Chapter 11 Interior-point methods

Last update on 2025-04-09 11:51:02+08:00

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

general assumptions

- f_i convex and twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ and $\operatorname{rank} A = p$
- ▶ the problem is solvable, i.e., an optimal x^* exists. p^* is finite and attained
- **>** problem is strictly feasible: there exists \tilde{x} with

 $\tilde{x} \in \operatorname{dom} f_0, \qquad f_i(\tilde{x}) < 0, \qquad i = 1, \dots, m, \qquad A\tilde{x} = b$

hence strong duality holds and dual optimum is attained

Slater's constraint qualification holds, so there exist dual optimal $\lambda^* \in \mathbb{R}^m$, $\nu \in \mathbb{R}^p$, which together with x^* satisfy the Karush-Kuhn-Tucker conditions

- 1. primal constraints $Ax^* = b$, $f_i(x^*) \le 0, i = 1, \cdots, m$
- 2. dual constraints $\lambda^* \succeq 0$
- 3. gradient of Lagrangian with respect to x vanishes

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + A^T \nu^* = 0$$

4. complementary slackness $\lambda_i^* f_i(x^*) = 0, \ i = 1, \cdots, m$

- interior-point methods solve the primal problem or the KKT conditions by applying Newton's method to a sequence of equality constrained problems, or to a sequence of modified versions of teh KKT conditions
- barrier method and primal-dual interior-point method
- the basic idea is to solve an optimization problem with linear equality and inequality constraints by reducing it to a sequence of linear equality constrained problems

examples

► LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints $(\mathcal{D} = \mathbb{R}^n_{++})$

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to
$$Fx \leq g$$

$$Ax = b$$

- ► differentiability may require reformulating the problem, e.g. piecewise-linear minimization or l_∞-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

reformulation via indicator function

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where I_{-} is the indicator function of \mathbb{R}_{-}

$$I_{-}(u) = \begin{cases} 0, & \text{if } u \le 0\\ \infty, & \text{if } u > 0 \end{cases}$$

approximation via logarithmic barrier

minimize
$$f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

an equality constrained problem

• for t > 0, the term

$$\widehat{I}_{-}(u) = -(1/t)\log(-u)$$

is a smooth approximation of $I_-.$ The basic idea of the barrier method is to approximate the indicator function I_- by its approximation $\widehat{I}_-(u)$

- \blacktriangleright t > 0 is a parameter that sets the accuracy of the approximation
- $\blacktriangleright\ \widehat{I}_-(u)$ is convex, nondecreasing, differentiable, closed, and increases to ∞ as u increases to 0
- approximation improves as $t \to \infty$

- ▶ dashed line: function $I_{-}(u)$
- ▶ solid curves: function $-(1/t)\log(-u)$ for t = 0.5, 1, 2
- ▶ t = 2 gives the best approximation

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_i(x) < 0, \ i = 1, \dots, m\}$$

convex function (follows from composition rule)

twice continuously differentiable (can be easily computed)

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$
$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Questions

- how well a solution of the equality constrained problem using log barrier approximates a solution of the original problem
- when the parameter t is large, the function $f_0 + (1/t)\phi$ is difficult to minimize by Newton's method, since its Hessian varies rapidly near the boundary of the feasible set

centering problem

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

- ► assume it has a unique solution $x^*(t)$ for each t > 0
- the curve $\{x^*(t) \mid t > 0\}$ is called the central path
- \blacktriangleright there exists some w such that $(x=x^*(t),\nu=w)$ satisfies

$$t\nabla f_0(x) + \nabla \phi(x) + A^T \nu = 0, \qquad Ax = b, \qquad f_i(x) < 0$$

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T \nu = 0, \qquad Ax = b, \qquad f_i(x) < 0$$

example central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i, \quad i = 1, \dots, 6$

the hyperplane $c^T x = c^T x^\ast(t)$ is tangent to the level curve of ϕ through $x^\ast(t)$

dual points from central path

- define $\lambda_i^*(t) = 1/(-tf_i(x^*(t)))$ and $\nu^*(t) = w/t$ we claim that every central point $x^*(t)$ yields a dual feasible point $\lambda^*(t), \nu^*(t)$. From it, we see that $\lambda^*(t) \succ 0$ since $f_i(x^*(t)) < 0$.
- the optimality condition becomes,

$$\nabla f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) \nabla f_i(x^*(t)) + A^T \nu^*(t) = 0$$

