
Chapter 12 Beyond the Boyd and Vandenberghe Book

Shixiao Willing Jiang

Last update on 2025-04-30 20:15:15+08:00



Table of contents

Conjugate Gradient and Krylov subspace

Subgradients

Coordinate Descent

Stochastic Gradient Descent

Alternating Direction Method of Multipliers (ADMM)



Conjugate Gradient and Krylov subspace

Subgradients

Coordinate Descent

Stochastic Gradient Descent

Alternating Direction Method of Multipliers (ADMM)



see Conjugate Gradient Krylov subspace

see dqq note



Three classes of methods for linear equations

methods to solve linear system Ax = b, A ∈ Rn×n

• dense direct (factor-solve methods)

- runtime depends only on size; independent of data, structure, or sparsity
- work well for n up to a few thousand

• sparse direct (factor-solve methods)

- runtime depends on size, sparsity pattern; (almost) independent of data
- can work well for n up to 104 or 105 (or more)
- requires good heuristic for ordering

• indirect (iterative methods)

- runtime depends on data, size, sparsity, required accuracy
- requires tuning, preconditioning, ...
- good choice in many cases; only choice for n = 106 or larger



Symmetric positive definite linear systems

SPD system of equations

Ax = b, A ∈ Rn×n, A = AT ≻ 0

▶ Newton/interior-point search direction: ∇2ϕ(x)∆x = −∇ϕ(x)
▶ least-squares normal equations: (ATA)x = AT b

▶ regularized least-squares: (ATA+ µI)x = AT b

▶ minimization of convex quadratic function (1/2)xTAx− bTx

▶ solving (discretized) elliptic PDE (e.g., Poisson equation)



Gradient descent and steepest gradient descent

general gradient descent

▶ let
gℓ = ∇f(xℓ) = Axℓ − b

be the gradient ascent direction, then we search the descent direction along the
negative gℓ

▶ let αℓ be the step size, then the GD method is{
gℓ = Axℓ − b

xℓ+1 = xℓ − αℓgℓ

steepest descent method

▶ optimize the step size such that

α̂ℓ = argminαℓ
h = argminαℓ

f(xℓ − αℓgℓ)

▶ take the derivative
∂h

∂αℓ
= αℓg

T
ℓ Agℓ − gTℓ (Axℓ − b)



▶ the step size becomes

αℓ =
gTℓ (Axℓ − b)

gTℓ Agℓ
=

gTℓ gℓ

gTℓ Agℓ

▶ the steepest descent method is
gℓ = Axℓ − b

αℓ =
gTℓ gℓ
gTℓ Agℓ

xℓ+1 = xℓ − αℓgℓ

▶ moreover, since ∂h/∂αℓ = 0

∂h/∂αℓ = −gTℓ (Axℓ+1 − b) = −gTℓ gℓ+1 = 0

then gℓ and gℓ+1 are orthogonal



CG overview

▶ proposed by Hestenes and Stiefel in 1952 (as direct method)
▶ conjugate gradient, also called conjugate gradient descent, is a classical iteration

optimization approach for specific unconstrained optimization problem
▶ solves SPD system Ax = b

- in theory (i.e., exact arithmetic) in n iterations
- each iteration requires a few inner products in Rn, and one matrix-vector multiply
z → Az

▶ for A dense, matrix-vector multiply z → Az costs n2, so total cost is n3, same as
direct methods

▶ get advantage over dense if matrix-vector multiply is cheaper than n2

▶ with roundoff error, CG can work poorly (or not at all)
▶ but for some A (and b), can get good approximate solution in ≪ n iterations
▶ the advantage of CG is (1) easy for implementation not hard for tuning parameters

(2) in general faster than general gradient descent



Solution, error and residual

▶ x∗ = A−1b is solution
▶ x∗ minimizes (convex function) f(x) = (1/2)xTAx− bTx

▶ ∇f(x) = Ax− b is (steepest) descent direction of f (in ℓ2-norm) or general
gradient descent direction in arbitrary norm

▶ with f∗ = f(x∗), we have

f(x)− f∗ = (1/2)xTAx− bTx− (1/2)x∗TAx∗ + bTx∗

= (1/2)(x− x∗)TA(x− x∗)

= (1/2)∥x− x∗∥2A

i.e., f(x)− f∗ is half of squared A-norm of error x− x∗

▶ r = b−Ax is called the residual at x with r = −∇f(x) = A(x∗ − x)



