
Chapter 09 Unconstrained minimization

Last update on 2025-04-07 11:29:29+08:00

Table of contents

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton’s method

Self-concordant functions

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton’s method

Self-concordant functions

Unconstrained minimization

unconstrained minimization problem

minimize f(x)

▶ f convex, twice continuously differentiable (hence dom f open)
▶ assume optimal value p∗ = infx f(x) is finite and attained

optimality condition (review)

x∗ is optimal ⇐⇒ x∗ ∈ dom f, ∇f(x∗) = 0

Unconstrained minimization methods

▶ produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . , with

f(x(k)) −→ p∗

▶ can be interpreted as iterative methods for solving optimality condition

∇f(x∗) = 0

Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

▶ x(0) ∈ dom f

▶ sublevel set S = {x | f(x) ≤ f(x(0))} is closed

second condition hard to verify, except when all sublevel sets are closed (i.e. f is closed)

▶ equivalent to condition that epi f is closed
▶ true if dom f = Rn

▶ true if f(x) → ∞ as x → bd(dom f)

examples of differentiable functions with closed sublevel sets

f(x) = log

(
m∑
i=1

ea
T
i x+bi

)
, f(x) = −

m∑
i=1

log
(
bi − aTi x

)

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) ⪰ mI for all x ∈ S

implications

▶ p∗ > −∞
▶ for x, y ∈ S

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥22

hence S is bounded
▶ for x ∈ S

f(x)− p∗ ≤ 1

2m
∥∇f(x)∥22

useful as stopping criterion (if you know m)
▶ here is a upper bound on ∥x− x∗∥2,

∥x− x∗∥2 ≤
2

m
∥∇f(x)∥2

Upper bound on ∇2f(x)

▶ There exists a constant M such that

∇2f(x) ⪯ MI

▶ for any x, y ∈ S

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
∥y − x∥22

▶ Minimizing each side over y

p∗ ≤ f(x)− 1

2M
∥∇2f(x)∥22

Condition number of sublevel sets

▶ mI ⪯ ∇2f(x) ⪯ MI

▶ define the width of a convex set C ⊆ Rn, in the direction q, where ∥q∥2=1

W (C, q) = sup
z∈C

qT z − inf
z∈C

qT z

▶ The minimum and maximum width of C are

Wmin = inf
∥q∥2=1

W (C, q), Wmax = sup
∥q∥2=1

W (C, q)

▶ the condition number of a convex C is

cond(C) =
W 2

max

W 2
min

▶ Example of an ellipsoid. Let E = {x|xTA−1x ≤ 1} where A ∈ Sn++. Its condition
number is

cond(E) = λmax(A)

λmin(A)
= κ(A)

where κ(A) is the condition number of A, the ratio of its maximum singular value
to its minimum singular value.

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

▶ other notations: x+ = x+ t∆x, or x := x+ t∆x

▶ ∆x is the step, or search direction; t is the step size, or step length
▶ from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0 (∆x is a descent direction)

general descent method

given a starting point x ∈ dom f

repeat

1. Determine a descent direction ∆x

2. Line search. Choose a step size t > 0

3. Update. x := x+ t∆x

until stopping criterion is satisfied

Line search types

exact line search
t = argmin

t>0
f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

▶ starting at t = 1, repeat t := βt until

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x

▶ graphical interpretation: backtrack until t ≤ t0
▶ α ∼ [0.01, 0.3], β ∼ [0.1, 0.8]

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton’s method

Self-concordant functions

Gradient descent method

gradient descent direction ∆x = −∇f(x)

given a starting point x ∈ dom f

repeat

1. ∆x := −∇f(x)

2. Line search. Choose step size t via exact or backtracking line search
3. Update. x := x+ t∆x

until stopping criterion is satisfied

▶ general descent method with ∆x = −∇f(x)

▶ stopping criterion usually of the form

∥∇f(x)∥2 ≤ ϵ

▶ convergence result: for strongly convex f

f(x(k))− p∗ ≤ ck
(
f(x(0))− p∗

)
c ∈ (0, 1) depends on m, x(0), line search type

▶ very simple, but may be very slow when the condition number of the Hessian or
sublevel sets is large so that it becomes useless in practice

Quadratic example in R2

f(x1, x2) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1)

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

very slow if γ ≫ 1 or γ ≪ 1, following example for γ = 10

Nonquadratic example in R2

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

backtracking line search exact line search

Example in R100

f(x) = cTx−
500∑
i=1

log
(
bi − aTi x

)

“linear” convergence (straight line on a semilog plot)

Example in R100

f(x) = cTTx−
500∑
i=1

log
(
bi − aTi Tx

)
,

where T = diag(1, γ1/100, γ2/100, . . . , γ99/100)

number of iterations vs. γ condition number of the Hessian vs. γ

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton’s method

Self-concordant functions

Steepest descent method

normalized steepest descent direction (for norm ∥ · ∥)

