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inequality constrained minimization

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

general assumptions

▶ fi convex and twice continuously differentiable
▶ A ∈ Rp×n and rankA = p

▶ the problem is solvable, i.e., an optimal x∗ exists. p∗ is finite and attained
▶ problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence strong duality holds and dual optimum is attained



Slater’s constraint qualification holds, so there exist dual optimal λ∗ ∈ Rm, ν ∈ Rp,
which together with x∗ satisfy the Karush-Kuhn-Tucker conditions

1. primal constraints Ax∗ = b, fi(x
∗) ≤ 0, i = 1, · · · ,m

2. dual constraints λ∗ ⪰ 0

3. gradient of Lagrangian with respect to x vanishes

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +AT ν∗ = 0

4. complementary slackness λ∗i fi(x
∗) = 0, i = 1, · · · ,m



▶ interior-point methods solve the primal problem or the KKT conditions by applying
Newton’s method to a sequence of equality constrained problems, or to a sequence
of modified versions of teh KKT conditions

▶ barrier method and primal-dual interior-point method
▶ the basic idea is to solve an optimization problem with linear equality and inequality

constraints by reducing it to a sequence of linear equality constrained problems



examples

▶ LP, QP, QCQP, GP
▶ entropy maximization with linear inequality constraints (D = Rn

++)

minimize
n∑

i=1

xi log xi

subject to Fx ⪯ g

Ax = b

▶ differentiability may require reformulating the problem, e.g. piecewise-linear
minimization or ℓ∞-norm approximation via LP

▶ SDPs and SOCPs are better handled as problems with generalized inequalities
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reformulation via indicator function

minimize f0(x) +

m∑
i=1

I−(fi(x))

subject to Ax = b

where I− is the indicator function of R−

I−(u) =

{
0, if u ≤ 0

∞, if u > 0



Logarithmic barrier

approximation via logarithmic barrier

minimize f0(x)−
1

t

m∑
i=1

log(−fi(x))

subject to Ax = b

▶ an equality constrained problem
▶ for t > 0, the term

Î−(u) = −(1/t) log(−u)

is a smooth approximation of I−. The basic idea of the barrier method is to
approximate the indicator function I− by its approximation Î−(u)

▶ t > 0 is a parameter that sets the accuracy of the approximation
▶ Î−(u) is convex, nondecreasing, differentiable, closed, and increases to ∞ as u

increases to 0
▶ approximation improves as t→ ∞



▶ dashed line: function I−(u)
▶ solid curves: function −(1/t) log(−u) for t = 0.5, 1, 2

▶ t = 2 gives the best approximation



logarithmic barrier function

ϕ(x) = −
m∑
i=1

log(−fi(x)), domϕ = {x | fi(x) < 0, i = 1, . . . ,m}

▶ convex function (follows from composition rule)
▶ twice continuously differentiable (can be easily computed)

∇ϕ(x) =
m∑
i=1

1

−fi(x)
∇fi(x)

∇2ϕ(x) =
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)

Questions

▶ how well a solution of the equality constrained problem using log barrier
approximates a solution of the original problem

▶ when the parameter t is large, the function f0 + (1/t)ϕ is difficult to minimize by
Newton’s method, since its Hessian varies rapidly near the boundary of the feasible
set



Central path

centering problem

minimize tf0(x) + ϕ(x)

subject to Ax = b

▶ assume it has a unique solution x∗(t) for each t > 0

▶ the curve {x∗(t) | t > 0} is called the central path
▶ there exists some w such that (x = x∗(t), ν = w) satisfies

t∇f0(x) +∇ϕ(x) +AT ν = 0, Ax = b, fi(x) < 0

t∇f0(x) +
m∑
i=1

1

−fi(x)
∇fi(x) +AT ν = 0, Ax = b, fi(x) < 0



example central path for an LP

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . , 6

the hyperplane cTx = cTx∗(t) is tangent to the level curve of ϕ through x∗(t)



dual points from central path

▶ define λ∗i (t) = 1/ (−tfi(x∗(t))) and ν∗(t) = w/t we claim that every central point
x∗(t) yields a dual feasible point λ∗(t), ν∗(t). From it, we see that λ∗(t) ≻ 0 since
fi(x