Krylov subspace

(a.k.a. controllability subspace)

Kk = span{b, Ab, ..., Ak−1b} = {p(A)b | p polynomial, deg p < k}

we define the Krylov sequence x(1), x(2), ... as

x(k) = argmin
x∈Kk

f(x) = argmin
x∈Kk

∥x− x∗∥2A

the CG algorithm (among others) generates the Krylov sequence



Properties of Krylov sequence

▶ f(x(k+1)) ≤ f(x(k)) (but ∥r∥ can increase)
▶ x(n) = x∗ (i.e., x∗ ∈ Kn even when Kn ̸= Rn)
▶ x(k) = pk(A)b, where pk is a polynomial with deg pk < k

▶ this is a sequence of nested subsequence K0 ⊆ K1 ⊆ ... ⊆ Kk ⊆ ... ⊆ Rn

▶ less obvious: there is a two-term recurrence

x(k+1) = x(k) + αkr
(k) + βk(x

(k) − x(k−1))

for some αk, βk (basis of CG algorithm)
▶ key property. If Kk+1 = Kk, then Ks = Kk for all s ≥ k



Cayley-Hamilton theorem

we claim that x∗ = A−1b ∈ Kn even Kn ̸= Rn

characteristic polynomial of A:

χ(s) = det(sI −A) = sn + α1s
n−1 + · · ·+ αn

by Cayley-Hamilton theorem

χ(A) = An + α1A
n−1 + · · ·+ αnI = 0

and so
A−1 = −(1/αn)A

n−1 − (α1/αn)A
n−2 − · · · − (αn−1/αn)I

we see that x∗ = A−1b ∈ Kn



▶ a set of vectors {p0, ..., pk−1} is conjugate with respect to matrix A ∈ Sn++ if
pTi Apj = 0 for all i ̸= j ∈ {0, ..., k − 1}

▶ if let pi = A1/2pi, then pi is perpendicular to pj
▶ if {pi} conjugate then {pi} are linear independent
▶ define the residual rℓ = b−Axℓ and we hope that the residuals are orthogonal,

rTi rj = 0, i ̸= j

▶ let di be the search direction for xi,

xℓ+1 = xℓ + αℓdℓ

and let d0 = r0 = b−Ax0 be the initial search direction.
▶ We hope that the search direction {di} are conjugate and {di} can be updated by

dℓ+1 = rℓ+1 + βℓdℓ

▶ then the residual rℓ+1 can be updated by

b−Axℓ+1 = b−Axℓ − αℓAdℓ =⇒ rℓ+1 = rℓ − αℓAdℓ



▶ the conjugate gradient method is roughly
xℓ+1 = xℓ + αℓdℓ

rℓ+1 = rℓ − αℓAdℓ

dℓ+1 = rℓ+1 + βℓdℓ

▶ since rTi rj = 0 for i ̸= j, we can compute αℓ,

rTℓ+1rℓ = (rℓ − αℓAdℓ)
T rℓ = 0

αℓ =
rTℓ rℓ

rTℓ Adℓ
=

rTℓ rℓ
(dℓ − βℓ−1dℓ−1)TAdℓ

=
rTℓ rℓ

dTℓ Adℓ

▶ for conjugate {dℓ}, we compute βℓ

dTℓ+1Adℓ = (rℓ+1 + βℓdℓ)
TAdℓ = 0

βℓ = −
rTℓ+1Adℓ

dTℓ Adℓ
= −

rTℓ+1(rℓ − rℓ+1)

αℓd
T
ℓ Adℓ

=
rTℓ+1rℓ+1

rTℓ rℓ



CG algorithm

(follows C. T. Kelley)

x := 0, r := b, ρ0 := ∥r∥22
for k = 1, ..., Nmax

quit if √ρk−1 ≤ ϵ∥b∥2
if k = 1

then d := r;

else

d := r + (ρk−1/ρk−2)d

w := Ad

α := ρk−1/d
Tw

x := x+ αd

r := r − αw

ρk := ∥r∥22 or βk = ∥rk∥22/∥rk−1∥22



Efficient matrix-vector multiply

▶ sparse A

▶ structured (e.g., sparse plus low rank)
▶ products of easy-to-multiply matrices
▶ fast transforms (FFT, wavelet, ... )
▶ inverses of lower/upper triangular (by forward/backward substitution)
▶ fast Gauss transform, for Aij = exp(−∥vi − vj∥2/σ2) (via multipole)



