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▶ the distance of x0 ∈ Rn to a closed set C ⊆ Rn, in the norm ∥ · ∥, is defined as

dist(x0, C) = inf{∥x0 − x∥|x ∈ C}.

▶ any point z ∈ C which is closest to x0 is referred to as a projection of x0 on C.
▶ if for every x0 there is a unique Euclidean projection of x0 on C, then C is closed

and convex.
▶ PC : Rn → Rn denotes any function for which PC(x0) is a projection of x0 on C,

PC(x0) ∈ C, ∥x0 − PC(x0)∥ = dist(x0, C).

We refer to PC as projection on C.



Example

Projection on the unit square in R2

▶ consider x0 = 0 and the boundary of the unit square C = {x ∈ R2|∥x∥∞ = 1}
▶ for both ℓ1-norm and ℓ2-norm, the four points (1, 0), (0,−1), (−1, 0), (0, 1) are

closest to x0 = 0, with distance 1
▶ in the ℓ∞-norm, all points in C lie at a distance 1 from x0, dist(x0, C) = 1

Projection onto rank-k matrices

▶ Let X0 ∈ Rm×n and k ≤ min{m,n}

C = {X ∈ Rm×n| rankX ≤ k}

▶ we can find a projection of X0 on C, in the spectral of maximum singular value
norm ∥ · ∥2, via the singular value decomposition.

▶ Y =
∑min{k,r}

i=1 σiuiv
T
i is a projection of X0 on C, where X0 =

∑r
i=1 σiuiv

T
i is a

singular value decomposition with r = rankX0.



projection a point on a convex set

the convex C is Ax = b, fi(x) ≤ 0, i = 1, . . . ,m, then one can find the projection of
x0 on C by solving with variable x

minimize ∥x− x0∥
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Euclidean projection on a polyhedron

▶ the polyhedron is Ax ⪯ b

▶ the Euclidean projection on a hyperplane C = {x|aTx = b} is

PC(x0) = x0 + (b− aTx0)a/∥a∥22

▶ the Euclidean projection on a halfspace C = {x|aTx ≤ b} is

PC(x0) =

{
x0 + (b− aTx0)a/∥a∥22, aTx0 > b

x0, aTx0 ≤ b



separating a point and a convex set

If PC(x0) denotes the Euclidean projection of x0 on C, then the hyperplane

(PC(x0)− x0)
T (x− (x0 + PC(x0))/2) = 0

(strictly) separates x0 from C

in other norms, the link between the projection problem and the separating hyperplane
problem is via Lagrange duality



▶ the primal convex optimization problem is for variables x and y

minimize ∥y∥
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

x− x0 = y

▶ the Lagrangian is

L(x, y, λ, µ, ν) = ∥y∥+
m∑
i=1

λifi(x) + νT (Ax− b) + µT (x0 − x− y)

and the dual function is

g(λ, µ, ν) =

{
infx(

∑m
i=1 λifi(x) + νT (Ax− b) + µT (x0 − x)) ∥µ∥∗ ≤ 1

−∞ otherwise



▶ the dual problem is for variables λ, µ, ν

maximize µTx0 + inf
x
(

m∑
i=1

λifi(x) + νT (Ax− b)− µTx)

subject to λ ⪰ 0

∥µ∥∗ ≤ 1

▶ suppose x0 /∈ C and strong duality holds, then λ, µ, ν are dual feasible with a
positive dual objective value,

µT (x0 − x) +

m∑
i=1

λifi(x) + νT (Ax− b) > 0

for all feasible x

▶ this implies
µTx0 > µTx

for x ∈ C, and therefore µ defines a strictly separating hyperplane



example

separating a point from a polyhedron

the dual problem of

minimize ∥y∥
subject to Ax ⪯ b

x0 − x = y

is

maximize µTx0 − bTλ = (Ax0 − b)Tλ

subject to ATλ = µ

∥µ∥∗ ≤ 1

λ ⪰ 0

if x is feasible and the dual objective is positive, then

(ATλ)Tx = λT (Ax) ≤ λT b < λTAx0,

so µ = ATλ defines a separating hyperplane.



