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Parametric distribution estimation



distribution estimation

estimate probability density p(y) of a random variable from observed

parametric distribution estimation

choose from a family of densities p,(y) indexed by a parameter z



Maximum likelihood estimation

maximize (over x) log pz(y)

y is observed value
l(x) =logp.(y) is called log-likelihood function
this is maximum likelihood (ML) estimation

can add constraints z € C' explicitly or define p,(y) =0 for x ¢ C

vVvYyyvyy

convex optimization problem if log p,(y) is concave in x for fixed y



Linear measurements with 11D noise

linear measurement model

T .
Yi = a; T+ v, 1=1,...,m

» x € R™ is vector of unknown parameters
» v; is IID measurement noise, with density p(z)

> y; is measurement: y € R™ has density p,(y) = [[/%, p(y; — al x)

maximum likelihood estimate any solution z of

maximize Zlogp —alz)



examples
> Gaussian noise N (0, 02) with p(z) = (2m02)~1/2¢%"/(20%)
1 m
l(x) = —Elog 27ra —272 al :J:—yZ

ML estimate is LS solution
» Laplacian noise with p(z) = (1/(2@))@“4/“

1 m
I(x) = —mlog(2a) — - Z ‘a;fm i
=1
ML estimate is ¢1-norm solution
» uniform noise on [—a, a]
I(z) = —mlog(2a), ‘ag’x—.yi{gm i=1,...,m
—00, otherwise

ML estimate is any x with ‘aiTx — y,-‘ < a, i.e., £o-norm solution with
[Az — ylloc < a



Logistic regression

random variable y € {0, 1} with distribution

eaTu—i-b

p=prob(y=1) = T catuts

» a,b are parameters; u € R™ are (observable) explanatory variables

» estimation problem: estimate a,b from m observations (u;, y;)

log-likelihood function foryy=--=yg=1land ypo1 =" =yn =0
k el Tu;+b 1
I(a,b) = log H L ealuith ]_;[1 L cTuith
Jr

k
= Z (aTuZ- +b) — Z log (1 + 6‘1T"i+b> concave in a,b
=1 i=1



example (n =1, m = 50 measurements)
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» circle shows 50 points (u;, y;)
> solid curve is ML estimate of p = e+ /(1 + @ +b)

» logistic regression is intrinsically a regression technique but can be used as
classification



covariance estimation for Gaussian variable

Suppose y € R™ is a Gaussian random variable with zero mean and covariance matrix

pr(y) = (27)"? det(R) /2 exp(—y" R~ 'y/2)

we estimate R based on N observables y1,...,yny € R"
let Y =1/N Zévzl Yy}, then the log-likelihood function
I(R) = log pr(y1,...,yn) = —(N/2)logdet R — (N/2) tr(R™'Y) + C.

However, this log-likelihood function is not concave of R

Let S = R~! be the inverse of the covariance matrix, called information matrix or
precision matrix. Then

1(S) = (N/2)logdet S — (N/2) tr(SY) + C.

is concave of S



the ML estimate of S is found by
minimize log det S — tr(SY)
subjectto  SeSCSY,
» lower and upper matrix bounds L < R < U
U'=zRrR =Lt
» a condition number constraint on R,
Amax(R) < KmaxAmin (12)

can be expressed as
Amax(S) < KmaxAmin(5)



maximum a posterior probability estimation

the condition density of x, given y, is given by Bayes' formula

pz(T)

p(x, y) = py\x('xa y) py(y) )

py(y)

px\y(‘ra y) =
where prior density is p, ()

In the MAP estimation method, our estimate of x, given the observation y, is given by

Emap = argmax,py|, (z,y) = argmax,py|.(z, y)p(z) = argmax,p(z, y)

taking logarithms,

i‘map = argimax, [logpy\x<mv y) + logpx(a:)],

where the first term is the log-likelihood function and the second term penalizes choices
of x



Nonparametric distribution estimation



prior information

a random variable X in the finite set {a1,...,a,} C R, the probability simplex is
{peR"p=0,1"p=1}

expectation EX =" | aip; = «

moment EX? =" a?p; =3

probability prob(X >0) =3, ~opi < 0.3

the entropy of X, —> " | pi logg;i

vVvYyyvyy

the Kullback-Leibler divergence > | p; log(pi/qi)



bounding probabilities and expected values
n
minimize Zf(ai)pi
i=1
subject to peP
maximum likelihood estimation
n
minimize Z k;log p;
i=1
subject to peP
minimum KL divergence
n
minimize " p;log(pi/q:)
i=1

subject to peP



example (a probability distribution on 100 equidistance points in [—1,1])
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Figure 7.2 Maximum entropy distribution that satisfies the constraints (7.8).