Shifting

▶ suppose we have guess x̂ of solution x∗

▶ we can solve Az = b−Ax̂ using CG, then get x∗ = x̂+ z

▶ in this case x(k) = x̂+ z(k) = argmin
x∈x̂+Kk

f(x), (where x̂+Kk is called shifted Krylov

subspace)
▶ same as initializing CG algorithm with x := x̂, r := b−Ax

▶ good for ‘warm start’, i.e., solving Ax = b starting from a good initial guess (e.g.,
the solution of another system Ãx = b̃, with A ≈ Ã, b ≈ b̃)



Preconditioned conjugate gradient algorithm

▶ idea: apply CG after linear change of coordinates x = Ty, detT ̸= 0

▶ use CG to solve T TATy = T T b; then set x∗ = T−1y∗

▶ T or M = TT T is called preconditioner
▶ in naive implementation, each iteration requires multiplies by T and T T (and A);

also need to compute x∗ = T−1y∗ at end
▶ can re-arrange computation so each iteration requires one multiply by M (and A),

and no final solve x∗ = T−1y∗

▶ called preconditioned conjugate gradient (PCG) algorithm



Choice of preconditioner

▶ if spectrum of T TAT (which is the same as the spectrum of MA) is clustered,
PCG converges fast

▶ extreme case: M = A−1

▶ trade-off between enhanced convergence, and extra cost of multiplication by M at
each step

▶ goal is to find M that is cheap to multiply, and approximate inverse of A (or at
least has a more clustered spectrum than A)



Larger example

residual convergence with and without diagonal preconditioning



CG summary

▶ in theory (with exact arithmetic) converges to solution in n steps
- the bad news: due to numerical round-off errors, can take more than n steps (or fail

to converge)
- the good news: with luck (i.e., good spectrum of A), can get good approximate

solution in ≪ n steps
▶ each step requires z → Az multiplication

- can exploit a variety of structure in A
- in many cases, never form or store the matrix A

▶ compared to direct (factor-solve) methods, CG is less reliable, data dependent;
often requires good (problem-dependent) preconditioner

▶ but, when it works, can solve extremely large systems



Krylov subspace method

▶ Krylov subspace method can be classified into two groups:
- Krylov Arnoldi iteration is for general, nonsymmetric, without structured matrices
- Krylov Lanczos is for conjugate symmetric matrices which is almost the same with

the Arnoldi iteration but fully use the symmetric structure to reduce the
computational cost

▶ solving linear equations
- GMRES (Generalized Minimal Residual) is for large-scale, sparse linear equations

based on Krylov Arnoldi iteration. It is designed for nonsymmetric and without
structured problems. (The residual rj has minimum norm for xj in Kj)

- MINRES (Minimum Residual) (The residual rj has minimum norm for xj in Kj) and
SymmLQ (Symmetric LQ Method) (The error ej has minimum norm) are for
large-scale, sparse, and symmetric linear equations based on Krylov Lanczos iteration.

- CG (Conjugate Gradient) is for large-scale, sparse, and symmetric positive-definite
linear equations also based on Krylov Lanczos iteration. (The residual rj = b−Axj

is orthogonal to Kj)
- BiCG (Biconjugate Gradient Method) is for large-scale, sparse linear equations which

is a generalization of CG but can be applied to nonsymmetric problems. (rj is
orthogonal to a different space Kj(A

T ))
1. BiCGSTAB (Biconjugate Gradient Stabilized Method)
2. QMR (Quasi-Minimal Residual)



Conjugate Gradient and Krylov subspace

Subgradients

Coordinate Descent

Stochastic Gradient Descent

Alternating Direction Method of Multipliers (ADMM)



definition

Recall that for convex and differentiable f ,

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

This is first-order condition. Linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y

▶ Always exists
▶ If f differentiable at x, then g = ∇f(x) uniquely
▶ Same definition works for nonconvex f (however, subgradients need not exist)



Examples of subgradients

Consider f : R→ R, f(x) = |x|

▶ For x ̸= 0, unique subgradient g = sign(x)
▶ For x = 0, subgradient g is any element of [−1, 1]



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

▶ Nonempty (only for convex f)
▶ ∂f(x) is closed and convex (even for nonconvex f)
▶ If f is differentiable at x, then ∂f(x) = {∇f(x)}
▶ If ∂f(x) = {g} , then f is differentiable at x and ∇f(x) = g