∆xnsd = argmin{∇f(x)T v | ∥v∥= 1}

−∥∇f(x)∥∗ = min{∇f(x)T v | ∥v∥= 1}

▶ for small v we have f(x+ v) ≈ f(x) +∇f(x)T v

▶ direction ∆xnsd is unit-norm step with most negative directional derivative

unnormalized steepest descent direction

∆xsd = ∥∇f(x)∥∗∆xnsd

satisfies ∇f(x)T∆xsd = −∥∇f(x)∥2∗

▶ general descent method with ∆x = ∆xsd

▶ convergence properties similar to gradient descent

Examples

▶ Euclidean norm ∥x∥2
∆xsd = −∇f(x)

same as gradient descent

▶ quadratic norm ∥x∥P = (xTPx)1/2 for P ∈ Sn++

∆xsd = −P−1∇f(x)

gradient descent after change of variables x̄ = P 1/2x

▶ ℓ1-norm
∆xsd = −(∂f(x)/∂xi)ei

where |∂f(x)/∂xi| = ∥∇f(x)∥∞

unit balls and normalized steepest descent directions

a quadratic norm the ℓ1-norm

steepest descent with backtracking line search for two quadratic norms

▶ dashed lines are contour lines of f(x)
▶ ellipses show {x | ∥x− x(k)∥P = 1}
▶ choice of P has strong effect on speed of convergence

steepest descent with two quadratic norms

▶ choice of P has strong effect on speed of convergence

steepest descent with two quadratic norms

▶ the iterates of steepest descent with two norms, after the change of coordinates

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton’s method

Self-concordant functions

Newton step

∆xnt = −∇2f(x)−1∇f(x)

▶ x+∆xnt minimizes second order approximation

f(x+ v) ≈ f̂(x+ v) = f(x) +∇f(x)T v + (1/2)vT∇2f(x)v

▶ x+∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

▶ ∆xnt is steepest descent direction at x in local Hessian norm

∥u∥∇2f(x) =
(
uT∇2f(x)u

)1/2

ellipse is {x+ v | vT∇2f(x)v = 1}, arrow shows −∇f(x)

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
▶ gives an estimate of f(x)− p∗, using quadratic approximation f̂(x)

f(x)− inf
y

f̂(y) = (1/2)λ(x)2

▶ equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
▶ directional derivative in Newton direction

∇f(x)T∆xnt = −λ(x)2

properties

▶ a measure of proximity of x to x∗

▶ an affine invariant (independent of linear change of coordinates, unlike ∥∇f(x)∥2)

Newton’s method

given a starting point x ∈ dom f , tolerance ϵ > 0

repeat

▶ Compute Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x)

▶ Stopping criterion. quit if λ2/2 ≤ ϵ

▶ Line search. Choose step size t by backtracking line search
▶ Update. x := x+ t∆xnt

affine invariance

Newton iterates for
f̃(y) = f(Ty)

with starting point
y(0) = T−1x(0)

are
y(k) = T−1x(k)

Classical convergence analysis

assumptions

▶ f strongly convex on S with constant m > 0

∇2f(x) ⪰ mI

▶ ∇2f Lipschitz continuous on S with constant L > 0

∥∇2f(x)−∇2f(y)∥2 ≤ L∥x− y∥2

constant L measures how well f can be approximated by a quadratic function

outline there exist constants η ∈ (0,m2/L) and γ > 0 such that

▶ if ∥∇f(x)∥2 ≥ η, then
f
(
x(k+1)

)
− f

(
xk
)
≤ −γ

▶ if ∥∇f(x)∥2 < η, then

L

2m2

∥∥∥∇f
(
x(k+1)

)∥∥∥
2
≤
(

L

2m2

∥∥∥∇f
(
xk
)∥∥∥

2

)2

damped Newton phase ∥∇f(x)∥2 ≥ η

▶ most iterations require backtracking steps
▶ function value decreases by at least γ
▶ if p∗ > −∞, this phase ends after at most

(
f(x(0))− p∗

)
/γ iterations

quadratically convergent phase ∥∇f(x)∥2 < η

▶ all iterations use step size t = 1

▶ ∥∇f(x)∥2 converges to zero quadratically

L

2m2

∥∥∥∇f
(
xl
)∥∥∥

2
≤
(

L

2m2

∥∥∥∇f
(
xk
)∥∥∥

2

)2l−k

≤
(
1

2

)2l−k

holds for l ≥ k if ∥∇f(x(k))∥2 < η

conclusion number of iterations until f(x)− p∗ ≤ ϵ is bounded above by

f
(
x(0)

)
− p∗

γ
+ log2 log2

(ϵ0
ϵ

)
▶ γ, ϵ0 are constants that depend on m, L, x(0)