∗(t)) < 0.
▶ the optimality condition becomes,

∇f0(x∗(t)) +
m∑
i=1

λ∗i (t)∇fi(x∗(t)) +AT ν∗(t) = 0

▶ x∗(t) minimizes the Lagrangian

L(x, λ∗(t), ν∗(t)) = f0(x) +

m∑
i=1

λ∗i (t)fi(x) + ν∗(t)T (Ax− b)

▶ the duality gap for the original problem associated to these values

g(λ∗(t), ν∗(t)) = L(x∗(t), λ∗(t), ν∗(t)) = f0(x
∗(t))−m/t

as a consequence
f0(x

∗(t))− p∗ ≤ m/t

which confirms the intuitive idea that f0(x∗(t)) → p∗ as t→ ∞



interpretation via KKT conditions

x = x∗(t), λ = λ∗(t), ν = ν∗(t) satisfy

1. primal constraints fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints λ ⪰ 0

3. gradient of Lagrangian with respect to x vanishes

∇f0(x) +
m∑
i=1

λi∇fi(x) +AT ν = 0

4. approximate complementary slackness −λifi(x) = 1/t, i = 1, . . . ,m

the only difference with KKT is that condition 4 replaces λifi(x) = 0



centering problem without equality constraints

minimize tf0(x)−
m∑
i=1

log(−fi(x))

force field interpretation

▶ tf0(x) is potential of force field F0(x) = −t∇f0(x)
▶ − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x∗(t)

F0(x
∗(t)) +

m∑
i=1

Fi(x
∗(t)) = 0



example

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . ,m

▶ objective force field is constant F0(x) = −tc
▶ constraint force decays as inverse distance to constraint hyperplane

Fi(x) =
−ai

bi − aTi x
, ∥Fi(x)∥2 =

1

dist(x,Hi)

where Hi = {x | aTi x = bi}



▶ a small LP example with n = 2 and m = 5

▶ the equilibrium position of the particle traces out the central path
▶ larger value of objective force moves the particle closer to the optimal point
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A simple but rarely used method

▶ we simply take t = m/ϵ

▶ solve the equality constrained problem

minimize (m/ϵ)f0(x) + ϕ(x)

subject to Ax = b

using Newton’s method
▶ although this method can work well for small problems, good starting points, and

moderate accuracy, it does not work well in other cases. As a result, it is rarely
used.



Barrier method

▶ we compute X∗(t) for a sequence of increasing values of t, until t ≥ m/ϵ, which
guarantees that we have an ϵ-suboptimal solution of the original problem

▶ When the method was first proposed by Fiacco and McCormick in the 1960s, it
was called the sequential unconstrained minimization technique (SUMT)

▶ today the method is called the barrier method or path-following method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ϵ > 0

repeat

1. Centering step. Compute x∗(t) by minimizing tf0 + ϕ subject to Ax = b

2. Update. x := x∗(t)

3. Stopping criterion. quit if m/t < ϵ

4. Increase t. t := µt



remarks

▶ terminates with f0(x)− p∗ ≤ ϵ

▶ centering usually done using Newton’s method, starting at current x
▶ computing x∗(t) exactly is not necessary while it is reasonable to assume exact

centering
▶ choice of µ involves a trade-off: larger µ means fewer outer (centering) iterations

and more inner (Newton) iterations; typical values 10 ≤ µ ≤ 20

▶ several heuristics for choice of t(0)

▶ in one variation on the barrier method, an infeasible start Newton method is used
for the centering steps. Thus, the barrier method is initialized with a point x(0)

that satisfies x(0) ∈ dom f0 and fi(x(0)) < 0, i = 1, . . . ,m, but not necessarily
Ax(0) = b



Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

▶ starts with x on central path (t(0) = 1, duality gap 100)
▶ terminates when t = 108 (gap 10−6)
▶ centering uses Newton’s method with backtracking
▶ total number of Newton iterations not very sensitive for µ ≥ 10



geometric program (m = 100 inequalities and n = 50 variables)

minimize log

(
5∑

k=1

exp
(
aT0kx+ b0k

))

subject to log

(
5∑

k=1

exp
(
aT0kx+ b0k

))
≤ 0, i = 1, . . . ,m



family of standard LPs (A ∈ Rm×2m)

minimize cTx

subject to Ax = b, x ⪰ 0

▶ solve 100 randomly generated instances for each m between 10 and 1000

▶ number of iterations grows very slowly as m ranges over a 100 : 1 ratio



Newton step for the modified KKT equations

centering problem

minimize tf0(x) + ϕ(x)

subject to Ax = b

In the barrier method for above, the (feasible start) Newton step ∆xnt, and associated
dual variable are given by[

t∇2f0(x) +∇2ϕ(x) AT

A 0

] [
∆xnt
νnt

]
= −

[
t∇f0(x) +∇ϕ(x)

0

]
Newton steps for the centering problem can be interpreted as Newton steps for directly
solving the modified KKT equations

∇f0(x) +
m∑
i=1

λi∇fi(x) +AT ν = 0

−λifi(x) = 1/t, i = 1, . . . ,m

Ax = b



Convergence analysis

outer (centering) iterations number is exactly⌈
log
(
m/ϵt(0)

)
logµ

⌉

plus the initial centering step for computing x∗
(
t(0)
)

inner (Newton) iterations

minimize tf0(x) + ϕ(x)

see convergence analysis of Newton’s method

▶ tf0 + ϕ must have closed sublevel sets for t ≥ t(0)

▶ classical analysis requires strong convexity and Lipschitz condition
▶ it does not address a basic question: As the parameter t increases, do the

centering problems become more difficult? (numerically, this seems not the case)
▶ analysis via self-concordance requires self-concordance of tf0 + ϕ
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Self-concordance assumptions

same general assumptions in this chapter plus

▶ sublevel sets (of f0 on the feasible set) are bounded
▶ tf0 + ϕ is self-concordant with closed sublevel sets for all t ≥ t(0)

the second condition above

▶ holds for LP, QP, QCQP
▶ may require reformulating the problem, e.g.

minimize
∑n

i=1 xi log xi
subject to Fx ⪯ g

=⇒ minimize
∑n

i=1 xi log xi
subject to Fx ⪯ g, x ⪰ 0

▶ needed for complexity analysis; barrier method works even when self-concordance
assumption does not apply



Newton iterations per centering step

general result for closed strictly convex self-concordant function f

# Newton iterations ≤ f(x)− p∗

γ
+ c

where γ and c are constants depending only on Newton algorithm parameters

barrier method effort of computing x+ = x∗(µt) starting at x = x∗(t)

# Newton iterations ≤ µtf0(x) + ϕ(x)− µtf0(x
+)− ϕ(x+)

γ
+ c



deriving an upper bound with λ = λ∗(t) and ν = ν∗(t)

µtf0(x) + ϕ(x)− µtf0(x
+)− ϕ(x+)

= µtf0(x)− µtf0(x
+) +

m∑
i=1

log(−µtλifi(x+))−m logµ

≤ µtf0(x)− µtf0(x
+)− µ

m∑
i=1

λfi(x
+)−m−m logµ

≤ µtf0(x)− µtg(λ, ν)−m−m logµ

= m(µ− 1− logµ)



Total number of Newton iterations

total number of Newton steps in barrier method excluding initial centering step

# Newton iterations ≤ N =

⌈
log
(
m/ϵt(0)

)
logµ

⌉(
m(µ− 1− logµ)

γ
+ c

)



▶ figure shows N for typical values of γ, c, m = 100, m/ϵt(0) = 105

▶ confirms trade-off in choice of µ
▶ in practice, number of iterations is in the tens; not very sensitive for µ ≥ 10



polynomial-time complexity of barrier method

▶ we choose µ = 1 + 1/
√
m, which approximately optimizes worst-case complexity

▶ for such µ simple calculation shows N = O
(√
m log

(
m/ϵt(0)