Optimality condition

For any f (convex or not),

f(x∗) = min
x

f(x)⇐⇒ 0 ∈ ∂f(x∗)

That is, x∗ is a minimizer if and only if 0 is a subgradient of f at x∗. This is called the
subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗)

Note the implication for a convex and differentiable function f , with ∂f(x) = {∇f(x)}



Subgradient method

Now consider f convex, having dom(f) = Rn, but not necessarily differentiable

Subgradient method: like gradient descent, but replacing gradients with subgradients.
Initialize x(0), repeat:

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, ...

where g(k−1) ∈ ∂f(x(k−1)), any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, thus we keep track of best
iterate x

(k)
best among x(0), ..., x(k) so far, i.e.,

f(x
(k)
best) = min

i=0,...,k
f(x(i))



Conjugate Gradient and Krylov subspace

Subgradients

Coordinate Descent

Stochastic Gradient Descent

Alternating Direction Method of Multipliers (ADMM)



Coordinatewise optimality

We now focus on a very simple technique that can be surprisingly efficient, scalable:
coordinate descent, or more appropriately called coordinatewise minimization

Q: Given convex, differentiable f : Rn → R, if we are at a point x such that f(x) is
minimized along each coordinate axis, then have we found a global minimizer?

That is, does f(x+ δei) ≥ f(x) for all δ, i =⇒ f(x) = minz f(z)?

(Here ei = (0, ..., 1, ..., 0) ∈ Rn is the ith standard basis vector)



▶ A: Yes! Proof:
0 = ∇f(x) =

( ∂f

∂x1
(x), ...,

∂f

∂xn
(x)

)
▶ Q: Same question, but now for f convex, and not differentiable?



▶ A: No! Look at the above counterexample
▶ Q: Same, now f(x) = g(x) +

∑n
i=1 hi(xi), with g convex, smooth, and each hi

convex? (Here the nonsmooth part is called separable)



▶ A: Yes! Proof: using convexity of g and subgradient optimality

f(y)− f(x) = g(y)− g(x) +
n∑

i=1

[hi(yi)− hi(xi)]

≥
n∑

i=1

[
∂xig(x)(yi − xi) + hi(yi)− hi(xi)

]︸ ︷︷ ︸
≥0

≥ 0



Coordinate descent

This suggests that for the problem

min
x

f(x)

where f(x) = g(x) +
∑n

i=1 hi(xi), with g convex and differentiable and each hi
convex, we can use coordinate descent: let x(0) ∈ Rn, and repeat

x
(k)
i = argmin

xi

f
(
x
(k)
1 , ..., x

(k)
i−1, xi, x

(k−1)
i+1 , ..., x(k−1)

n

)
, i = 1, ..., n

for k = 1, 2, 3, ...

Important note: we always use most recent information possible



Tseng (2001) showed that for such f (provided f is continuous on compact set
{x : f(x) ≤ f(x(0))} and f attains its minimum), any limit point of x(k), k = 1, 2, 3, ...
is a minimizer of f

Notes:

▶ Order of cycle through coordinates is arbitrary, can use any permutation of
{1, 2, ..., n}

▶ Can everywhere replace individual coordinates with blocks of coordinates
▶ “One-at-a-time” update scheme is critical, and “all-at-once” scheme does not

necessarily converge
▶ The analogy for solving linear systems: Gauss-Seidel versus Jacobi method



Example: linear regression

Given y ∈ Rn, and X ∈ Rn×p with columns X1, ..., Xp, consider the linear regression
problem:

min
β

1

2
∥y −Xβ∥22

Minimizing over βi, with all βj , j ̸= i fixed:

0 = ∂βi
f(β) = XT

i (Xβ − y) = XT
i (Xiβi +X−iβ−i − y)

i.e., we take

βi =
XT

i (y −X−iβ−i)

XT
i Xi

Coordinate descent repeats this update for i = 1, 2, ..., p, 1, 2, .... Note that this is
exactly Gauss-Seidl for the system XTXβ = XT y



Coordinate descent vs gradient descent for linear regression: 100 random instances with
n = 100, p = 20



Is it fair to compare 1 cycle of coordinate descent to 1 iteration of gradient descent?
Yes, if were clever

▶ Gradient descent: β ← β + tXT (y −Xβ), costs O(np) flops
▶ Coordinate descent, one coordinate update:

