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distribution estimation

estimate probability density p(y) of a random variable from observed

parametric distribution estimation

choose from a family of densities px(y) indexed by a parameter x



Maximum likelihood estimation

maximize (over x) log px(y)

▶ y is observed value
▶ l(x) = log px(y) is called log-likelihood function
▶ this is maximum likelihood (ML) estimation
▶ can add constraints x ∈ C explicitly or define px(y) = 0 for x /∈ C

▶ convex optimization problem if log px(y) is concave in x for fixed y



Linear measurements with IID noise

linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

▶ x ∈ Rn is vector of unknown parameters
▶ vi is IID measurement noise, with density p(x)

▶ yi is measurement: y ∈ Rm has density px(y) =
∏m

i=1 p(yi − aTi x)

maximum likelihood estimate any solution x of

maximize l(x) =

m∑
i=1

log p(yi − aTi x)



examples

▶ Gaussian noise N (0, σ2) with p(z) = (2πσ2)−1/2e−z2/(2σ2)

l(x) = −m

2
log
(
2πσ2

)
− 1

2σ2

m∑
i=1

(
aTi x− yi

)2
ML estimate is LS solution

▶ Laplacian noise with p(z) = (1/(2a))e−|z|/a

l(x) = −m log(2a)− 1

a

m∑
i=1

∣∣aTi x− yi
∣∣

ML estimate is ℓ1-norm solution
▶ uniform noise on [−a, a]

l(x) =

{
−m log(2a),

∣∣aTi x− yi
∣∣ ≤ a, i = 1, . . . ,m

−∞, otherwise

ML estimate is any x with
∣∣aTi x− yi

∣∣ ≤ a, i.e., ℓ∞-norm solution with
∥Ax− y∥∞ ≤ a



Logistic regression

random variable y ∈ {0, 1} with distribution

p = prob(y = 1) =
ea

Tu+b

1 + eaTu+b

▶ a, b are parameters; u ∈ Rn are (observable) explanatory variables
▶ estimation problem: estimate a, b from m observations (ui, yi)

log-likelihood function for y1 = · · · = yk = 1 and yk+1 = · · · = ym = 0

l(a, b) = log

(
k∏

i=1

ea
Tui+b

1 + eaTui+b

m∏
i=k+1

1

1 + eaTui+b

)

=

k∑
i=1

(
aTui + b

)
−

m∑
i=1

log
(
1 + ea

Tui+b
)

concave in a, b



example (n = 1, m = 50 measurements)

▶ circle shows 50 points (ui, yi)

▶ solid curve is ML estimate of p = eau+b/(1 + eau+b)

▶ logistic regression is intrinsically a regression technique but can be used as
classification



covariance estimation for Gaussian variable

Suppose y ∈ Rn is a Gaussian random variable with zero mean and covariance matrix
R = EyyT ∈ Sn++,

pR(y) = (2π)−n/2 det(R)−1/2 exp(−yTR−1y/2)

we estimate R based on N observables y1, . . . , yN ∈ Rn

let Y = 1/N
∑N

k=1 yky
T
k , then the log-likelihood function

l(R) = log pR(y1, . . . , yN ) = −(N/2) log detR− (N/2) tr(R−1Y ) + C.

However, this log-likelihood function is not concave of R

Let S = R−1 be the inverse of the covariance matrix, called information matrix or
precision matrix. Then

l(S) = (N/2) log detS − (N/2) tr(SY ) + C.

is concave of S



the ML estimate of S is found by

minimize log detS − tr(SY )

subject to S ∈ S ⊆ Sn++

▶ lower and upper matrix bounds L ⪯ R ⪯ U

U−1 ⪯ R−1 ⪯ L−1

▶ a condition number constraint on R,

λmax(R) ≤ κmaxλmin(R)

can be expressed as
λmax(S) ≤ κmaxλmin(S)



maximum a posterior probability estimation

the condition density of x, given y, is given by Bayes’ formula

px|y(x, y) =
p(x, y)

py(y)
= py|x(x, y)

px(x)

py(y)
,

where prior density is px(x)