))
▶ number of Newton iterations for fixed gap reduction is O(

√
m)

▶ multiply with cost of one Newton iteration (a polynomial function of problem
dimensions) to get bound on number of flops

▶ in practice we choose µ fixed (between 10 and 20)
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recall that the barrier method requires a strictly feasible starting point x(0). When such
a point is not known, the barrier method is preceded by a preliminary state:

phase I computes strictly feasible starting point for barrier method (or the
constraints are found to be infeasible)

the strictly feasible point found during phase I is then used as the starting point for the
barrier method, which is called the phase II state.

feasibility problem find x such that

fi(x) ≤ 0, i = 1, . . . ,m

Ax = b



Basic phase I method

basic phase I method (with optimal value s = p̄∗)

minimize s

subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b

▶ s can be interpreted as a bound on the maximum infeasibility of the inequalities
▶ the goal is to drive the maximum infeasibility below zero
▶ if (x, s) feasible with s < 0, then x is strictly feasible for feasibility problem
▶ if p̄∗ > 0, then feasibility problem is infeasible
▶ if p̄∗ = 0 and not attained, then feasibility problem is infeasible
▶ if p̄∗ = 0 and attained, then feasibility problem is feasible, but not strictly



sum of infeasibilities phase I method

minimize 1T s

subject to fi(x) ≤ si, i = 1, . . . ,m

Ax = b

s ⪰ 0

interesting property when infeasible: the optimal point for the above phase I problem
often violates only a small number of inequalities



comparison of methods infeasible set of 100 linear inequalities in 50 variables

▶ left: basic phase I solution; satisfies 39 inequalities
▶ right: sum of infeasibilities phase I solution; satisfies 79 inequalities
▶ for infeasible problems, second method produces a solution that satisfies many

more inequalities than first method



termination near the phase II central path

the central path for the phase I problem intersects the central path for the original
optimization problem

phase I via infeasible start Newton method

reformulate the original problem as

minimize f0(x)

subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b, s = 0

we use an infeasible start Newton method to solve

minimize t(0)f0(x)−
m∑
i=1

log(s− fi(x))

subject to Ax = b, s = 0

The main disadvantage of this method to the phase I problem is that there is no good
stopping criterion when the problem is infeasible; the residual simply fails to converge to
zero



Example

family of linear feasibility problems

Ax ⪯ b+ γ∆b

▶ data chosen to be strictly feasible for γ > 0, infeasible for γ < 0, feasible but not
strictly feasible for γ = 0

▶ use basic phase I method, terminate when s < 0 (find a strictly feasible point) or
when dual objective > 0 (produce a certificate of infeasibility)

conclusion

▶ cost of solving a convex feasibility problem using barrier method is modest when
the problem is not close to the boundary between feasibility and infeasibility

▶ cost grows when the problem is very close to the boundary
▶ cost becomes infinite when the problem is exactly on the boundary



number of iterations roughly proportional to log (1/|γ|)



feasibility using infeasible start Newton method

for smaller γ, number of Newton iterations grow dramatically, approximately as 1/γ



▶ infeasible start Newton method works well provided the inequalities are feasible,
and not very close to the boundary

▶ for small γ, a phase I method is far better
▶ the phase I method gracefully handles the infeasible case
▶ the infeasible start Newton method, in contrast, simply fails to converge
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minimization with generalized inequalities

minimize f0(x)

subject to fi(x) ⪯Ki 0, i = 1, . . . ,m

Ax = b

assumptions

▶ f0 convex function
▶ fi : Rn → Rki convex with respect to proper cones Ki ⊂ Rki for i = 1, . . . ,m

▶ all fi twice continuously differentiable
▶ A ∈ Rp×n with rankA = p

▶ p∗ is finite and attained
▶ problem is strictly feasible, hence strong duality holds and dual optimum is attained

examples of greatest interest SOCP, SDP



Logarithmic barrier and central path

generalized logarithm for a proper cone

function ψ : Rq → R is a generalized logarithm for a proper cone K ⊆ Rq if

1. domψ = intK

2. ψ is concave, closed, twice continuously differentiable
3. ∇2ψ(y) ≺ 0 for y ≻K 0