• $x^*(t)$ minimizes the Lagrangian

$$L(x,\lambda^{*}(t),\nu^{*}(t)) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*}(t)f_{i}(x) + \nu^{*}(t)^{T}(Ax - b)$$

the duality gap for the original problem associated to these values

$$g(\lambda^*(t),\nu^*(t)) = L(x^*(t),\lambda^*(t),\nu^*(t)) = f_0(x^*(t)) - m/t$$

as a consequence

$$f_0(x^*(t)) - p^* \le m/t$$

which confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ as $t \to \infty$

interpretation via KKT conditions

 $x=x^*(t),\,\lambda=\lambda^*(t),\,\nu=\nu^*(t)$ satisfy

- 1. primal constraints $f_i(x) \leq 0, \quad i = 1, \dots, m, \quad Ax = b$
- 2. dual constraints $\lambda \succeq 0$
- 3. gradient of Lagrangian with respect to x vanishes

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

4. approximate complementary slackness $-\lambda_i f_i(x) = 1/t$, i = 1, ..., mthe only difference with KKT is that condition 4 replaces $\lambda_i f_i(x) = 0$ centering problem without equality constraints

minimize
$$tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

force field interpretation

tf₀(x) is potential of force field F₀(x) = -t∇f₀(x)
 −log(-f_i(x)) is potential of force field F_i(x) = (1/f_i(x))∇f_i(x) the forces balance at x*(t)

$$F_0(x^*(t)) + \sum_{i=1}^m F_i(x^*(t)) = 0$$

example

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & a_i^T x \leq b_i, \qquad i=1,\ldots,m \\ \end{array}$$

• objective force field is constant $F_0(x) = -tc$

constraint force decays as inverse distance to constraint hyperplane

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad \|F_i(x)\|_2 = \frac{1}{\mathbf{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

- ▶ a small LP example with n = 2 and m = 5
- ▶ the equilibrium position of the particle traces out the central path
- larger value of objective force moves the particle closer to the optimal point

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

A simple but rarely used method

 $\blacktriangleright \text{ we simply take } t = m/\epsilon$

solve the equality constrained problem

minimize	$(m/\epsilon)f_0(x) + \phi(x)$
subject to	Ax = b

using Newton's method

although this method can work well for small problems, good starting points, and moderate accuracy, it does not work well in other cases. As a result, it is rarely used.

Barrier method

- ▶ we compute $X^*(t)$ for a sequence of increasing values of t, until $t \ge m/\epsilon$, which guarantees that we have an ϵ -suboptimal solution of the original problem
- When the method was first proposed by Fiacco and McCormick in the 1960s, it was called the sequential unconstrained minimization technique (SUMT)
- today the method is called the barrier method or path-following method

given strictly feasible
$$x, t := t^{(0)} > 0, \mu > 1$$
, tolerance $\epsilon > 0$
repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$ subject to Ax = b
- 2. Update. $x \coloneqq x^*(t)$
- 3. Stopping criterion. quit if $m/t < \epsilon$
- 4. Increase t. $t \coloneqq \mu t$

remarks

- terminates with $f_0(x) p^* \le \epsilon$
- \blacktriangleright centering usually done using Newton's method, starting at current x
- computing x*(t) exactly is not necessary while it is reasonable to assume exact centering
- choice of μ involves a trade-off: larger μ means fewer outer (centering) iterations and more inner (Newton) iterations; typical values $10 \le \mu \le 20$
- several heuristics for choice of $t^{(0)}$
- ▶ in one variation on the barrier method, an infeasible start Newton method is used for the centering steps. Thus, the barrier method is initialized with a point $x^{(0)}$ that satisfies $x^{(0)} \in \operatorname{dom} f_0$ and $f_i(x^{(0)}) < 0, i = 1, \ldots, m$, but not necessarily $Ax^{(0)} = b$

