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Inequality constrained minimization problems



inequality constrained minimization

minimize fo(z)
subject to fi(z) <0, i=1,...,m
Ax=b>

general assumptions

» f; convex and twice continuously differentiable
> AcRP™and rank A = p
> the problem is solvable, i.e., an optimal x* exists. p* is finite and attained

» problem is strictly feasible: there exists Z with
Z € dom fj, fi(@) <0, i=1,...,m, Az =10

hence strong duality holds and dual optimum is attained



Slater's constraint qualification holds, so there exist dual optimal \* € R™, v € RP,
which together with z* satisfy the Karush-Kuhn-Tucker conditions

1. primal constraints Az* =b, fi(z*)<0,i=1,---,m
2. dual constraints A =0
3. gradient of Lagrangian with respect to x vanishes

Vo) + Y ANV fi(a*)+ ATv =0
i=1

4. complementary slackness X fi(z*)=0,i=1,---,m



> interior-point methods solve the primal problem or the KKT conditions by applying
Newton's method to a sequence of equality constrained problems, or to a sequence
of modified versions of teh KKT conditions

» barrier method and primal-dual interior-point method

> the basic idea is to solve an optimization problem with linear equality and inequality
constraints by reducing it to a sequence of linear equality constrained problems



examples

> LP, QP, QCQP, GP
> entropy maximization with linear inequality constraints (D = R’} )

n
minimize g x; log x;
=1

subject to Fx<g
Ax=b

> differentiability may require reformulating the problem, e.g. piecewise-linear
minimization or ,-norm approximation via LP

» SDPs and SOCPs are better handled as problems with generalized inequalities



Logarithmic barrier function and central path



reformulation via indicator function
minimize fo(x)—i-ZI_(fi(a:))
subject to Az =1b

where I_ is the indicator function of R_

I (u) 0, ifu<oO
_(u) =
oo, ifu>0



Logarithmic barrier

approximation via logarithmic barrier

minimize Jo(z) — 1210g(—fi($))

subject to Axr =b>

» an equality constrained problem
» fort > 0, the term
I (u) = —(1/t) log(—u)
is a smooth approximation of I_. The basic idea of the barriAer method is to
approximate the indicator function I_ by its approximation I_(u)
» ¢ > 0is a parameter that sets the accuracy of the approximation

» [_(u) is convex, nondecreasing, differentiable, closed, and increases to oo as u
increases to 0

» approximation improves as t — 0o



» dashed line: function I_(u)
» solid curves: function —(1/t)log(—u) for t = 0.5,1,2

> t = 2 gives the best approximation



logarithmic barrier function

—> log(—fi(z)), dom¢={x|fi(x) <0, i=1,...,m}
=1

» convex function (follows from composition rule)

> twice continuously differentiable (can be easily computed)

sz z)

V2 fi(x)

=37
m m 1
§:j T V@V Zl Y

1=
Questions

» how well a solution of the equality constrained problem using log barrier
approximates a solution of the original problem

» when the parameter ¢ is large, the function fo + (1/t)¢ is difficult to minimize by
Newton's method, since its Hessian varies rapidly near the boundary of the feasible
set



Central path

centering problem

minimize tfo(z) + ¢(x)
subject to Az =10

» assume it has a unique solution x*(t) for each ¢ > 0
» the curve {z*(¢) | t > 0} is called the central path

» there exists some w such that (z = 2*(t), v = w) satisfies
tVfo(z) + Vo(z) + ATv =0, Az = b, fi(z) <0

Vfole) + Y VA + ATV =0, Ar=bo fila) <0
i=1 7t



example central path for an LP

minimize L

subject to aiTx < b;, i=1,...,6

the hyperplane ¢’z = c¢'z*(t) is tangent to the level curve of ¢ through z*(t)




dual points from central path

» define X (t) =1/ (—tfi(z*(¢))) and v*(t) = w/t we claim that every central point
x*(t) yields a dual feasible point A*(¢),v*(t). From it, we see that A*(¢) > 0 since
fl($*(t)) < 0.