4. there exists a constant θ > 0 (degree of ψ) such that for y ≻K 0 and s > 0

ψ(sy) = ψ(y) + θ log s

properties ∇ψ(y) ⪰K∗ 0 and yT∇ψ(y) = θ for any y ≻K 0



examples

▶ nonnegative orthant K = Rn
+

ψ(y) =

n∑
i=1

log yi, (θ = n)

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

▶ positive semidefinite cone K = Sn+

ψ(Y ) = log detY, (θ = n)

∇ψ(Y ) = Y −1, tr(Y∇ψ(Y )) = n



▶ second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)
1/2 ≤ yn+1}

ψ(y) = log
(
y2n+1 − y21 − · · · − y2n

)
, (θ = 2)

∇ψ(y) = 2

y2n+1 − y21 − · · · − y2n


−y1

...
−yn
yn+1

 , yT∇ψ(y) = 2



logarithmic barrier function for f1(x) ⪯K1 0, . . . , fm(x) ⪯Km 0

ϕ(x) = −
m∑
i=1

ψi(−fi(x)),

domϕ = {x | fi(x) ≺Ki 0, i = 1, . . . ,m}

▶ ψi is generalized logarithm for Ki with degree θi
▶ ϕ is convex and twice continuously differentiable



central path

▶ {x∗(t) | t > 0} where x∗(t) solves

minimize tf0(x) + ϕ(x)

subject to Ax = b

▶ x = x∗(t) if there exists w ∈ Rp such that

t∇f0(x) +
m∑
i=1

Dfi(x)
T∇ψi(−fi(x)) +ATw = 0

where Dfi(x) ∈ Rki×n is derivative (Jacobian) matrix of fi at x



dual points on central path

▶ x∗(t) minimizes Lagrangian L(x, λ∗(t), ν∗(t)), where

λ∗i (t) =
1

t
∇ψi(−fi(x∗(t))), ν∗(t) =

w

t

▶ λ∗i (t) ≻K∗
i
0 from properties of ψi, therefore duality gap

f0 (x
∗(t))− g (λ∗(t), ν∗(t)) =

1

t

m∑
i=1

θi



example SDP with Fi, G ∈ Sp

minimize cTx

subject to F (x) =

n∑
i=1

xiFi +G ⪯ 0

▶ logarithmic barrier: ϕ(x) = log det(−F (x)−1)

▶ central path: x∗(t) minimizes tcTx− log det(−F (x)), hence

tci − tr(FiF (x
∗(t))−1) = 0, i = 1, . . . , n

▶ dual point on central path: Z∗(t) = −(1/t)F (x∗(t))−1 is feasible for

maximize tr(GZ)

subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z ⪰ 0

▶ duality gap on central path: cTx∗(t)− tr(GZ∗(t)) = p/t



Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ϵ > 0

repeat

1. Centering step. Compute x∗(t) by minimizing tf0 + ϕ subject to Ax = b

2. Update. x := x∗(t)

3. Stopping criterion. quit if (
∑

i θi) /t < ϵ

4. Increase t. t := µt



remarks

▶ only difference is duality gap m/t on central path is replaced by
∑

i θi/t

▶ number of outer iterations ⌈
log
(
(
∑

i θi) /
(
ϵt(0)

))
logµ

⌉

▶ complexity analysis via self-concordance applies to SDP and SOCP



Examples

SOCP (50 variables, 50 SOC constraints in R6)

minimize fTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m



SDP (100 variables, LMI constraints in S100)

minimize cTx

subject to
n∑

i=1

xiFi +G ⪯ 0



family of SDPs (A ∈ Sn, x ∈ Rn)

minimize 1Tx

subject to A+ diag(x) ⪰ 0

solve 100 randomly generated instances for each n between 10 and 1000
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