X1, . . . , Xn are independent if and only if they are uncorrelated, i.e., Cov(Xi, Xj)

= 0 for i 6= j. The proof can be found following.
Many real-world quantities tend to be normally distributed—for instance, human heights and other body

measurements, cumulative hydrologic measures such as annual rainfall or monthly river discharge, errors in
astronomical or physical observations, and diffusion of a substance in a liquid or gas. Some things are products
of many independent variables (rather than sums), and in such cases the logarithm will be approximately
normal since it is a sum of many independent variables—this is often the case for economic quantities such
as stock market indices, due to the effect of compound interest.

1.6.5 Inverse Gamma Random Variable

If X is Gamma distributed then the distribution of 1/X is called the Inverse Gamma distribution. More
precisely, if X ∼ Gamma(a, b) and Y = 1/X then Y ∼ InvGamma(a, b), and the p.d.f. of Y is

InvGamma(y|a, b) =
ba

Γ(a)
y−a−1 exp(−b/y).

So, putting a Gamma(a, b) prior on the precision λ is equivalent to putting an InvGamma(a, b) prior on the
variance σ2 = 1/λ. The Inverse Gamma can be used to define a NormalInvGamma distribution for use as a
prior on (µ, σ2), which is sometimes more convenient than (but equivalent to) using a NormalGamma prior
on (µ, λ).

1.6.6 History of Normal distribution

In 1809, Carl Friedrich Gauss (1777–1855) proposed the normal distribution as a model for the errors
made in astronomical measurements, as a formal way of justifying the use of the sample mean, by showing
it to be the most likely estimate—that is, the maximum likelihood estimate—of the true value (and more
generally, to justify the method of least squares in linear regression). With astonishing speed, following
Gauss’proposal, Laplace proved the central limit theorem in 1810. Laplace also calculated the normalization
constant of the normal distribution, which is not a trivial task. James Clerk Maxwell (1831–1879) showed
that the normal distribution arose naturally in physics, particularly in thermodynamics. Adolphe Quetelet
(1796–1874) pioneered the use of the normal distribution in the social sciences. (See Fig. 1.2.)
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Figure 1.2: History of the normal distribution.

1.7 Jointly distributed random variables

1.7.1 independent random variables

Definition 1.7.1 The random variables X and Y are said to be independent if, for all a, b,

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b).

In terms of the joint distribution function F , we have that

F (a, b) = FX(a)FY (b) for all a, b.

Corollary 1.7.2 When X and Y are discrete, the condition of indep. reduces to

p(x, y) = pX(x)pY (y).

If X and Y are jointly continuous, independence reduces to

f(x, y) = fX(x)fY (y).

Pf.

P (X ≤ a, Y ≤ b) =
∑
y≤b

∑
x≤a

p(x, y) =
∑
y≤b

∑
x≤a

pX(x)pY (y)

=
∑
y≤b

pY (y)
∑
x≤a

pX(x) = P (Y ≤ b)P (X ≤ a).

If X and Y are independ., then for any h and g

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Pf.

E[g(X)h(Y )] =
∑
y

∑
x

g(x)h(y)p(x, y) =
∑
y

∑
x

g(x)h(y)pX(x)pY (y) = E[g(X)]E[h(Y )].

12



E[g(X)h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)f(x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y)dxdy

=

∫ ∞
−∞

g(x)fX(x)dx

∫ ∞
−∞

h(y)fY (y)dy = E[g(X)]E[h(Y )].

Example 1.7.3 (Variance of a Binomial Random Variable) Compute the Variance of a Binomial
Random Variable. Sol. Binomial is the sum of n indep. Bernoulli.

V ar(X) = V ar(X1) + · · ·+ V ar(Xn) = npq,

since V ar(Xi) = pq for each Bernoulli distribution.

1.7.2 Covariance and Variance of Sums of Random Variables

Definition 1.7.4 The covariance of any two random variables is

Cov(X,Y ) = E[(X − EX)(Y − EY )] = E[XY ]− E[X]E[Y ].

If X and Y are independent, then Cov(X,Y ) = 0.

Corollary 1.7.5 Property of Covariance
(1) Cov(X,X) = V ar(X),

(2) Cov(X,Y ) = Cov(Y,X),
(3) Cov(cX + dZ, Y ) = cCov(X,Y ) + dCov(Z, Y ).

A useful expression for the variance can be found as follows:

V ar(

n∑
i=1

Xi) = Cov(

n∑
i=1

Xi,

n∑
j=1

Xj) =

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=

n∑
i=1

Cov(Xi, Xi) + 2
∑
i<j

Cov(Xi, Xj).