> the optimality condition becomes,

V folz*(t)) + ZA* IV fia*(t) + ATv* (1) =0

=1

» 2*(t) minimizes the Lagrangian
L(x, X*(t), (1)) = folx) + > N (t)fi(z) +v* ()" (Az — b)
i=1

» the duality gap for the original problem associated to these values

g\ (1), v7 (1)) = L(z" (1), A*(8),v* (1)) = fo(z*(t)) —m/t

as a consequence
Jo(z*(t)) —p" <m/t

which confirms the intuitive idea that fo(z*(¢)) — p* as t — oo



interpretation via KKT conditions

x=x*(t), A = A*(t), v = v*(t) satisfy
1. primal constraints filx) <0, i=1,....m, Ax=%b
2. dual constraints A=0

3. gradient of Lagrangian with respect to x vanishes

Vo) + Y NiVfi(x)+ ATv =0
=1

4. approximate complementary slackness Nifi(x)=1/t, i=1,...

the only difference with KKT is that condition 4 replaces \; f;(z) =0



centering problem without equality constraints
m
minimize tfo(x) — Z log(—fi(x))
i=1

force field interpretation

» tfo(x) is potential of force field Fy(z) = —tV fo(x)
» —log(—fi(z)) is potential of force field F;(z) = (1/fi(z)) V fi(x)

the forces balance at x*(t)



example

minimize T
subject to a?mgbi, 1=1,....,m
» objective force field is constant Fy(x) = —tc

> constraint force decays as inverse distance to constraint hyperplane

—ay; 1
Fi(x) = 7:67 | Fi(w)]]2 = m

where H; = {z | al = = b;}



» asmall LP example with n =2 and m =5
> the equilibrium position of the particle traces out the central path

> larger value of objective force moves the particle closer to the optimal point



The barrier method



A simple but rarely used method

» we simply take t = m/e

» solve the equality constrained problem

minimize (m/e) fo(z) + ¢(x)
subjectto Az =10

using Newton's method

» although this method can work well for small problems, good starting points, and
moderate accuracy, it does not work well in other cases. As a result, it is rarely
used.



Barrier method

» we compute X*(t) for a sequence of increasing values of ¢, until t > m/e, which
guarantees that we have an e-suboptimal solution of the original problem

» When the method was first proposed by Fiacco and McCormick in the 1960s, it
was called the sequential unconstrained minimization technique (SUMT)

> today the method is called the barrier method or path-following method

given strictly feasible z, t == +0) > 0, > 1, tolerance € > 0
repeat
1. Centering step. Compute z*(t) by minimizing tfo + ¢ subject to Ax =0
2. Update. z = x*(t)
3. Stopping criterion. quit if m/t < e
4. Increase t. t == ut




remarks

> terminates with fy(x) — p* <e
» centering usually done using Newton's method, starting at current z

» computing z*(t) exactly is not necessary while it is reasonable to assume exact
centering

» choice of i involves a trade-off: larger 1 means fewer outer (centering) iterations
and more inner (Newton) iterations; typical values 10 < p < 20

» several heuristics for choice of ¢(©)
» in one variation on the barrier method, an infeasible start Newton method is used
for the centering steps. Thus, the barrier method is initialized with a point 2(%)

that satisfies 2(*) € dom fy and f;(#(?)) < 0,i=1,...,m, but not necessarily
Az =p



Examples

inequality form LP (m = 100 inequalities, n = 50 variables)
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> starts with  on central path (t(%) = 1, duality gap 100)
> terminates when ¢ = 108 (gap 1079)
» centering uses Newton's method with backtracking

» total number of Newton iterations not very sensitive for . > 10



geometric program (m = 100 inequalities and n = 50 variables)

5
minimize log (Z exp (aOTk:E + b%))

k=1

5
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family of standard LPs (A € R™x2m)

minimize Al

subject to Ax = b, z=0

35
30

1 it

20

AL

Newton iterations

150

10 102 108

m

» solve 100 randomly generated instances for each m between 10 and 1000

» number of iterations grows very slowly as m ranges over a 100 : 1 ratio



Newton step for the modified KKT equations
centering problem

minimize tfo(z) + o(x)
subject to Axr=10>

In the barrier method for above, the (feasible start) Newton step Az, and associated
dual variable are given by

[tVQfo(w) j V2o(x) Aﬂ [Ayﬁfnt] _ [t%(m) O+ Vo(x)

Newton steps for the centering problem can be interpreted as Newton steps for directly
solving the modified KKT equations

Vi) + > ANVfix)+ ATv = 0
=1

—Alfl(l') = 1/t, izl,...,m
Axr = b



Convergence analysis

outer (centering) iterations number is exactly
log (m/et®)
log p

plus the initial centering step for computing 2* (¢(?))
inner (Newton) iterations

minimize tfo(z) + o(x)
see convergence analysis of Newton's method

> ¢fo+ ¢ must have closed sublevel sets for ¢ > t(¥)
>

| 2

classical analysis requires strong convexity and Lipschitz condition

it does not address a basic question: As the parameter ¢ increases, do the
centering problems become more difficult? (numerically, this seems not the case)

analysis via self-concordance requires self-concordance of tfy + ¢



Complexity analysis via self-concordance



Self-concordance assumptions

same general assumptions in this chapter plus

» sublevel sets (of fp on the feasible set) are bounded
> tfo+ ¢ is self-concordant with closed sublevel sets for all ¢ > ¢(©)

the second condition above
» holds for LP, QP, QCQP

» may require reformulating the problem, e.g.