In the MAP estimation method, our estimate of x, given the observation y, is given by

x̂map = argmaxxpx|y(x, y) = argmaxxpy|x(x, y)px(x) = argmaxxp(x, y)

taking logarithms,

x̂map = argmaxx[log py|x(x, y) + log px(x)],

where the first term is the log-likelihood function and the second term penalizes choices
of x
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prior information

a random variable X in the finite set {α1, . . . , αn} ⊆ R, the probability simplex is
{p ∈ Rn|p ⪰ 0,1T p = 1}

▶ expectation EX =
∑n

i=1 αipi = α

▶ moment EX2 =
∑n

i=1 α
2
i pi = β

▶ probability prob(X ≥ 0) =
∑

αi≥0 pi ≤ 0.3

▶ the entropy of X, −
∑n

i=1 pi log pi

▶ the Kullback-Leibler divergence
∑n

i=1 pi log(pi/qi)



bounding probabilities and expected values

minimize
n∑

i=1

f(αi)pi

subject to p ∈ P

maximum likelihood estimation

minimize
n∑

i=1

ki log pi

subject to p ∈ P

minimum KL divergence

minimize
n∑

i=1

pi log(pi/qi)

subject to p ∈ P



example (a probability distribution on 100 equidistance points in [−1, 1])
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Binary hypothesis testing

detection problem (hypothesis testing problem)

given observations of a random variable X ∈ {1, 2, . . . , n}, choose between

▶ hypothesis 1: X was generated by distribution p = (p1, . . . , pn)

▶ hypothesis 2: X was generated by distribution q = (q1, . . . , qn)



deterministic and randomized detectors

▶ randomized detector: a nonnegative matrix T ∈ R2×n with 1TT = 1T

▶ deterministic detector: if all elements of T are 0 or 1
▶ if we observe X = k, we choose hypothesis 1 with probability t1k, hypothesis 2

with probability t2k



detection probability matrix

D =
[
Tp Tq

]
=

[
1− Pfp Pfn
Pfp 1− Pfn

]

▶ Pfp is probability of selecting hypothesis 2 if X is generated by distribution 1
(false positive)

▶ Pfn is probability of selecting hypothesis 1 if X is generated by distribution 2
(false negative)



multicriterion formulation of detector design

minimize (with respect to R2
+) (Pfp, Pfn) = ((Tp)2, (Tq)1)

subject to t1k + t2k = 1, k = 1, . . . , n

tik ≥ 0, i = 1, 2, k = 1, . . . , n

variables are entries of T ∈ R2×n



scalarization (with weight λ > 0)

minimize (Tp)2 + λ(Tq)1

subject to t1k + t2k = 1, k = 1, . . . , n

tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP with a simple analytical solution

(t1k, t2k) =

{
(1, 0) pk ≥ λqk

(0, 1) pk < λqk

▶ a deterministic detector, given by a likelihood ratio test
▶ if pk = λqk for some k, any value 0 ≤ t1k ≤ 1, t1k = 1− t2k is optimal

(i.e. Pareto-optimal detectors include non-deterministic detectors)



minimax detector

minimize max{Pfp, Pfn} = max{(Tp)2, (Tq)1}
subject to t1k + t2k = 1, k = 1, . . . , n

tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP; solution is usually not deterministic



example

P =


0.70 0.10
0.20 0.10
0.05 0.70
0.05 0.10



solutions 1,2,3 (and endpoints) are deterministic; 4 is minimax detector
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We only discuss the Chebyshev bound

▶ If X is a random variable on R+ with EX = µ, then we have prob(X ≥ 1) ≤ µ,
no matter what the distribution of X is.