Moreover, if Xi are indep. random variables, then above equation reduces to

V ar(

n∑
i=1

Xi) =

n∑
i=1

V ar(Xi).

Definition 1.7.6 If X1, . . . , Xn are i.i.d., then the random variable X =
∑n
i=1Xi/n is called the sample

mean.

Proposition 1.7.7 Suppose that X1, . . . , Xn are i.i.d. with mean µ and variance σ2. Then
(a) E[X] = µ.

(b) V ar(X) = σ2/n.

(c) Cov(X,Xi −X) = 0, i = 1, . . . , n.

Pf. Parts (a) and (b) are easy:

E[X] =
1

n

n∑
i=1

EXi = µ,

V ar[X] =

(
1

n

)2

V ar(

n∑
i=1

Xi) =
1

n2

n∑
i=1

V ar(Xi) =
σ2

n
.
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To prove (c), we follow

Cov(X,Xi −X) = Cov(X,Xi)− Cov(X,X) =
1

n
Cov(Xi +

∑
j 6=i

Xj , Xi)− V ar[X]

=
σ2

n
− σ2

n
= 0.

Proposition 1.7.8 The sample variance is given by

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

Then it is unbiased, that is,
ES2 = σ2.

Pf. Notice that
n∑
i=1

(Xi −X)2 =
n∑
i=1

(Xi − µ+ µ−X)2

=

n∑
i=1

(Xi − µ)2 + n(µ−X)2 + 2(µ−X)

n∑
i=1

(Xi − µ)

=

n∑
i=1

(Xi − µ)2 − n(µ−X)2.

Then we obtain

E[(n− 1)S2] =

n∑
i=1

E(Xi −X)2 =

n∑
i=1

E(Xi − µ)2 − nE(µ−X)2

= nσ2 − nV ar[X] = nσ2 − nσ
2

n
= (n− 1)σ2.

1.7.3 Sum of two independent variables

Let us derive the formula first. Suppose that X and Y are continuous and independent, X having pdf
f and Y having pdf g. Letting FX+Y (a) be the cdf of X + Y , we have

FX+Y (a) = P (X + Y ≤ a) =

∫∫
x+y≤a

f(x)g(y)dxdy

=

∫ ∞
−∞

(∫ a−y

−∞
f(x)dx

)
g(y)dy =

∫ ∞
−∞

FX(a− y)g(y)dy.

By differentiating above, we obtain the pdf fX+Y (a) of X + Y given by

fX+Y (a) =
d

da

∫ ∞
−∞

FX(a− y)g(y)dy =

∫ ∞
−∞

f(a− y)g(y)dy.

Thus fX+Y is the convolution of functions f and g.

Example 1.7.9 Two uniform random variables If X and Y are indepdt. both uniformly distributed on (0, 1),
then calculate the pdf of X + Y.

Sol. The pdf’s are

f(a) = g(a) =

{
1, 0 < a < 1,

0, otherwise.

14



we obtain

fX+Y (a) =

∫ 1

0

f(a− y)g(y)dy.

For 0 ≤ a ≤ 1, this yields

fX+Y (a) =

∫ a

0

dy = a

since 0 ≤ a− y ≤ 1 and 0 ≤ y ≤ 1 ⇒ 0 ≤ y ≤ a. And for 1 ≤ a ≤ 2, this yields

fX+Y (a) =

∫ 1

a−1

dy = 2− a

since 0 ≤ a− y ≤ 1 and 0 ≤ y ≤ 1 ⇒ a− 1 ≤ y ≤ 1. Hence,

fX+Y (a) =


a, 0 < a < 1,

2− a 1 < a < 2

0, otherwise.

1.8 Limit Theorems

Proposition 1.8.1 (Markov’s Inequality) If X is a random variable that takes only nonnegative values,
then for any a > 0

P{X ≥ a} ≤ E[X]

a
.

Pf. We give a proof for the case where X is continuous with denfity f ,

E[X] =

∫ ∞
0

xf(x)dx =

∫ a

0

xf(x)dx+

∫ ∞
a

xf(x)dx

≥
∫ ∞
a

xf(x)dx ≥ a
∫ ∞
a

f(x)dx = aP{X ≥ a}.

Proposition 1.8.2 (Chebyshev’s Inequality) If X is a random variable with mean µ and variance σ2,
then, for any k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2
.

Pf. We apply Markov’s inequality to the nonnegative (X − µ)2,

P{(X − µ)2 ≥ k2} ≤ E[(X − µ)2]

k2
.

Remark 1.8.3 The importance of Markov’s and Chebyshev’s inequalities is that they enable us to derive
bounds on probs. when only the mean, or both the mean and the variance, are known. Of course, if the true
distribution were known, then the desired probs. could be exactly computed, and we would not need to resort
to bounds.