Optimal detector design



Binary hypothesis testing

detection problem (hypothesis testing problem)

given observations of a random variable X € {1,2,...,n}, choose between

» hypothesis 1: X was generated by distribution p = (p1,...,pn)
» hypothesis 2: X was generated by distribution ¢ = (¢1,...,¢xn)



deterministic and randomized detectors

» randomized detector: a nonnegative matrix 7' € R?*" with 177 = 17

» deterministic detector: if all elements of T are 0 or 1

> if we observe X = k, we choose hypothesis 1 with probability ¢, hypothesis 2
with probability to



detection probability matrix

D:[Tp Tq}:[l_pr Pr, ]

pr 1 — P,

» Py, is probability of selecting hypothesis 2 if X is generated by distribution 1
(false positive)

> P4, is probability of selecting hypothesis 1 if X is generated by distribution 2
(false negative)



multicriterion formulation of detector design

minimize (with respect to R%) (Prp» Prn) = (T'p)2, (T'q)1)
subject to tig +top =1, k=1,...,n
t >0, i=12 k=1,....n

variables are entries of T' € RZx"



scalarization (with weight A > 0)

minimize (Tp)2 + AM(T9)
subject to tig +top = 1, k=1,...,n
te>0, i=1,2, k=1,....n

an LP with a simple analytical solution

) (L,0) pr > Agk
(tik, tok) =

> a deterministic detector, given by a likelihood ratio test

» if pr = Aqr for some k, any value 0 < ¢y, <1, t15 = 1 — t9y is optimal
(i.e. Pareto-optimal detectors include non-deterministic detectors)



minimax detector

minimize max{ P, Pr,} = max{(Tp)2, (T'q)1}
subject to tiy +top = 1, k=1,...,n
te >0, i=12  k=1,...,n

an LP; solution is usually not deterministic



example
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solutions 1,2,3 (and endpoints) are deterministic; 4 is minimax detector



Chebyshev and Chernoff bounds



We only discuss the Chebyshev bound

» If X is a random variable on R} with EX = p, then we have prob(X > 1) < g,
no matter what the distribution of X is.

» If X is a random variable on R with EX = p and E(X — 1)2 = o2, then we have
prob(|X — u| > a) < 0%/a?, again no matter what the distribution of X is

The generalization

» Let X be random on S C R™, and C C S be the set for which we want to bound
prob(X € C)
» let 1o(z)=1ifzeCand 1o(z) =0if 2 ¢ C

» prior knowledge is known expected values of some functions
Efi(X):ai, iIl,...,TL

» consider a linear combination of f;,
f(z) = wifi(2),
i=1

from which we have Ef(X) = o’



» suppose f(z) > 1¢(z) for all z € S, then we can upper bound prob(X € ()
o’z =Ef(X)>Elg(X) = prob(X € C)
» we search for the best such upper bound,

minimize ai1x1 + -+ apxy

subject to f(z) = infi(z) >1forzeC
i=1

f(z) = szf,(z) >0forzesS, z2¢C
i=1
» the formal dual
maximize ;. /p(z)dz
C

subject to / filz)p(z)dz =a;, i=1,...,n
S



Experiment design



m linear measurements y; = aiTx +w;, 1 =1,...,m of unknown x € R"

» measurement errors w; are |ID N(0,1)

» ML (least-square) estimate is

m -1 m

A T

T = E a;a; E Yiai
i=1 =1

» error e = £ — x has zero mean and covariance

m -1
E =Eee! = g aiaiT
i=1

confidence ellipsoids are given by {z | (z — )T E~1(z — ) < 8}
experiment design

choose a; € {v1,...,v,} (a set of possible test vectors) to make E ‘small’



vector optimization formulation

-1

P
minimize (with respect to S'}) E = kavkvg
k=1
subject to my 4+ my=m
myg > 0, my €7

» variables are my (number of vectors a; which are equal to vy)

» difficult in general, due to integer constraint



relaxed experiment design

assume m > p, use A = my/m as (continuous) real variable

» -1
minimize (with respect to S'}) E = <Z mww%)

subject to my+---+my=m

myg > 0, my € 7

ignoring the integer constraint, we arrive at

-1
minimize (with respect to S7}) =(1/m) (Z Akvkvk>

subject to M+ =1
A >0, k=1,...,p

» common scalarizations: minimize logdet E, tr E, Anax(E),

» can add other convex constraints, e.g. bound experiment cost ¢!\ < B



D-optimal design

» -1
minimize log det (Z )\kvkvg>

k=1
subject to A0
1A =1

interpretation: minimizes volume of confidence ellipsoids



dual problem

maximize logdet W +nlogn
subject to v,{va <1, k=1,...,p

interpretation: {z | zT Wz < 1} is minimum volume ellipsoid centered at origin, that
includes all test vectors vy,

complementary slackness for A, W primal and dual optimal
)\k(l—vava)zo, k=1,....,p

optimal experiment uses vectors v; on boundary of ellipsoid defined by W



computation reformulate primal problem with new variable X
minimize log det X!

p
subject to X =) Mpof, A= 0, 1A =1
k=1

p
L(X,\, Z,z,v) = logdet X! + tr (Z (X — Z Akvkv,f» —2ZIA+v (1A -1)
k=1

» minimize over X by setting gradient to zero to obtain —X ! +Z =0

> minimum over \; is —oo unless —vl Zuvy — 2z +v =0
k k k

dual problem

maximize n + logdet Z — v

subject to v Zup < v, k=1,....p

change variable W = Z/v and optimize over v to get the above formulation



example p =20
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design uses two vectors, on boundary of ellipse defined by optimal W
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