βi ←
XT

i (y −X−iβ−i)

XT
i Xi

=
XT

i r

∥Xi∥22
+ βi

where r = y −Xβ

▶ Each coordinate costs O(n) flops: O(n) to update r, O(n) to compute XT
i r

▶ One cycle of coordinate descent costs O(np) operations, same as gradient descent



Example: lasso regression

Consider the lasso problem:

min
β

1

2
∥y −Xβ∥22 + λ∥β∥1

Note that nonsmooth part here is separable: ∥β∥1 =
∑p

i=1 |βi|. Minimizing over βi,
with βj , j ̸= i fixed:

0 = XT
i Xiβi +XT

i (X−iβ−i − y) + λsi

where si ∈ ∂|βi|. Solution is simply given by soft-thresholding

βi = Sλ/∥Xi∥22

(
XT

i (y −X−iβ−i)

XT
i Xi

)
Repeat this for i = 1, 2, ..., p, 1, 2, .... Here, the soft-thresolding operator St is defined as

St(xj) = sign(xj)max{|xj | − t, 0} =


xj − t, xj > t

0, −t ≤ xj ≤ t, j = 1, ..., p

xj + t xj < −t



Coordinate descent vs proximal gradient for lasso regression: 100 random instances with
n = 200, p = 50 (all methods cost O(np) per iter)



Coordinate descent in statistics and ML

History in statistics/ML:

▶ Idea appeared in Fu (1998), and then again in Daubechies et al. (2004), but was
inexplicably ignored

▶ Later, three papers in 2007, especially Friedman et al. (2007), really sparked
interest in statistics and ML communities

Why is it used?

▶ Very simple and easy to implement
▶ Careful implementations can achieve state-of-the-art
▶ Scalable, e.g., don’t need to keep full data in memory

Examples: lasso regression, lasso GLMs (under proximal Newton), SVMs, group lasso,
graphical lasso (applied to the dual), additive modeling, matrix completion, regression
with nonconvex penalties



Coordinate gradient descent

For a smooth function f , the iterations

x
(k)
i = x

(k−1)
i − tki · ∂xif

(
x
(k)
1 , ..., x

(k)
i−1, xi, x

(k−1)
i+1 , ..., x(k−1)

n

)
, i = 1, ..., n

for k = 1, 2, 3, ... are called coordinate gradient descent, and when f = g + h, with g
smooth and h =

∑n
i=1 hi, the iterations

x
(k)
i = proxhi,tki

(
x
(k−1)
i − tki · ∂xig

(
x
(k)
1 , ..., x

(k)
i−1, xi, x

(k−1)
i+1 , ..., x(k−1)

n

))
, i = 1, ..., n

for k = 1, 2, 3, ... are called coordinate proximal gradient descent

When g is quadratic, (proximal) coordinate gradient descent is the same as coordinate
descent under proper step sizes



Conjugate Gradient and Krylov subspace

Subgradients

Coordinate Descent

Stochastic Gradient Descent

Alternating Direction Method of Multipliers (ADMM)



Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

m

m∑
i=1

fi(x)

Gradient descent would repeat:

x(k) = x(k−1) − tk ·
1

m

m∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, ...

In comparison, stochastic gradient descent or SGD (or incremental gradient descent)
repeats:

x(k) = x(k−1) − tk · ∇fik(x
(k−1)), k = 1, 2, 3, ...

where ik ∈ {1, . . . ,m} is some chosen index at iteration k



Two rules for choosing index ik at iteration k:

▶ Randomized rule: choose ik ∈ {1, . . . ,m} uniformly at random
▶ Cyclic rule: choose ik = 1, 2, ...,m, 1, 2, ...,m, ...

Randomized rule is more common in practice. For randomized rule, note that

E[∇fik(x)] = ∇f(x)

so we can view SGD as using an unbiased estimate of the gradient at each step

Main appeal of SGD:

▶ Iteration cost is independent of m (number of functions)
▶ Can also be a big savings in terms of memory useage



Example: stochastic logistic regression

Given (xi, yi) ∈ Rp × {0, 1}, i = 1, ..., n, recall logistic regression:

min
β

1

n

n∑
i=1

(
−yixTi β + log(1 + exp(xTi β))

)︸ ︷︷ ︸
fi(β)

Gradient computation ∇f(β) = 1
n

∑n
i=1

(
yi − pi(β)