Theorem 1.8.4 (Strong Law of Large Numbers) Let X1, X2, . . . be a sequence of independent random
variables have a commom distribution, and let E[Xt] = µ. Then, with probability 1, or almost surely,

X1 + · · ·+Xn

n
→ µ as n→∞.

Definition 1.8.5 If P (limn→∞Xn = X) = 1, then we say Xn → X, a.s. (almost surely) or Xn → X, w.p.1
(with probability 1).
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Theorem 1.8.6 (Central Limit Theorem) Let X1, X2, . . . be a sequence of independent, identically dis-
tributed (i.i.d.) random variables, each with mean µ and variance σ2. Then the distribution of

X1 + · · ·+Xn − nµ
σ
√
n

goes to the standard normal as n→∞. That is,

P

{
X1 + · · ·+Xn − nµ

σ
√
n

≤ a
}
→ 1√

2π

∫ a

−∞
e−x

2/2dx = Φ(a),

as n→∞.

Proof. Note that the theorem holds for any distribution of the Xis; herein lies its power.
We now present a heuristic proof the CLT. Suppose first that the Xi have mena 0 and variance 1, and

then the MGF can be computed,

E

[
exp

{
t
X1 + · · ·+Xn√

n

}]
= E[etX1/

√
n · · · etXn/

√
n] = (EetXi/

√
n)n by independence.

For large n, we obtain by Taylor expansion,

etXi/
√
n = 1 +

tXi√
n

+
(tXi)

2

2n
+O(n−3/2),

that is the reason for the central word. Taking expectations shows that when n is large,

E[etXi/
√
n] = 1 +

t2

2n
+O(n−3/2), since EX = 0 and EX2 = 1.

Therefore, we obtain

E

[
exp

{
t
X1 + · · ·+Xn√

n

}]
≈
(

1 +
t2

2n

)n
→ et

2/2.

Thus, the MGF of X1+···+Xn√
n

converges to the moment generating function of a standard normal random
variable with mean 0 and variance 1. Notice that for X ∼ N(0, 1), its MGF φ(t) = et

2/2. Hence, it can
be proven that the distribution function of X1+···+Xn√

n
converges to the distribution function of a standard

normal Φ. When Xi have mean µ and variance σ2, the random variables Xi−µ
σ have mean 0 and variance 1.

Done.

Proposition 1.8.7 The convergence has the following relations:

conv. in moments or Lp converges
a.s. or w.p.1

}
⇒ conv. in probability⇒ conv. in distribution.

See https://zhuanlan.zhihu.com/p/70034585 for more details of theorems and counter-examples.

Lemma 1.8.8 (Lévy-Crammer) {Fn} is a set of distributions. If F̂n → φ(t) conv. pointwisely, then Fn →
F converges weakly, where φ is the character function of F and F̂n is the character function of Fn.

Theorem 1.8.9 (Linderberg-Lévy CLT) check https://zhuanlan.zhihu.com/p/69862244. character func-
tion and Lindberg-Levy central limit theorem. See details of these two theorems in book Probability Theory
and Mathematical Statistics by Marek Fisz [1].
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Example 1.8.10 If X is binomially distributed with parameters n and p, then X is the sum of n independent
Bernoulli random variables, each with parmeter p. Hence, the distribution of

X − E[X]√
V ar(X)

=

∑
Xi − nµ√
nσ

=
X − np√
np(1− p)

approaches the standard normal distribution as n approaches ∞. The normal approximation will be quite
good for np(1− p) ≥ 10 or

√
V ar(X) ≥

√
10.

Example 1.8.11 (Normal approximation to the Binomial) Let X be the number of times that a fair
coin, flipped 40 times, lands heads. Find the probability that X = 20.
Sol.

P{X = 20} = P{19.5 < X < 20.5}

= P

{
19.5− 20√

10
<
X − 20√

10
<

20.5− 20√
10

}
= P

{
−0.16 <

X − 20√
10

< 0.16

}
= Φ(0.16)− Φ(−0.16)

= 0.1272.

The exact result is

P{X = 20} = C20
40

(
1

2

)20(
1

2

)20

= 0.1268.

Example 1.8.12 The lifetime of a battery is a random variable with mean 40 hours and standard deviation
20 hours. Assume a stockpile of 25 such batteries, approximate the probability that over 1100 hours of use
can be obtained.
Sol.

P{X1 + · · ·+X25 > 1100} = P

{
X1 + · · ·+X25 − 25× 40

20
√

25
>

1100− 25× 40

20
√

25

}
= P{N(0, 1) > 1} = 1− Φ(1) = 0.1587.
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