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

▶ starts with x on central path ($t^{(0)} = 1$, duality gap 100)

- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- ▶ total number of Newton iterations not very sensitive for $\mu \ge 10$

geometric program

(m = 100 inequalities and n = 50 variables)

minimize

minimize
$$\log\left(\sum_{k=1}^{5} \exp\left(a_{0k}^{T}x + b_{0k}\right)\right)$$

subject to $\log\left(\sum_{k=1}^{5} \exp\left(a_{0k}^{T}x + b_{0k}\right)\right) \le 0, \quad i = 1, \dots, m$

family of standard LPs

 $(A \in \mathbb{R}^{m \times 2m})$

solve 100 randomly generated instances for each m between 10 and 1000
 number of iterations grows very slowly as m ranges over a 100 : 1 ratio

Newton step for the modified KKT equations

centering problem

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

In the barrier method for above, the (feasible start) Newton step $\Delta x_{\rm nt}$, and associated dual variable are given by

$$\begin{bmatrix} t\nabla^2 f_0(x) + \nabla^2 \phi(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \nu_{\rm nt} \end{bmatrix} = -\begin{bmatrix} t\nabla f_0(x) + \nabla \phi(x) \\ 0 \end{bmatrix}$$

Newton steps for the centering problem can be interpreted as Newton steps for directly solving the modified KKT equations

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

$$-\lambda_i f_i(x) = 1/t, \quad i = 1, \dots, m$$

$$Ax = b$$

Convergence analysis

outer (centering) iterations number is exactly

$$\frac{\log\left(m/\epsilon t^{(0)}\right)}{\log\mu}$$

plus the initial centering step for computing $x^{*}\left(t^{(0)}
ight)$

inner (Newton) iterations

minimize $tf_0(x) + \phi(x)$

see convergence analysis of Newton's method

- $tf_0 + \phi$ must have closed sublevel sets for $t \ge t^{(0)}$
- classical analysis requires strong convexity and Lipschitz condition
- it does not address a basic question: As the parameter t increases, do the centering problems become more difficult? (numerically, this seems not the case)
- \blacktriangleright analysis via self-concordance requires self-concordance of $tf_0+\phi$

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

same general assumptions in this chapter plus

- sublevel sets (of f_0 on the feasible set) are bounded
- ▶ $tf_0 + \phi$ is self-concordant with closed sublevel sets for all $t \ge t^{(0)}$

the second condition above

holds for LP, QP, QCQP

may require reformulating the problem, e.g.

 $\begin{array}{ccc} \text{minimize} & \sum_{i=1}^{n} x_i \log x_i \\ \text{subject to} & Fx \preceq g \end{array} \implies \begin{array}{ccc} \text{minimize} & \sum_{i=1}^{n} x_i \log x_i \\ \text{subject to} & Fx \preceq g, \quad x \succeq 0 \end{array}$

needed for complexity analysis; barrier method works even when self-concordance assumption does not apply general result for closed strictly convex self-concordant function f

$$\#$$
 Newton iterations $\leq rac{f(x)-p^*}{\gamma}+c$

where γ and c are constants depending only on Newton algorithm parameters

barrier method effort of computing $x^+ = x^*(\mu t)$ starting at $x = x^*(t)$

Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

deriving an upper bound \qquad with $\lambda=\lambda^*(t)$ and $\nu=\nu^*(t)$

$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

= $\mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$
 $\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu \sum_{i=1}^m \lambda f_i(x^+) - m - m \log \mu$
 $\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$
= $m(\mu - 1 - \log \mu)$

total number of Newton steps in barrier method excluding initial centering step

Newton iterations
$$\leq N = \left\lceil \frac{\log(m/\epsilon t^{(0)})}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

• figure shows N for typical values of γ , c, m = 100, $m/\epsilon t^{(0)} = 10^5$

- \blacktriangleright confirms trade-off in choice of μ
- \blacktriangleright in practice, number of iterations is in the tens; not very sensitive for $\mu \geq 10$

polynomial-time complexity of barrier method

- \blacktriangleright we choose $\mu = 1 + 1/\sqrt{m},$ which approximately optimizes worst-case complexity
- for such μ simple calculation shows $N = O\left(\sqrt{m}\log\left(m/\epsilon t^{(0)}\right)\right)$
- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions) to get bound on number of flops
- in practice we choose μ fixed (between 10 and 20)