▶ If X is a random variable on R with EX = µ and E(X − µ)2 = σ2, then we have
prob(|X − µ| ≥ a) ≤ σ2/a2, again no matter what the distribution of X is

The generalization

▶ Let X be random on S ⊆ Rm, and C ⊆ S be the set for which we want to bound
prob(X ∈ C)

▶ let 1C(z) = 1 if z ∈ C and 1C(z) = 0 if z /∈ C

▶ prior knowledge is known expected values of some functions

Efi(X) = ai, i = 1, . . . , n

▶ consider a linear combination of fi,

f(z) =

n∑
i=1

xifi(z),

from which we have Ef(X) = aTx



▶ suppose f(z) ≥ 1C(z) for all z ∈ S, then we can upper bound prob(X ∈ C)

aTx = Ef(X) ≥ E1C(X) = prob(X ∈ C)

▶ we search for the best such upper bound,

minimize a1x1 + · · ·+ anxn

subject to f(z) =

n∑
i=1

xifi(z) ≥ 1 for z ∈ C

f(z) =

n∑
i=1

xifi(z) ≥ 0 for z ∈ S, z /∈ C

▶ the formal dual

maximize p(z)

∫
C
p(z)dz

subject to
∫
S
fi(z)p(z)dz = ai, i = 1, . . . , n∫

S
p(z)dz = 1, p(z) ≥ 0, for all z ∈ S
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m linear measurements yi = aTi x+ wi, i = 1, . . . ,m of unknown x ∈ Rn

▶ measurement errors wi are IID N (0, 1)

▶ ML (least-square) estimate is

x̂ =

(
m∑
i=1

aia
T
i

)−1 m∑
i=1

yiai

▶ error e = x̂− x has zero mean and covariance

E = EeeT =

(
m∑
i=1

aia
T
i

)−1

confidence ellipsoids are given by {x | (x− x̂)TE−1(x− x̂) ≤ β}

experiment design

choose ai ∈ {v1, . . . , vp} (a set of possible test vectors) to make E ‘small’



vector optimization formulation

minimize (with respect to Sn+) E =

(
p∑

k=1

mkvkv
T
k

)−1

subject to m1 + · · ·+mp = m

mk ≥ 0, mk ∈ Z

▶ variables are mk (number of vectors ai which are equal to vk)
▶ difficult in general, due to integer constraint



relaxed experiment design

assume m ≫ p, use λ = mk/m as (continuous) real variable

minimize (with respect to Sn+) E =

(
p∑

k=1

mkvkv
T
k

)−1

subject to m1 + · · ·+mp = m

mk ≥ 0, mk ∈ Z

ignoring the integer constraint, we arrive at

minimize (with respect to Sn+) E = (1/m)

(
p∑

k=1

λkvkv
T
k

)−1

subject to λ1 + · · ·+ λp = 1

λk ≥ 0, k = 1, . . . , p

▶ common scalarizations: minimize log detE, trE, λmax(E), . . .
▶ can add other convex constraints, e.g. bound experiment cost cTλ ≤ B



D-optimal design

minimize log det

(
p∑

k=1

λkvkv
T
k

)−1

subject to λ ⪰ 0

1Tλ = 1

interpretation: minimizes volume of confidence ellipsoids



dual problem

maximize log detW + n log n

subject to vTk Wvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at origin, that
includes all test vectors vk

complementary slackness for λ,W primal and dual optimal

λk

(
1− vTk Wvk

)
= 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W



computation reformulate primal problem with new variable X

minimize log detX−1

subject to X =

p∑
k=1

λkvkv
T
k , λ ⪰ 0, 1Tλ = 1

L(X,λ, Z, z, ν) = log detX−1 + tr

(
Z

(
X −

p∑
k=1

λkvkv
T
k

))
− zTλ+ ν

(
1Tλ− 1

)
▶ minimize over X by setting gradient to zero to obtain −X−1 + Z = 0

▶ minimum over λk is −∞ unless −vTk Zvk − zk + ν = 0

dual problem

maximize n+ log detZ − ν

subject to vTk Zvk ≤ ν, k = 1, . . . , p

change variable W = Z/ν and optimize over ν to get the above formulation



example p = 20

design uses two vectors, on boundary of ellipse defined by optimal W
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