projection and separation via indicator and support functions

the indicator function IC and the support function SC of the set C is defined as

SC(x) = sup
y∈C

xT y, IC(x) =

{
0 x ∈ C

+∞ x /∈ C

the problem of projecting x0 on a closed convex set C is

minimize ∥x− x0∥
subject to IC(x) ≤ 0

the dual problem

maximize zTx0 − SC(z)

subject to ∥z∥∗ ≤ 1
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definition

the distance between C and D, in a norm ∥ · ∥, is defined as

dist(C,D) = inf{∥x− y∥|x ∈ C, y ∈ D}

the distance between sets can be expressed in terms of the distance between a point
and a set,

dist(C,D) = dist(0, D − C)



computing the distance between convex sets

find dist(C,D) by solving the convex optimization problem

minimize ∥x− y∥
subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(y) ≤ 0, i = 1, . . . , p

where C and D are convex

C = {x|fi(x) ≤ 0, i = 1, . . . ,m}, D = {x|gi(x) ≤ 0, i = 1, . . . , p}.



separating convex sets

the primal problem is

minimize ∥w∥
subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(y) ≤ 0, i = 1, . . . , p

x− y = w.

the dual function is

g(λ, z, µ) =

{
infx(

∑m
i=1 λifi(x) + zTx) + infy(

∑p
i=1 µigi(y)− zT y) ∥z∥∗ ≤ 1

−∞ otherwise

the dual problem is

maximize inf
x
(

m∑
i=1

λifi(x) + zTx) + inf
y
(

p∑
i=1

µigi(y)− zT y)

subject to ∥z∥∗ ≤ 1

λ ⪰ 0, µ ⪰ 0.



geometric interpretation: if λ, µ are dual feasible with a positive objective value, then

m∑
i=1

λifi(x) + zTx+

p∑
i=1

µigi(y)− zT y > 0

for all x and y.

In particular, for x ∈ C and y ∈ D, we have zTx− zT y > 0, so z defines a hyperplane
that strictly separates C and D
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the Löwner-John ellipsoid

suppose C ⊆ Rn is bounded and has nonempty interior

the minimum volume ellipsoid that contains a set C is called the Löwner-John ellipsoid
of C

parametrize the general ellipsoid as

E = {v|∥av + b∥2 ≤ 1}

since the volume of E is proportional to detA−1, the convex optimization problem is

minimize log detA−1

subject to sup
v∈C

∥Av + b∥2 ≤ 1,

where A ∈ Sn++ and b ∈ Rn



minimum volume ellipsoid covering a finite set

we consider the problem of finding the minimum volume ellipsoid that contains the
finite set C = {x1, . . . , xm} ⊆ Rn

an ellipsoid covers C if and only if it covers its convex hull

the convex optimization problem becomes

minimize log detA−1

subject to ∥Av + b∥2 ≤ 1, i = 1, . . . ,m

where A ∈ Sn++ and b ∈ Rn



maximum volume inscribed ellipsoid

find the ellipsoid of maximum volume that lies inside a convex set C, which we assume
is bounded and has nonempty interior

parametrize the ellipsoid as the image of the unit ball under an affine transformation,

E = {Bu+ d|∥u∥2 ≤ 1, B ∈ Sn++}

so the volume is proportional to detB

find the maximum volume ellipsoid inside C by solving the convex optimization problem

maximize log detB

subject to sup
∥u∥2≤1

IC(Bu+ d) ≤ 0

in the variables B ∈ Sn++ and d ∈ Rn



maximum volume ellipsoid in a polyhedron

C is a polyhedron,
C = {x|aTi x ≤ bi, i = 1, . . . ,m}

sup
∥u∥2≤1

IC(Bu+ d) ≤ 0 ⇐⇒ sup
∥u∥2≤1

aTi (Bu+ d) ≤ bi, i = 1, . . . ,m

⇐⇒ ∥Bai∥2 + aTi d ≤ bi, i = 1, . . . ,m

the convex optimization problem is

minimize log detB−1

subject to ∥Bai∥2 + aTi d ≤ bi, i = 1, . . . ,m

in the variables B ∈ Sn++ and d ∈ Rn
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Chebyshev center

the depth of a point x ∈ C is defined as

depth(x,C) = dist(x,Rn\C).