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

recall that the barrier method requires a strictly feasible starting point $x^{(0)}$. When such a point is not known, the barrier method is preceded by a preliminary state:

phase I computes strictly feasible starting point for barrier method (or the constraints are found to be infeasible)

the strictly feasible point found during phase I is then used as the starting point for the barrier method, which is called the **phase II** state.

feasibility problem find x such that

$$f_i(x) \le 0, \qquad i = 1, \dots, m$$

 $Ax = b$

Basic phase I method

basic phase I method (with optimal value $s = \bar{p}^*$)

 $\begin{array}{ll} \mbox{minimize} & s \\ \mbox{subject to} & f_i(x) \leq s, \qquad i=1,\ldots,m \\ & Ax=b \end{array}$

- ▶ s can be interpreted as a bound on the maximum infeasibility of the inequalities
- the goal is to drive the maximum infeasibility below zero
- if (x, s) feasible with s < 0, then x is strictly feasible for feasibility problem
- if $\bar{p}^* > 0$, then feasibility problem is infeasible
- \blacktriangleright if $\bar{p}^*=0$ and not attained, then feasibility problem is infeasible
- ▶ if $\bar{p}^* = 0$ and attained, then feasibility problem is feasible, but not strictly

sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$

subject to $f_i(x) \le s_i, \quad i = 1, \dots, m$
 $Ax = b$
 $s \succeq 0$

interesting property when infeasible: the optimal point for the above phase I problem often violates only a small number of inequalities

- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities
- for infeasible problems, second method produces a solution that satisfies many more inequalities than first method

termination near the phase II central path

the central path for the phase I problem intersects the central path for the original optimization problem

phase I via infeasible start Newton method

reformulate the original problem as

minimize $f_0(x)$ subject to $f_i(x) \le s$, $i = 1, \dots, m$ Ax = b, s = 0

we use an infeasible start Newton method to solve

minimize
$$t^{(0)}f_0(x) - \sum_{i=1}^m \log(s - f_i(x))$$

subject to $Ax = b$, $s = 0$

The main disadvantage of this method to the phase I problem is that there is no good stopping criterion when the problem is infeasible; the residual simply fails to converge to zero

Example

family of linear feasibility problems

 $Ax \leq b + \gamma \Delta b$

- ▶ data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma < 0$, feasible but not strictly feasible for $\gamma = 0$
- use basic phase I method, terminate when s < 0 (find a strictly feasible point) or when dual objective > 0 (produce a certificate of infeasibility)

conclusion

- cost of solving a convex feasibility problem using barrier method is modest when the problem is not close to the boundary between feasibility and infeasibility
- cost grows when the problem is very close to the boundary
- cost becomes infinite when the problem is exactly on the boundary

number of iterations roughly proportional to $\log\left(1/|\gamma|\right)$

feasibility using infeasible start Newton method

for smaller γ , number of Newton iterations grow dramatically, approximately as $1/\gamma$

- infeasible start Newton method works well provided the inequalities are feasible, and not very close to the boundary
- for small γ , a phase I method is far better
- the phase I method gracefully handles the infeasible case
- ▶ the infeasible start Newton method, in contrast, simply fails to converge

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

minimization with generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, m$
 $Ax = b$

assumptions

• f_0 convex function

• $f_i \colon \mathbb{R}^n \to \mathbb{R}^{k_i}$ convex with respect to proper cones $K_i \subset \mathbb{R}^{k_i}$ for $i = 1, \dots, m$

- all f_i twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- $\blacktriangleright p^*$ is finite and attained
- problem is strictly feasible, hence strong duality holds and dual optimum is attained

examples of greatest interest SOCP, SDP

generalized logarithm for a proper cone

function $\psi\colon \mathbb{R}^q\to\mathbb{R}$ is a generalized logarithm for a proper cone $K\subseteq\mathbb{R}^q$ if