▶ second term is small and almost constant for practical purposes (say 5 or 6)
▶ constants m, L are usually unknown in practice
▶ provides qualitative insight in convergence properties

Example in R2 f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

▶ backtracking parameters α = 0.1, β = 0.7

▶ converges in only 5 steps
▶ clearly shows quadratic convergence

Example in R100 f(x) = cTx−
500∑
i=1

log
(
bi − aTi x

)

▶ backtracking parameters α = 0.01, β = 0.5

▶ backtracking line search almost as fast as exact line search (and much simpler)
▶ clearly shows two phases in algorithm

Example in R10000 f(x) = −
10000∑
i=1

log(1− x2i)−
100000∑
i=1

log
(
bi − aTi x

)

▶ backtracking parameters α = 0.01, β = 0.5

▶ performance similar as for small examples

Summary of Newton’s method

Advantage

▶ convergence of Newton’s method is rapid in general
▶ affine invariant, insensitive to the choice of coordinate, or the condition number of

the sublevel sets of the objective
▶ scale well with problem size. Its performance on problems in R10000 is similar to its

performance on problems in R10, which only a modest increast in the number of
steps required

▶ the good performance of Newton’s method is not dependent on the choice of
parameters. In contrast, the choice of norm for steepest descent plays a critical
role in its performance

Disadvantage

▶ the cost of forming and storing the Hessian
▶ the objective function may not be twice differentiable or even may not be

differentiable

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton’s method

Self-concordant functions

Self-concordance

shortcomings of classical convergence analysis

▶ depends on unknown constants (m, L, . . .)
▶ bound is not affine invariant, although Newton’s method is

We seek an alternative to the assumptions

mI ⪯ ∇2f(x) ⪯ MI, ∥∇2f(x)−∇2f(y)∥2 ≤ L∥x− y∥2,

that is independent of affine changes of coordinates, and also allows us to analyze
Newton’s method

convergence analysis via self-concordance (Nesterov and Nemirovski)

▶ does not depend on any unknown constants
▶ gives affine invariant bound
▶ applies to special class of convex functions (‘self-concordant’ functions)
▶ developed to analyze polynomial-time interior-point methods for convex

optimization

Self-concordant functions

▶ convex function f : R → R is self-concordant if∣∣f ′′′(x)
∣∣ ≤ 2f ′′(x)3/2

for all x ∈ dom f

▶ function f : Rn → R is self-concordant if

g(t) = f(x+ tv)

is self-concordant for all x ∈ dom f and v ∈ Rn

examples on R

▶ linear and quadratic functions

▶ negative logarithm
f(x) = − log x

▶ negative entropy plus negative logarithm

f(x) = x log x− log x

affine invariance

f : R → R is self-concordant =⇒ f̃(y) = f(ay + b) is self-concordant

f̃ ′′′(y) = a3f ′′′(ay + b), f̃ ′′(y) = a2f ′′(ay + b)

Self-concordant calculus

properties

▶ preserved under sum and positive scaling α ≥ 1

▶ preserved under composition with affine function

▶ if g is convex with

dom g = R++ and |g′′′(x)| ≤ 3g′′(x)/x

then
f(x) = log(−g(x))− log x

is self-concordant

examples

f(x) = −
m∑
i=1

log
(
bi − aTi x

)
on {x | aTi x < bi, i = 1, · · · ,m}

f(X) = − log detX on Sn++

f(x, y) = − log
(
y2 − xTx

)
on {(x, y) | ∥x∥2 < y}

Convergence analysis for self-concordant functions

summary there exist constants η ∈ (0, 1/4], γ > 0 such that

▶ if λ(x) > η, then
f
(
x(k+1)

)
− f

(
x(k)

)
≤ −γ

▶ if λ(x) ≤ η, then

2λ(x(k+1)) ≤
(
2λ(x(k))

)2
where η and γ only depend on backtracking parameters α and β

complexity bound number of Newton iterations bounded by

f(x(0))− p∗

γ
+ log2 log2 (1/ϵ)

for α = 0.1, β = 0.8, ϵ = 10−10, bound evaluates to

375
(
f(x(0))− p∗

)
+ 6

numerical example 150 randomly generated instances of

minimize f(x) = −
m∑
i=1

log
(
bi − aTi x

)

▶ number of iterations much smaller than 375
(
f(x(0))− p∗

)
+ 6

▶ bound of the form c
(
f(x(0))− p∗

)
+ 6 with smaller c (empirically) valid

▶ how to summarize an algorithm
▶ how to describe the results for figures
▶ the style of applied mathematics (numerical simulations and theoretical proofs)

	Terminology and assumptions
	Gradient descent method
	Steepest descent method
	Newton's method
	Self-concordant functions