minimize Y " | z;logx; . minimize Y " | z;logx;
subjectto Fxz <g subjectto Fx <g, x>0

» needed for complexity analysis; barrier method works even when self-concordance
assumption does not apply



Newton iterations per centering step

general result for closed strictly convex self-concordant function f

# Newton iterations < m +c
g

where v and ¢ are constants depending only on Newton algorithm parameters

barrier method effort of computing z* = x*(ut) starting at z = x*(t)

ptfo(x) + ¢(x) — ptfo(a™) — p(a™)

# Newton iterations < +c
Y




deriving an upper bound

ptfo(z) +

= ptfo(z) —

< ptfo(z) —

< pt fo(x)

with A = A*(t) and v = v*(t)

¢(x) — pt fo(x +) $(a)

it fo +Zlog —ptA fi(2T)) — mlog
=1

ptfo(zt) — p Z Mi(z") —m —mlogp

— putg(A\,v) —m — mlogu

=m(p—1—logpu)



Total number of Newton iterations

total number of Newton steps in barrier method excluding initial centering step

# Newton iterations < N =
log p gl

log (m/etwﬂ (m(u —1-logp) )
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> figure shows N for typical values of ~, ¢, m = 100, m/et(®) = 10°
» confirms trade-off in choice of i

» in practice, number of iterations is in the tens; not very sensitive for 1 > 10



polynomial-time complexity of barrier method

>

>
>
>

v

we choose = 1+ 1/y/m, which approximately optimizes worst-case complexity
for such p simple calculation shows N = O (y/mlog (m/et(o)))
number of Newton iterations for fixed gap reduction is O(y/m)

multiply with cost of one Newton iteration (a polynomial function of problem
dimensions) to get bound on number of flops

in practice we choose p fixed (between 10 and 20)



Feasibility and phase | methods



recall that the barrier method requires a strictly feasible starting point 2(9). When such
a point is not known, the barrier method is preceded by a preliminary state:

phase | computes strictly feasible starting point for barrier method (or the
constraints are found to be infeasible)

the strictly feasible point found during phase | is then used as the starting point for the
barrier method, which is called the phase Il state.

feasibility problem find x such that

fi(z) <0, i=1,....m
Ar =b



Basic phase | method

basic phase | method (with optimal value s = p*)
minimize s
subject to fi(z) <s, i=1,...,m
Ar =D

s can be interpreted as a bound on the maximum infeasibility of the inequalities
the goal is to drive the maximum infeasibility below zero

if (x,s) feasible with s < 0, then z is strictly feasible for feasibility problem

if p* > 0, then feasibility problem is infeasible

if p* = 0 and not attained, then feasibility problem is infeasible

if p* = 0 and attained, then feasibility problem is feasible, but not strictly



sum of infeasibilities phase | method

minimize 1 K

subject to  fi(x) < sy, i=1,...,m
Ax=b
s>=0

interesting property when infeasible: the optimal point for the above phase | problem
often violates only a small number of inequalities



comparison of methods infeasible set of 100 linear inequalities in 50 variables
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» left: basic phase | solution; satisfies 39 inequalities
» right: sum of infeasibilities phase | solution; satisfies 79 inequalities

» for infeasible problems, second method produces a solution that satisfies many
more inequalities than first method



termination near the phase |l central path

the central path for the phase | problem intersects the central path for the original
optimization problem

phase | via infeasible start Newton method

reformulate the original problem as

minimize fo(z)
subject to filx) <s, 1=1,....,m
Ar=b, s=0

we use an infeasible start Newton method to solve
m
minimize O fo(z) — Z log(s — fi(z))
i=1
subject to Ar=b, s=0
The main disadvantage of this method to the phase | problem is that there is no good

stopping criterion when the problem is infeasible; the residual simply fails to converge to
zero



Example

family of linear feasibility problems

Ax < b+ ~Ab

» data chosen to be strictly feasible for v > 0, infeasible for v < 0, feasible but not
strictly feasible for v =0

» use basic phase | method, terminate when s < 0 (find a strictly feasible point) or
when dual objective > 0 (produce a certificate of infeasibility)
conclusion
> cost of solving a convex feasibility problem using barrier method is modest when
the problem is not close to the boundary between feasibility and infeasibility
» cost grows when the problem is very close to the boundary

P cost becomes infinite when the problem is exactly on the boundary
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number of iterations roughly proportional to log (1/|7])



feasibility using infeasible start Newton method

Newton iterations
- =
e
I
J
y.