- 1. dom $\psi = \operatorname{int} K$
- 2. ψ is concave, closed, twice continuously differentiable
- 3. $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- 4. there exists a constant $\theta > 0$ (degree of ψ) such that for $y \succ_K 0$ and s > 0

$$\psi(sy) = \psi(y) + \theta \log s$$

properties $\nabla \psi(y) \succeq_{K^*} 0$ and $y^T \nabla \psi(y) = \theta$ for any $y \succ_K 0$

examples

▶ nonnegative orthant $K = \mathbb{R}^n_+$

$$\psi(y) = \sum_{i=1}^{n} \log y_i, \qquad (\theta = n)$$
$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

▶ positive semidefinite cone $K = \mathbb{S}^n_+$

$$\begin{split} \psi(Y) &= \log \det Y, \quad (\theta = n) \\ \nabla \psi(Y) &= Y^{-1}, \qquad \mathbf{tr}(Y \nabla \psi(Y)) = n \end{split}$$

▶ second-order cone $K = \{y \in \mathbb{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$

$$\psi(y) = \log \left(y_{n+1}^2 - y_1^2 - \dots - y_n^2 \right), \qquad (\theta = 2)$$
$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2$$

logarithmic barrier function for $f_1(x) \preceq_{K_1} 0, \ldots, f_m(x) \preceq_{K_m} 0$

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)),$$

$$\mathbf{dom}\,\phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i with degree θ_i
- $\blacktriangleright \phi$ is convex and twice continuously differentiable

central path

▶ ${x^*(t) | t > 0}$ where $x^*(t)$ solves

 $\begin{array}{ll} \mbox{minimize} & tf_0(x) + \phi(x) \\ \mbox{subject to} & Ax = b \end{array}$

• $x = x^*(t)$ if there exists $w \in \mathbb{R}^p$ such that

$$t \nabla f_0(x) + \sum_{i=1}^m D f_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

where $Df_i(x) \in \mathbb{R}^{k_i \times n}$ is derivative (Jacobian) matrix of f_i at x

dual points on central path

• $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t))$, where

$$\lambda_i^*(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^*(t))), \qquad \nu^*(t) = \frac{w}{t}$$

• $\lambda_i^*(t) \succ_{K_i^*} 0$ from properties of ψ_i , therefore duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = \frac{1}{t} \sum_{i=1}^m \theta_i$$

example SDP with $F_i, G \in \mathbb{S}^p$

minimize
$$c^T x$$

subject to $F(x) = \sum_{i=1}^n x_i F_i + G \preceq 0$

▶ logarithmic barrier: φ(x) = log det(-F(x)^{-1})
 ▶ central path: x*(t) minimizes tc^Tx - log det(-F(x)), hence

$$tc_i - \mathbf{tr}(F_iF(x^*(t))^{-1}) = 0, \qquad i = 1, \dots, n$$

▶ dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for

maximize
$$\mathbf{tr}(GZ)$$

subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z \succeq 0$

• duality gap on central path: $c^T x^*(t) - \mathbf{tr}(GZ^*(t)) = p/t$

given strictly feasible $x,\,t\coloneqq t^{(0)}>0,\,\mu>1,$ tolerance $\epsilon>0$ repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$ subject to Ax = b
- 2. Update. $x \coloneqq x^*(t)$
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$
- 4. Increase t. $t \coloneqq \mu t$

remarks

- \blacktriangleright only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations

$$\left\lceil \frac{\log\left(\left(\sum_{i} \theta_{i}\right) / \left(\epsilon t^{(0)}\right)\right)}{\log \mu} \right\rceil$$

complexity analysis via self-concordance applies to SDP and SOCP

Examples

SOCP (50 variables, 50 SOC constraints in \mathbb{R}^6)

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$

SDP (100 variables, LMI constraints in \mathbb{S}^{100})

family of SDPs $(A \in \mathbb{S}^n, x \in \mathbb{R}^n)$

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T x \\ \text{subject to} & A + \mathbf{diag}(x) \succeq 0 \end{array}$

solve 100 randomly generated instances for each n between 10 and 1000