)
xi is doable when n is moderate,

but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

▶ One batch update costs O(np)

▶ One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable



Small example with n = 10, p = 2 to show the classic picture for batch versus
stochastic methods:

Blue: batch steps, O(np) Red: stochastic steps, O(p)

Rule of thumb for stochastic methods:
▶ generally thrive far from optimum
▶ generally struggle close to optimum



Mini-batches

See more about step sizes and convergence rates

Also common is mini-batch stochastic gradient descent, where we choose a random
subset Ik ⊆ {1, ...,m}, |Ik| = b≪ m, repeat:

x(k) = x(k−1) − tk ·
1

b

∑
i∈Ik

∇fi(x(k−1)), k = 1, 2, 3, ...

Again, we are approximating full gradient by an unbiased estimate:

E
[1
b

∑
i∈Ik

∇fi(x)
]
= ∇f(x)

Using mini-batches reduces variance by a factor 1/b, but is also b times more expensive.
Theory is not convincing: under Lipschitz gradient, rate goes from O(1/

√
k) to

O(1/
√
bk + 1/k)3



Back to logistic regression, lets now consider a regularized version:

min
β

1

n

n∑
i=1

(
−yixTi β + log(1 + exp(xTi β))

)
+

λ

2
∥β∥22

Comparison between methods:

▶ One batch update costs O(np)

▶ One mini-batch update costs O(bp)

▶ One stochastic update costs O(p)



Example with n = 10000, p = 20, all methods use fixed step sizes:



Whats happening? Now lets parametrize by flops:



Finally, looking at suboptimality gap (on log scale):



End of the story?

Short story:

▶ SGD can be super effective in terms of iteration cost, memory
▶ But SGD is slow to converge, can’t adapt to strong convexity
▶ And mini-batches seem to be a wash in terms of flops (though they can still be

useful in practice)



SGD in large-scale ML

SGD has really taken off in large-scale machine learning

▶ In many ML problems we don’t care about optimizing to high accuracy, it doesn’t
pay off in terms of statistical performance

▶ Thus (in contrast to what classic theory says) fixed step sizes are commonly used
in ML applications

▶ One trick is to experiment with step sizes using small fraction of training before
running SGD on full data set

▶ Momentum/acceleration, averaging, adaptive step sizes are all popular variants in
practice

▶ SGD is especially popular in large-scale, continuous, nonconvex optimization, but it
is still not particular well-understood there (a big open issue is that of implicit
regularization)



Conjugate Gradient and Krylov subspace

Subgradients

Coordinate Descent

Stochastic Gradient Descent

Alternating Direction Method of Multipliers (ADMM)



Framework of ADMM

▶ solve the following problem using ADMM

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c

where x ∈ Rp, z ∈ Rq, A ∈ Rm×p, B ∈ Rm×q, c ∈ Rk and

f : Rp → R, g : Rq → R

▶ the objective function is separable and constraint only contains equalities
▶ augmented Lagrangian method modifies the augmented objective function

minimize
x,z

Qρ(x, z) = f(x) + g(z) +
ρ

2
∥Ax+Bz − c∥22

subject to Ax+Bz = c



▶ augmented Lagrangian

Lρ(x, z, ν) = Qρ(x, z) + νT (Ax+Bz − c)

= f(x) + g(z) +
ρ

2
∥Ax+Bz − c∥22 + νT (Ax+Bz − c)

▶ algorithm for the kth iteration:
1. update x: x(k) = argminxLρ(x, z

(k−1), ν(k−1))
2. update z: z(k) = argminzLρ(x

(k), z, ν(k−1))
3. update ν: ν(k) = ν(k−1) + ρ(Ax(k) +Bz(k) − c)



conjugate function

▶ the basic idea is to use the connection between primal problem and dual problem.
We solve the dual problem using gradient descent method so that we obtain the
optimal of primal problem at the same time

▶ recall that the conjugate function is

f∗(y) = max
x

xT y − f(x) = max
x

L(x, y) = L(x∗, y)

▶ even f(x) is not convex, its conjugate f∗(y) is always convex
▶ according to envelop theorem,

∂f∗(y)

∂y
=

∂L(x∗, y)

∂y
= x∗ = argmin

x
xT y − f(x)



Dual gradient ascent

▶ the primal problem

minimize
x

f(x)

subject to Ax = c

▶ the Lagrangian is
L(x, ν) = f(x) + νT (Ax− c)

