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Norm approximation problem

let A ∈ Rm×n with m ≥ n and ∥ · ∥ norm on Rm

minimize ∥Ax− b∥

r = Ax− b is called the residual for the problem. WLOG, m ≥ n

interpretations of solution x∗

▶ approximation x, an optimal solution, is called the regression
▶ geometric Ax∗ is point in R(A) closest to b

▶ estimation linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error
given y = b, best guess of x is x∗

▶ optimal design x are design variables (input), Ax is result (output)
x∗ is design that best approximates desired result b



Examples

least-squares approximation ∥ · ∥2 solution satisfies normal equations

ATAx = AT b

unique solution x∗ = (ATA)−1AT b if rankA = n

weighted norm approximation

minimize ∥W (Ax− b) ∥

the W ∈ Rm×m is called the weighting matrix. The problem can be considered a norm
approximation problem with the W -weighted norm

∥z∥W = ∥Wz∥



Chebyshev (minimax) approximation ∥ · ∥∞ can be solved as an LP

minimize t

subject to − t1 ⪯ Ax− b ⪯ t1

sum of absolute residuals approximation ∥ · ∥1 can be solved as an LP

minimize 1T y

subject to − y ⪯ Ax− b ⪯ y

This is called a robust estimator (for reasons that will be clear later)



Penalty function approximation

let A ∈ Rm×n and ϕ : R → R convex penalty function

minimize ϕ(r1) + · · ·+ ϕ(rm)

subject to r = Ax− b

common penalty functions



▶ quadratic
ϕ(u) = u2

▶ deadzone-linear (with width a)

ϕ(u) = max{0, |u| − a}

▶ log-barrier (with limit a)

ϕ(u) =

{
−a2 log

(
1− (u/a)2

)
|u| < a

∞ otherwise



example (m = 100, n = 30) histogram of residuals for penalties

ϕ(u) = |u|, ϕ(u) = u2, ϕ(u) = max{0, |u| − 1/2}, ϕ(u) = − log(1− u2)

shape of penalty function has large effect on distribution of residuals



Huber penalty function (with parameter M)

ϕhub(u) =

{
u2 |u| ≤ M

M(2|u| −M) |u| > M

linear growth for large u makes approximation less sensitive to outliers



▶ left: Huber penalty for M = 1

▶ right: affine function f(t) = α+ βt fitted to 42 points (circles)
using quadratic (dashed) and Huber (solid) penalty



approximation with constraints

▶ nonnegative constraints on variables

minimize ||Ax− b||
subject to x ⪰ 0

▶ variable bounds

minimize ||Ax− b||
subject to l ⪯ x ⪯ u

▶ probability distribution

minimize ||Ax− b||
subject to x ⪰ 0, 1Tx = 1

▶ norm ball constraint

minimize ||Ax− b||
subject to ||x− x0|| ≤ d
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Least-norm problem

let A ∈ Rm×n with m ≤ n and ∥ · ∥ norm on Rn

minimize ∥x∥
subject to Ax = b

interpretation of solution x∗

▶ reformulation as norm approximation problem Let x = x0 + Zu, then

minimize ∥x0 + Zu∥

▶ geometric x∗ is point in affine set {x | Ax = b} with minimum distance to 0

▶ estimation x∗ is most plausible estimate consistent with measurements b = Ax

▶ design x are design variables (input), b are required results (output)
x∗ is most efficient design that satisfies requirements



Examples

least-squares ∥ · ∥2 can be solved via optimality conditions

2x+AT ν = 0

Ax = b

minimum sum of absolute values ∥ · ∥1 can be solved as an LP

minimize 1T y

subject to − y ⪯ x ⪯ y

Ax = b

extension: least penalty problem

minimize ϕ(x1) + · · ·+ ϕ(xn)

subject to Ax = b
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Bi-criterion formulation

Let A ∈ Rm×n, norms on Rm and Rn can be different

minimize (with respect to R2
+) (∥Ax− b∥, ∥x∥)

interpretation: find good approximation Ax ≈ b with small x

▶ estimation linear measurement model y = Ax+ v with prior knowledge
that ∥x∥ is small

▶ optimal design small x is cheaper or more efficient, or the linear model
y = Ax is only valid for small x

▶ robust approximation good approximation Ax ≈ b with small x is less
sensitive to errors in A than good approximations with large x



Regularization via a scalarization method

▶ tracing out optimal trade-off curve

minimize ∥Ax− b∥+ γ∥x∥

for γ > 0

▶ Tikhonov regularization

minimize ∥Ax− b∥22 + δ∥x∥22

for δ > 0, can be solved as a least-square problem

minimize
∥∥∥∥[ A√

δI

]
x−

[
b
0

]∥∥∥∥2
2

with solution
x∗ = (ATA+ δI)−1AT b.

