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Equality constrained minimization

equality constrained minimization problem

minimize f(x)

subject to Ax = b

▶ f convex and twice continuously differentiable
▶ A ∈ Rp×n with rankA = p

▶ assume optimal value p∗ is finite and attained

optimality condition (review)

x∗ is optimal ⇐⇒ x∗ ∈ dom f, Ax∗ = b,
there exists ν∗ such that ∇f(x∗) +AT ν∗ = 0



equality constrained quadratic minimization (with P ∈ Sn+)

minimize (1/2)xTPx+ qTx+ r

subject to Ax = b

optimality condition [
P AT

A 0

] [
x∗

ν∗

]
=

[
−q
b

]
▶ this set of linear equations is called the KKT system
▶ coefficient matrix is called KKT matrix
▶ When the KKT matrix is nonsingular, there is a unique optimal primal-dual pair

(x∗, ν∗)

▶ If the KKT matrix is singular, but the KKT system is solvable, any solution yield
an optimal pair

▶ If the KKT system is not solvable, the problem is unbounded below or infeasible



Nonsingularity of the KKT matrix

we assume that P ∈ Sn+ and rankA = p < n. The following shows several conditions
equivalent to nonsingularity of the KKT matrix:

▶ N (P ) ∩N (A) = {0}, i.e., P and A have no nontrivial common nullspace
▶ KKT matrix is nonsingular if and only if

Ax = 0, x ̸= 0 =⇒ xTPx > 0

▶ equivalent condition for nonsingularity

P +ATQA ≻ 0 for some Q ⪰ 0
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Eliminating equality constraints

represent solutions of {x | Ax = b} as

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

▶ x̂ is any particular solution
▶ range of F ∈ Rn×(n−p) is nullspace of A

reduced or eliminated problem

minimize f(Fz + x̂)

▶ unconstrained problem with variable z ∈ Rn−p

▶ from solution z∗, obtain x∗ and ν∗ as

x∗ = Fz∗ + x̂, ν∗ = −
(
AAT

)−1
A∇f(x∗)



example optimal allocation with resource constraint

minimize f1(x1) + · · ·+ fn(xn)

subject to x1 + · · ·+ xn = b

eliminate xn = b− x1 − · · · − xn−1, namely, choose

x̂ = ben, F =

[
I

−1T

]
∈ Rn×(n−1)

reduced problem

minimize f1(x1) + · · ·+ fn−1(xn−1) + fn(b− x1 − · · · − xn−1)
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▶ the dual function is
g(ν) = −bT ν − f∗(−AT ν),

where f∗ is the conjugate of f
▶ the dual problem is

maximize − bT ν − f∗(−AT ν)

▶ there is an optimal point, the problem is strictly feasible, Slater’s condition holds
▶ strong duality holds, and there exists a ν∗ with

g(ν∗) = p∗

▶ once we find an optimal dual variable ν∗, we reconstruct an optimal primal
solution x∗ from it. (This is not always straightforward)



example Equality constrained analytic center.

minimize f(x) = −
n∑

i=1

log xi

subject to Ax = b

with implicit constraint x ≻ 0.

the dual problem is

maximize g(ν) = −bT ν + n+

n∑
i=1

log(AT ν)i,

with implicit constraint AT ν ≻ 0

we can solve the dual feasibility equation, i.e., find the x that minimize L(x, ν):

∇f(x) +AT ν = −(1/x1, . . . , 1/xn) +AT ν = 0,

and so xi = 1/(AT ν)i.
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Newton step

Newton step ∆xnt of f at feasible x is given by the solution v of[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]
interpretations

▶ ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)T v + (1/2)vT∇2f(x)v

subject to A(x+ v) = b

▶ ∆xnt equations follow from linearizing optimality conditions

∇f(x+ v) +ATw ≈ ∇f(x) +∇2f(x)v +ATw = 0, A(x+ v) = b



Newton decrement

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
=

(
−∇f(x)T∆xnt

)1/2
interpretations

▶ gives an estimate of f(x)− p∗ using quadratic approximation f̂

f(x)− inf
Ay=b

f̂(y) = (1/2)λ(x)2,

and also λ(x) is a good stopping criterion
▶ directional derivative in Newton direction

d

dt
f (x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

▶ in general λ(x) ̸=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
Affine invariance the Newton step and decrement for equality constrained
optimization are affine invariant.



Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ϵ > 0

repeat

1. Compute the Newton step and decrement ∆xnt, λ(x)
2. Stopping criterion. quit if λ2/2 ≤ ϵ

3. Line search. Choose step size t by backtracking line search
4. Update. x := x+ t∆xnt

▶ feasible descent method: x(k) feasible and f
(
x(k+1)

)
< f

(
x(k)

)
▶ affine invariant



Newton’s method and elimination

Newton’s method for reduced problem

minimize f̃(z) = f(Fz + x̂)

▶ z ∈ Rn−p are variables, x̂ satisfies Ax̂ = b, range of F is the nullspace of A
▶ Newton’s method for f̃ starts at z(0), generates iterates z(k)

relation to Newton’s method with equality constraints

when starting at x(0) = Fz(0) + x̂, iterates are

x(k) = Fz(k) + x̂

hence no separate convergence analysis is needed
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Newton step at infeasible points