▶ dual function is

g(ν) = min
x

L(x, ν) = −f∗(−AT ν)− cT ν



Dual gradient ascent

▶ to solve the unconstrained dual problem, we need to compute the gradient of the
objective

∇g(ν) = −∂f∗(−AT ν)

∂ν
− c = A

∂f∗(−AT ν)

∂(−AT ν)
− c = Ax∗ − c

▶ the iteration with the learning rate αk is

ν(k) = ν(k−1) + αk∇g(ν(k−1))

▶ the algorithm of dual gradient ascent is:
1. update x: x(k) = argminx L(x, ν(k−1))
2. update ν: ν(k) = ν(k−1) + αk[Ax(k) − c]

▶ dual decomposition can be used as a trick in dual gradient ascent method when
the objective f(x) is separable



Augmented Lagrangian method

▶ consider the augmented form of the primal problem

minimize
x

f(x) + (ρ/2)∥Ax− c∥22
subject to Ax = c

▶ ρ is a penalty parameter and the whole penalty term is to “increase” the convexity
of the problem

▶ the augmented Lagrangian is

Lρ(x, ν) = f(x) +
ρ

2
∥Ax− c∥22 + νT (Ax− c)

▶ the algorithm of the augmented problem using dual gradient ascent is:
1. update x: x(k) = argminx Lρ(x, ν

(k−1))
2. update ν: ν(k) = ν(k−1) + ρ[Ax(k) − c]

▶ the learning rate is taken to be ρ which speeds up the convergence



Scaled form

▶ augmented Lagrangian

Lρ(x, z, ν) = f(x) + g(z) +
ρ

2
∥Ax+Bz − c∥22 + νT (Ax+Bz − c)

▶ Scaled form: let u = ν/ρ, then augmented Lagrangian becomes

Lρ(x, z, u) = f(x) + g(z) +
ρ

2
∥Ax+Bz − c+ u∥22 + C,

where C is independent of x, z
▶ algorithm for the kth iteration of ADMM updates:

1. update x: x(k) = argminxLρ(x, z
(k−1), u(k−1))

2. update z: z(k) = argminzLρ(x
(k), z, u(k−1))

3. update ν: u(k) = u(k−1) + (Ax(k) +Bz(k) − c)



Example: lasso regression

▶ Lasso = loss + ℓ1 penalty
▶ gradient descent or Newton method are not applicable
▶ proximal gradient descent, coordinate descent, ADMM can be considered
▶ reference

1. https://zhuanlan.zhihu.com/p/448289351
2. Boyd ADMM paper
3. CMU convex optimization course



Example: lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
∥y −Xβ∥22 + λ∥β∥1

We can rewrite this as:

minimize
β,α

1

2
∥y −Xβ∥22 + λ∥α∥1

subject to β = α

augmented Lagrangian

Lρ(β, α,w) =
1

2
∥y −Xβ∥22 + λ∥α∥1 +

ρ

2
∥β − α+ w∥22



Scaled form ADMM steps:

1. update β:

β(k) = argminβ
1

2
∥y −Xβ∥22 +

ρ

2
∥β − α(k−1) + w(k−1)∥22

2. update α:

α(k) = argminαλ∥α∥1 +
ρ

2
∥β(k) − α+ w(k−1)∥22 = Sλ/ρ(β

(k) + w(k−1))

3. update w:
w(k) = w(k−1) + (β(k) − α(k))

Scaled form ADMM steps:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)
α(k) = Sλ/ρ(β

(k) + w(k−1))

w(k) = w(k−1) + β(k) − α(k)



Notes:

▶ The matrix XTX + ρI is always invertible, regardless of X
▶ If we compute a factorization (say Cholesky) in O(p3) flops, then each β update

takes O(p2) flops
▶ The α update applies the soft-thresolding operator St, which recall is defined as

[St(x)]j = sign(xj)max{|xj | − t, 0} =


xj − t, xj > t

0, −t ≤ xj ≤ t, j = 1, ..., p

xj + t xj < −t

▶ ADMM steps are almost like repeated soft-thresholding of ridge regression
coefficients



▶ Soft-thresholding in one variable
▶ Comparison of various algorithms for lasso regression: 100 random instances with

n = 200, p = 50


	Conjugate Gradient and Krylov subspace
	Subgradients
	Coordinate Descent
	Stochastic Gradient Descent
	Alternating Direction Method of Multipliers (ADMM)