▶ smoothing regularization

minimize ∥Ax− b∥22 + δ∥∆x∥22 + η∥x∥22



Optimal input design

linear dynamical system with impulse response h

y(t) =

t∑
τ=0

h(τ)u(t− τ), t = 0, 1, · · · , N

track desired output using a small and slowly varying input signal



input design problem multi-criterion problem with 3 objectives

1. tracking error with desired output ydes

Jtrack =

N∑
t=0

(y(t)− ydes(t))
2

2. input magnitude

Jmag =
N∑
t=0

u(t)2

3. input variation

Jder =

N−1∑
t=0

(u(t+ 1)− u(t))2



regularized least-square formulation

minimize Jtrack + δJder + ηJmag

for fixed δ > 0, η > 0, a least-squares problem in u(0), · · · , u(N).



example 3 solutions on optimal trade-off surface

top: δ = 0, small η = 0.005; middle: δ = 0, large η = 0.05; bottom: large
δ = 0.3, η = 0.05



ℓ1-norm regularization

regularization with an ℓ1-norm can be used for finding a sparse solution

minimize ∥Ax− b∥2 + γ∥x∥1

by varying the parameter γ we can sweep out the optimal trade-off curve between
∥Ax− b∥2 and ∥x∥1, which serves as an approximation of the optimal trade-off curve
between ∥Ax− b∥2 and the sparsity or cardinality of x.

the problem can be recast and solved as an SOCP



Signal reconstruction or de-noising

minimize (with respect to R2
+) (∥x̂− xcor∥2, ϕ(x̂))

▶ x ∈ Rn is unknown signal
▶ xcor = x+ v is (known) corrupted version of x, with additive noise v

▶ variable x̂ (reconstructed signal) is estimate of x
▶ ϕ : Rn → R is regularization function or smoothing objective, examples include

quadratic smoothing

ϕquad(x̂) =

n−1∑
i=1

(x̂i+1 − x̂i)
2

total variation reconstruction

ϕtv(x̂) =
n−1∑
i=1

|x̂i+1 − x̂i|



Quadratic smoothing example

original signal x and noisy signal xcor



optimal trade-off curve between (ϕquad(x̂))
1/2 and ∥x̂− xcor∥2



three quadratically smoothed signals x̂ on trade-off curve



Total variation reconstruction example

original signal x and noisy signal xcor



three quadratically smoothed signals x̂

quadratic smoothing reduces noise and sharp transitions in signal



optimal trade-off curve between ϕtv(x̂) and ∥x̂− xcor∥2



three reconstructed signals x̂ using total variation

total variation smoothing preserves sharp transitions in signal
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Robust approximation

minimize ∥Ax− b∥ with uncertain A = A+ U

stochastic approach assume A is random, minimize

E∥Ax− b∥

worst-case approach set A of possible values of A, minimize

sup
A∈A

∥Ax− b∥

tractable only in special cases (with certain norms, distributions, sets A)



Example minimize ∥Ax− b∥ with A(u) = A0 + uA1

residue r(u) = ∥A(u)x− b∥2 as a function of the uncertain parameter u

xnom minimizes ∥A0x− b∥22
xstoch minimizes E∥A(u)x− b∥22 with u uniform on [−1, 1]

xwc minimizes sup−1≤u≤1∥A(u)x− b∥22



Stochastic robust LS

assume A = A+ U , with U random, EU = 0, EUTU = P

minimize E∥(A+ U)x− b∥22

▶ explicit expression for objective

E∥Ax− b∥22 = E∥Ax− b+ Ux∥22
= ∥Ax− b∥22 +ExTUTUx

= ∥Ax− b∥22 + xTPx

▶ stochastic robust LS is equivalent to standard LS

minimize ∥Ax− b∥22 + ∥P 1/2x∥22

▶ for P = δI get Tikhonov regularized problem

minimize ∥Ax− b∥22 + δ∥x∥22



Worst-case robust LS

assume A =
{
A+ u1A1 + · · ·+ upAp

∣∣ ∥u∥2 ≤ 1
}

minimize sup
A∈A

∥Ax− b∥22 = sup
∥u∥2≤1

∥P (x)u+ q(x)∥22

where P (x) =
[
A1x A2x . . . Apx

]
and q(x) = Ax− b



▶ we have seen strong duality between the following pair of problems

primal

maximize ∥Pu+ q∥22
subject to ∥u∥22 ≤ 1

dual

minimize t+ λ

subject to

 I P q
P T λI 0
qT 0 t

 ⪰ 0

▶ worst-case robust LS is equivalent to SDP

minimize t+ λ

subject to

 I P (x) q(x)
P (x)T λI 0
q(x)T 0 t

 ⪰ 0



Example let A = A0 + u1A1 + u2A2 with u uniformly distributed on unit disk

histogram of residues r(u) = ∥A(u)x− b∥2

xls minimizes ∥A0x− b∥22 (nominal)

xtik minimizes ∥A0x− b∥22 + ∥x∥22 (Tikhonov)

xrls minimizes supA∈A∥Ax− b∥22 (worst-case)
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function families

the function f : Rk → R is given by

f(u) = x1f1(u) + · · ·+ x1f1(u)