The depth gives the radius of the largest ball, centered at x, that lies in C

A Chebyshev center of the set C is defined as any point of maximum depth in C:

xcheb(C) = argmax depth(x,C) = argmaxdist(x,Rn\C)

Chebyshev center of a convex set

Let convex C = {x|f1(x) ≤ 0, . . . , fm(x) ≤ 0}. A Chebyshev center can be solved by

maximize R

subject to gi(x,R) ≤ 0, i = 1, . . . ,m

where gi(x,R) = sup∥u∥≤1 fi(x+Ru)



Chebyshev center of a polyhedron

▶ the polyhedron is characterized by aT
i x ≤ bi, i = 1, . . . ,m. Then

gi(x,R) = sup
∥u∥≤1

aT
i (x+Ru)− bi = aT

i x+R∥ai∥∗ − bi

▶ Chebyshev center can be found by solving the LP

maximize R

subject to aT
i x+R∥ai∥∗ − bi ≤ 0, i = 1, . . . ,m

R ≥ 0

Chebyshev center of a polyhedron C, in the Euclidean norm



maximum volume ellipsoid center

As an extension, the maximum volume ellipsoid center of C, denoted by xmve, as the
center of the maximum volume ellipsoid that lies in C

the problem is readily computed as in last section

the maximum volume ellipsoid contained in the polyhedron C



analytic center of a set of inequalities
the analytic center xac of a set of convex inequalities and linear equalities,
fi(x) ≤ 0, i = 1, . . . ,m, Fx = g is defined as an optimal point for the convex problem

minimize −
m∑
i=1

log(−fi(x))

subject to Fx = g

fi(x) < 0, i = 1, . . . ,m

the dashed lines show five level curves of the logarithmic barrier function
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setup of the classification problems

▶ pattern recognition and classification problems
▶ given two sets of points in Rn, {x1, . . . , xN} and {y1, . . . , yM}
▶ wish to find a function

f : Rn −→ R

(within a given family of functions) that is positive on the first set and
negative on the second, i.e.,

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M.

▶ If these inequalities hold, we say that f , or its 0-level set {x|f(x) = 0}, separates,
classifies, or discriminates the two sets of points.



Linear discrimination

in linear discrimination, we seek an affine f(x) = aTx− b that classifies the points,

aTxi − b > 0, i = 1, . . . , N, aT yi − b < 0, i = 1, . . . ,M.

two sets are classified by an affine function f



robust linear discrimination

maximize t

subject to aTxi − b ≥ t, i = 1, . . . , N

aT yi − b ≤ −t, i = 1, . . . ,M

∥a∥2 ≤ 1,

with variables a, b, t

we have to normalize a and b, since otherwise we can scale a and b by a positive
constant and make the gap in the values arbitrarily large

the optimal t∗ is positive if and only if the two sets of points can be linearly
discriminated. In this case, ∥a∗∥2 = 1

Geometrically, if ∥a∥2 = 1, aTxi − b is the Euclidean distance from the point xi to the
separating hyperplane H = {z|aT z = b}. Similarly, b− aT yi is the distance from the
point yi to the hyperplane. In other words, it finds the thickest slab that separates the
two sets.



▶ solving the robust linear discrimination problem
▶ Geometrically, we find the thickest slab that separates the two sets of points
▶ the optimal value t∗ (which is half the slab thickness) turns out to be half the

distance between the convex hulls of the two sets of points



▶ The Lagrangian (for the problem of minimizing −t) is

−t+

N∑
i=1

ui(t+ b− aTxi) +

M∑
i=1

vi(t− b+ aT yi) + λ(∥a∥2 − 1).

▶ Minimizing over b and t yields the conditions 1Tu = 1/2,1T v = 1/2. Then

g(u, v, λ) =

{
−λ ∥

∑M
i=1 viyi −

∑N
i=1 uixi∥2 ≤ λ

−∞ otherwise

▶ the dual problem becomes

maximize − ∥
M∑
i=1

viyi −
N∑
i=1

uixi∥2

subject to u ⪰ 0, 1Tu = 1/2,

v ⪰ 0, 1T v = 1/2.

▶ The dual objective is to minimize (half) the distance between these two points,
i.e., find (half) the distance between the convex hulls of the two sets.



support vector classifier

▶ When the two sets of points cannot be linearly separated, we might seek an affine
function that approximately classifies the points

▶ we relax the constraints

aTxi− b ≥ 1−ui, i = 1, . . . , N, aT yi− b ≤ −(1− vi), i = 1, . . . ,M.