Newton step ∆xnt of f at infeasible x is given by the solution of[
∇2f(x) AT

A 0

] [
∆xnt
w

]
= −

[
∇f(x)
Ax− b

]
interpretation

▶ ∆xnt equations follow from linearizing optimality conditions

∇f(x+ v) +ATw ≈ ∇f(x) +∇2f(x)v +ATw = 0, A(x+ v) = b



primal-dual interpretation

▶ write optimality condition as r(y) = 0 where

y = (x, ν), r(y) =
(
∇f(x) +AT ν,Ax− b

)
▶ linearizing r(y) = 0 gives

r(y +∆y) ≈ r(y) +Dr(y)∆y = 0

which is equivalent to[
∇2f(x) AT

A 0

] [
∆xnt
∆νnt

]
= −

[
∇f(x) +AT ν

Ax− b

]
same as the above equation with w = ν +∆νnt



Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ϵ > 0, α ∈ (0, 1/2), β ∈ (0, 1)

repeat

1. Compute primal and dual Newton steps ∆xnt, ∆νnt

2. Backtracking line search on ∥r∥2. t := 1.
while ∥r(x+ t∆xnt, ν + t∆νnt)∥2 > (1− αt)∥r(x, ν)∥2, t := βt

3. Update. x := x+ t∆xnt, ν := ν + t∆νnt

until Ax = b and ∥r(x, ν)∥2 ≤ ϵ



▶ not a descent method: f
(
x(k+1)

)
> f

(
x(k)

)
is possible

▶ directional derivative of ∥r(y)∥2 in direction ∆y = (∆xnt,∆νnt) is

d

dt
∥r(y + t∆y)∥2

∣∣∣∣
t=0

= −∥r(y)∥2

▶ If a step length of t = 1 is taken using the Newton step ∆xnt, the following iterate
will be feasible.

▶ If dom f = Rn, then initializaing the feasible Newton method simply requires
computing a solution to Ax = b, and there is no particular advantage, other than
convenience, in using the infeasible start Newton method

▶ the disadvantage of using the infeasible start Newton method to initialize problems
for which a strictly feasible starting point is not known, is that there is no clear
way to detect that there exists no strictly feasible point; the norm of the residual
will simply converge, slowly, to some positive value. (Phase I method, in contrast,
can determine this fact unambiguously.) In addition, the convergence of the
infeasible start Newton method, before feasibility is achieved, can be slow.



infeasible start Newton method with equality constraints

the problem is feasible and bounded below n = 100, m = 50



infeasible start Newton method with equality constraints

the problem is infeasible n = 100, m = 50
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Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]
solution methods

▶ LDLT factorization
▶ elimination with nonsingular H

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

▶ elimination with singular H first write as[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]
with Q ⪰ 0 for which H +ATQA ≻ 0, then apply elimination



Equality constrained analytic centering

primal problem

minimize −
n∑

i=1

log xi

subject to Ax = b

dual problem

maximize − bT ν +

n∑
i=1

log(AT ν)i + n

three methods for an example with A ∈ R100×500, different starting points



Newton method with equality constraints requires x(0) ≻ 0 and Ax(0) = b



Newton method applied to dual problem requires AT ν(0) ≻ 0



infeasible start Newton method requires x(0) ≻ 0



dominant steps of three methods

1. use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−11

0

]
reduces to solving

Adiag(x)2ATw = b

2. solve Newton system

Adiag
(
AT ν

)−2
AT∆ν = −b+Adiag

(
AT ν

)−1
1

3. use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−11−AT ν

b−Ax

]
reduces to solving

Adiag(x)2ATw = 2Ax− b



comparison of complexity per iteration

▶ in each case, solve
ADATw = h

with D positive diagonal
▶ complexity per iteration of three methods is identical



Network flow optimization

minimize
n∑

i=1

ϕi(xi)

subject to Ax = b

▶ directed (connected) graph with n arcs and p+ 1 nodes
▶ xi is flow through arc i

▶ ϕi is cost flow function for arc i (with ϕ′′
i (x) > 0)

▶ A is (reduced) node-arc incidence matrix
▶ b ∈ Rp is (reduced) source vector



KKT system [
H AT

A 0

] [
v
w

]
= −

[
g
h

]
▶ H = diag(ϕ′′

1(x1), . . . , ϕ
′′
n(xn)) with positive diagonal

▶ solve via elimination

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT )ij ̸= 0 ⇐⇒ (AAT )ij ̸= 0

⇐⇒ nodes i and j are connected by an arc



Analytic center of linear matrix inequality

minimize − log detX

subject to tr(AiX) = bi, i = 1, . . . , p

where X ∈ Sn is the variable, Ai ∈ Sn, bi ∈ R

optimality conditions

X∗ ≻ 0, −(X∗)−1 +

p∑
j=1

ν∗jAi = 0, tr(AiX
∗) = bi, i = 1, . . . , p



Newton equation at feasible X

X−1∆XX−1 +

p∑
j=1

wjAi = X−1, tr(Ai∆X) = 0, i = 1, . . . , p

▶ follows from linear approximation

(X +∆X)−1 ≈ X−1 −X−1∆XX−1

▶ n(n+ 1)/2 + p variables in ∆X and w



solution by block elimination

▶ compute ∆X from first equation

∆X = X −
p∑

j=1

wjXAjX

▶ substitute ∆X in second equation

p∑
j=1

tr(AiXAjX)wj = bi, i = 1, . . . , p

a (dense) positive definite set of linear equations with variable w ∈ Rp



flop count (dominant terms) using Cholesky factorization X = LLT

▶ form p products LTAjL: (3/2)pn3

▶ form p(p+ 1)/2 inner products tr((LTAiL)(L
TAjL)): (1/2)p2n2

▶ solve for wj via Cholesky factorization: (1/3)p3
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