The family {f1, · · · , fn} is called the set of basis functions and the vector x ∈ Rn is
called the coefficient vector.

polynomials

▶ fi(t) = ti−1

▶ orthonormal polynomials wrt some positive function (or measure)
▶ Lagrange basis f1, · · · , fn associated with distinct points t1, · · · , tn which satisfy

fi(tj) =

{
1 i = j

0 i ̸= j

▶ trigonometric polynomials of degree less than n



piecewise-linear functions

▶ triangularization of the domain
▶ the basis functions fi are affine on each simplex

piecewise polynomials and splines

▶ piecewise-affine functions on a triangulated domain is readily extended to piecewise
polynomials and other functions

▶ piecewise polynomials are defined as polynomials which are continuous, i.e., the
polynomials agree at the boundaries between simplexes

▶ restricting the piecewise polynomials to have continuous derivatives up to a certain
order, we define various classes of spline functions



(left) piecewise-linear function on the unit square

(right) a cubic spline with continuous first and second derivatives



Constraints

function value interpolation and inequalities

▶ box constraints
l ≤ f(v) ≤ u

▶ Lipschitz constraint

|f(vj)− f(vk)| ≤ L∥vj − vk∥, j, k = 1, . . . ,m

▶ inequalities on the function values at an infinite number of points

f(u) ≥ 0 for all u ∈ D

derivative constraints

▶ the norm of the gradient at v not exceed a given limit

∥∇f(v) ≤ M∥

▶ a linear matrix inequality (convex)

lI ⪯ ∇2f(v) ⪯ uI



constraints on the derivatives at an infinite number of points

▶ f is monotone
f(u) ≥ f(v) for all u, v ∈ D, u ⪰ v.

▶ the function is convex

f((u+ v)/2) ≤ (f(u) + f(v))/2 for all u, v ∈ D

integral constraints

▶ moment constraint ∫
D
tmf(t)dt = a



minimum norm function fitting we are given data

(u1, y1), . . . , (um, ym),

and seek a function f ∈ F that matches this data as closely as possible

in least-squares fitting we consider the problem

minimize
m∑
i=1

(f(ui)− yi)
2

least-norm interpolation we have fewer data points than the dimension of the
subspace of functions. We require that

f(ui) = yi, i = 1, . . . ,m

among the functions, we seek one that is smoothest, or smallest. These lead to
least-norm problems



(left) polynomial fitting (right) spline fitting



sparse descriptions and basis pursuit

in basis pursuit, there is a very large number of basis functions, and the goal is to find a
good fit of the given data as a linear combination of a small number of the basis
functions. sparse descriptions and basis pursuit can be used for de-noising or smoothing

we seek a function f ∈ F that fits the data well

f(ui) ≈ yi, i = 1, . . . ,m,

with a sparse coefficient vector x, i.e., card(x) small.

regressor selection based on ℓ1-norm regularization

minimize
m∑
i=1

(f(ui)− yi)
2 + γ∥x∥1

Then we solve the least-squares problem

minimize
m∑
i=1

(f(ui)− yi)
2

with variables xi, i ∈ B, and xi = 0, i /∈ B



(top) original signal (solid) and approximation by basis pursuit (dashed)

(bottom) the approximation error



interpolation with convex functions

Question: When does there exist a convex function f : Rk → R, with dom f = Rk,
that satisfies the interpolation conditions

f(ui) = yi, i = 1, . . . ,m,

at given points ui ∈ Rk? (Here we do not restrict f to lie in any finite-dimensional
subspace of functions)

Answer: if and only if there exist g1, . . . , gm such that

yj ≥ yi + g⊤i (uj − ui), i, j = 1, . . . ,m

if f is differentiable, we can take gi = ∇f(ui)

in the more general case, we can construct gi by finding a supporting hyperplane to
epi f at (ui, yi). The vectors gi are called subgradients.



least-squares fit of a convex function to data. The (piecewise-linear) function shown
minimizes the sum of squared fitting error, over all convex functions
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