—
e

10°L
102 10-1 100 101

for smaller , number of Newton iterations grow dramatically, approximately as 1/



» infeasible start Newton method works well provided the inequalities are feasible,
and not very close to the boundary

» for small , a phase | method is far better
> the phase | method gracefully handles the infeasible case

> the infeasible start Newton method, in contrast, simply fails to converge



Problems with generalized inequalities



minimization with generalized inequalities

minimize fo()
subject to fi(z) <k, 0, 1=1,....m
Ax =b

assumptions

» fo convex function

fi: R® — R¥i convex with respect to proper cones K; C R¥i fori=1,...,m
all f; twice continuously differentiable

A € RP*™ with rank A = p

p* is finite and attained

» problem is strictly feasible, hence strong duality holds and dual optimum is attained

examples of greatest interest SOCP, SDP



Logarithmic barrier and central path

generalized logarithm for a proper cone

function v¢: R? — R is a generalized logarithm for a proper cone K C RY if

1. domy =int K

2. 1) is concave, closed, twice continuously differentiable

3. V29(y) < 0 fory =k 0

4. there exists a constant § > 0 (degree of ) such that for y >, 0 and s > 0

Y(sy) = ¥(y) + Olog s

properties Vi(y) =x«0 and 3'Vi(y) =0 forany y =g 0



examples

» nonnegative orthant K = R"}

U(y)=> logy,  (0=n)
i=1

Vo(y) = (Vys, - yn), ¥ Vi(y) =n

» positive semidefinite cone K = S%

P(Y) =logdetY, (0 =n)
Vp(Y)=Y"Y  tr(YVy(Y)) =n



» second-order cone K = {y € R"™ | (yf +--- + y2)Y2 <y}

W(y) =log (yoy —yi—-—v2), (0=2)
—Y1
Vip(y) = 2 ' yT(y) = 2
Yo —ui— = vE |~y |

Yn+1



logarithmic barrier function for fi(z) =k, 0, ..., fm(z) <k, O

o(z) = =3 i~ fila),
=1

dom ¢ = {:E | fz(m) <K, 0, 1= 17-"7m}

> ); is generalized logarithm for K; with degree 6;

> ¢ is convex and twice continuously differentiable



central path

> {z*(t) |t > 0} where 2*(¢) solves

minimize tfo(x) + ¢(x)
subject to Ax =10

» x = z*(t) if there exists w € R? such that
tV fo(x Z D fi(2)"Vii(—fi(x)) + ATw =0

where Df;(z) € R¥i*" is derivative (Jacobian) matrix of f; at x



dual points on central path

» 2*(t) minimizes Lagrangian L(x, \*(t),v*(t)), where
M) = TV RE D), V) =

> M (t) =k; 0 from properties of v;, therefore duality gap

fo(@*(t)) =g (N (), V" (1)) = — Z 0i



example SDP with F;, G € SP
minimize 'z

n
subject to F(x) = ZxZE +G =<0
i=1

» logarithmic barrier: ¢(x) = log det(—F(x)™!)
» central path: z*(t) minimizes tc’x — logdet(—F(z)), hence
te; — tr(EF(2*(t) ™) =0, i=1,...,n
» dual point on central path: Z*(t) = —(1/t)F(x*(t))~! is feasible for

maximize tr(GZ)
subject to tr(F;Z) +¢; =0, i=1,...,n
Z =0

» duality gap on central path: cT'z*(t) — tr(GZ*(t)) = p/t



Barrier method

given strictly feasible z, ¢ := t(®) > 0, i > 1, tolerance ¢ > 0
repeat
1. Centering step. Compute z*(t) by minimizing tfo + ¢ subject to Az =0
2. Update. x = z*(t)
3. Stopping criterion. quit if (>, 0;) /t <€
4. Increaset. t = ut




remarks

» only difference is duality gap m/t on central path is replaced by >, 6;/t
» number of outer iterations

log (32, 6) / (™))
log p

» complexity analysis via self-concordance applies to SDP and SOCP



Examples

SOCP (50 variables, 50 SOC constraints in R?)

minimize e

subject to |A;x + b2 < ClTI' + d;, 1=1,....m

Newton iterations
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SDP (100 variables, LMI constraints in S1%°)
minimize '
n
subject to szFZ +G =<0
i=1
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family of SDPs (AeS™ zeR")

minimize 17z
subject to A + diag(x) = 0

solve 100 randomly generated instances for each n between 10 and 1000
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