▶ When u = v = 0, we recover the original constraints
▶ by making u and v large enough, these inequalities can always be made feasible
▶ we minimize by solving the LP

minimize 1Tu+ 1T v

subject to aTxi − b ≥ 1− ui, i = 1, . . . , N

aT yi − b ≤ −(1− vi), i = 1, . . . ,M

u ⪰ 0, v ⪰ 0



▶ approximate linear discrimination via linear programming
▶ This classifier misclassifies one point
▶ Four points are correctly classified, but lie in the slab defined by the dashed lines
▶ it is a relaxation of the number of points misclassified by the function aT z − b,

plus the number of points that are correctly classified but lie in the slab defined by
−1 < aT z − b < 1



trade-off

▶ we can consider the trade-off between the number of misclassified points, and the
width of the slab {z| − 1 ≤ aT z − b ≤ 1}, which is given by 2/∥a∥2.

▶ we minimize by solving the LP

minimize ∥a∥2 + γ(1Tu+ 1T v)

subject to aTxi − b ≥ 1− ui, i = 1, . . . , N

aT yi − b ≤ −(1− vi), i = 1, . . . ,M

u ⪰ 0, v ⪰ 0

▶ The first term is proportional to the inverse of the width of the slab defined by
−1 ≤ aT z − b ≤ 1

▶ The second term has the same interpretation as above, i.e., it is a convex
relaxation for the number of misclassified points

▶ The parameter γ, which is positive, gives the relative weight of the number of
misclassified points (which we want to minimize), compared to the width of the
slab (which we want to maximize).



▶ support vector classifier
▶ misclassify three points
▶ Fifteen points are correctly classified but lie in the slab defined by the dashed lines



linear discrimination via logistic modeling

▶ Suppose z is a random variable with values 0 or 1, with a distribution that depends
on some (deterministic) explanatory variable u ∈ Rn, via a logistic model of the
form

prob(z = 1) = (exp(aTu− b))/(1 + exp(aTu− b))

prob(z = 0) = 1/(1 + exp(aTu− b))

▶ Now we assume that the given sets of points, {x1, ..., xN} and {y1, ..., yM}, arise
as samples from the logistic model

▶ {x1, ..., xN} are the values of u for the N samples for which z = 1, and
{y1, ..., yM} are the values of u for the M samples for which z = 0

▶ determine a and b by maximum likelihood estimation by solving

minimize − l(a, b)

with variables a, b, where l is the log-likelihood function

l(a, b) =

N∑
i=1

(aTxi − b)−
N∑
i=1

log(1 + exp(aTxi − b))−
M∑
i=1

log(1 + exp(aT yi − b))



▶ linear discrimination via logistic modeling
▶ misclassify two points
▶ three points are correctly classified, but lie in between the dashed lines
▶ there is a Bayesian interpolation



Nonlinear discrimination

seek a nonlinear function f, from a given subspace of functions, that is positive on one
set and negative on another

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M.

Provided f is linear (or affine) in the parameters that define it, these inequalities can be
solved in exactly the same way as in linear discrimination.

▶ quadratic discrimination
▶ polynomial discrimination



quadratic discrimination

▶ Suppose we take f to be quadratic: f(x) = xTPx+ qTx+ r, where
P ∈ Sn, q ∈ Rn, r ∈ R

▶ find a solution to the strict inequalities by solving the nonstrict feasibility problem

xTi Pxi + qTxi + r ≥ 1, i = 1, . . . , N,

yTi Pyi + qT yi + r ≤ −1, i = 1, . . . ,M.

▶ we can require that P ≺ 0,which means the separating surface is ellipsoidal. This
quadratic discrimination problem can be solved as an SDP feasibility problem

find P, q, r

subject to xTi Pxi + qTxi + r ≥ 1, i = 1, . . . , N,

yTi Pyi + qT yi + r ≤ −1, i = 1, . . . ,M,

P ⪯ −I.



▶ quadratic discrimination
▶ P ≺ 0

▶ SDP feasibility problem



polynomial discrimination

▶ consider the set of polynomials on Rn with degree less than or equal to d:

f(x) =
∑

i1+...+id≤d

ai1···idx
i1
1 · · ·xinn

▶ We can determine whether or not two sets {x1, ..., xN} and {y1, ..., yM} can be
separated by such a polynomial by solving a set of linear inequalities in the
variables ai1···id

▶ As an extension, the problem of determining the minimum degree polynomial on
Rn that separates two sets of points can be solved via quasiconvex programming,
since the degree of a polynomial is a quasiconvex function of the coefficients.

▶ This can be carried out by bisection on d, solving a feasibility linear program at
each step.



▶ minimum degree polynomial discrimination in R2

▶ there exists no cubic polynomial that separates two sets of points
▶ they can be separated by fourth-degree polynomial, the zero level set of which is

shown
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