Chapter 6 Approximation and fitting

Last update on 2025-04-15 10:53:52+08:00

Norm approximation

Least-norm problems

Regularized approximation

Robust approximation

Function fitting and interpolation

Norm approximation

Least-norm problems

Regularized approximation

Robust approximation

Function fitting and interpolation

Norm approximation problem

let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ and $\|\cdot\|$ norm on \mathbb{R}^m

minimize ||Ax - b||

r = Ax - b is called the residual for the problem. WLOG, $m \ge n$

interpretations of solution x^*

b approximation *x*, an optimal solution, is called the regression

geometric Ax^* is point in $\mathcal{R}(A)$ closest to b

estimation linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error given y = b, best guess of x is x^*

▶ optimal design x are design variables (input), Ax is result (output) x^* is design that best approximates desired result b

Examples

least-squares approximation $\|\cdot\|_2$ solution satisfies normal equations

$$A^T A x = A^T b$$

unique solution $x^* = (A^T A)^{-1} A^T b$ if rank A = n

weighted norm approximation

minimize ||W(Ax - b)||

the $W \in \mathbb{R}^{m \times m}$ is called the weighting matrix. The problem can be considered a norm approximation problem with the W-weighted norm

 $||z||_W = ||Wz||$

Chebyshev (minimax) approximation $\|\cdot\|_{\infty}$ can be solved as an LP

minimize
$$t$$

subject to $-t\mathbf{1} \preceq Ax - b \preceq t\mathbf{1}$

sum of absolute residuals approximation $\|\cdot\|_1$ can be solved as an LP

minimize $\mathbf{1}^T y$ subject to $-y \preceq Ax - b \preceq y$

This is called a robust estimator (for reasons that will be clear later)

Penalty function approximation

let $A \in \mathbb{R}^{m \times n}$ and $\phi \colon \mathbb{R} \to \mathbb{R}$ convex penalty function

 $\begin{array}{ll} \mbox{minimize} & \phi(r_1) + \cdots + \phi(r_m) \\ \mbox{subject to} & r = Ax - b \end{array}$

common penalty functions

$$\phi(u) = u^2$$

deadzone-linear (with width a)

$$\phi(u) = \max\{0, |u| - a\}$$

▶ log-barrier (with limit *a*)

$$\phi(u) = \begin{cases} -a^2 \log \left(1 - (u/a)^2\right) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$

example (m = 100, n = 30) histogram of residuals for penalties

$$\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - 1/2\}, \quad \phi(u) = -\log(1 - u^2)$$

shape of penalty function has large effect on distribution of residuals

Huber penalty function (with parameter M)

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \le M \\ M(2|u| - M) & |u| > M \end{cases}$$

linear growth for large u makes approximation less sensitive to outliers

- left: Huber penalty for M = 1
- ▶ right: affine function $f(t) = \alpha + \beta t$ fitted to 42 points (circles) using quadratic (dashed) and Huber (solid) penalty

approximation with constraints

nonnegative constraints on variables

 $\begin{array}{ll} \text{minimize} & ||Ax - b|| \\ \text{subject to} & x \succeq 0 \end{array}$

variable bounds

 $\begin{array}{ll} \text{minimize} & ||Ax - b|| \\ \text{subject to} & l \leq x \leq u \end{array}$

probability distribution

norm ball constraint

 $\begin{array}{ll} \mbox{minimize} & ||Ax - b|| \\ \mbox{subject to} & ||x - x_0|| \leq d \end{array}$

Norm approximation

Least-norm problems

Regularized approximation

Robust approximation

Function fitting and interpolation

Least-norm problem

let $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ and $\|\cdot\|$ norm on \mathbb{R}^n

 $\begin{array}{ll} \text{minimize} & \|x\|\\ \text{subject to} & Ax = b \end{array}$

interpretation of solution \boldsymbol{x}^*

▶ reformulation as norm approximation problem Let $x = x_0 + Zu$, then

minimize $||x_0 + Zu||$

geometric x^* is point in affine set $\{x \mid Ax = b\}$ with minimum distance to 0

• estimation x^* is most plausible estimate consistent with measurements b = Ax

design x are design variables (input), b are required results (output) x* is most efficient design that satisfies requirements

Examples

least-squares $\|\cdot\|_2$ can be solved via optimality conditions $2x+A^T\nu=0$ Ax=b

minimum sum of absolute values $\|\cdot\|_1$

can be solved as an LP

minimize	$1^T y$
subject to	$-y \preceq x \preceq y$
	Ax = b

extension: least penalty problem

minimize
$$\phi(x_1) + \dots + \phi(x_n)$$

subject to $Ax = b$

Norm approximation

Least-norm problems

Regularized approximation

Robust approximation

Function fitting and interpolation

Let $A \in \mathbb{R}^{m \times n}$, norms on \mathbb{R}^m and \mathbb{R}^n can be different

```
minimize (with respect to \mathbb{R}^2_+) (||Ax - b||, ||x||)
```

interpretation: find good approximation $Ax\approx b$ with small x

- estimation linear measurement model y = Ax + v with prior knowledge that ||x|| is small
- optimal design small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- ▶ robust approximation good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximations with large x

Regularization via a scalarization method

tracing out optimal trade-off curve

minimize $||Ax - b|| + \gamma ||x||$

for $\gamma>0$

Tikhonov regularization

minimize $||Ax - b||_2^2 + \delta ||x||_2^2$

for $\delta>0,$ can be solved as a least-square problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

with solution

$$x^* = (A^T A + \delta I)^{-1} A^T b.$$

smoothing regularization

minimize $||Ax - b||_2^2 + \delta ||\Delta x||_2^2 + \eta ||x||_2^2$

linear dynamical system with impulse response \boldsymbol{h}

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \qquad t = 0, 1, \cdots, N$$

track desired output using a small and slowly varying input signal

input design problem multi-criterion problem with 3 objectives

1. tracking error with desired output $y_{\rm des}$

$$J_{\text{track}} = \sum_{t=0}^{N} \left(y(t) - y_{\text{des}}(t) \right)^2$$

2. input magnitude

$$J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$$

3. input variation

$$J_{\text{der}} = \sum_{t=0}^{N-1} \left(u(t+1) - u(t) \right)^2$$

regularized least-square formulation

minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$

for fixed $\delta > 0$, $\eta > 0$, a least-squares problem in $u(0), \cdots, u(N)$.

regularization with an $\ell_1\text{-norm}$ can be used for finding a sparse solution

minimize $||Ax - b||_2 + \gamma ||x||_1$

by varying the parameter γ we can sweep out the optimal trade-off curve between $||Ax - b||_2$ and $||x||_1$, which serves as an approximation of the optimal trade-off curve between $||Ax - b||_2$ and the sparsity or cardinality of x.

the problem can be recast and solved as an SOCP

minimize (with respect to \mathbb{R}^2_+) $(\|\hat{x} - x_{cor}\|_2, \phi(\hat{x}))$

- $x \in \mathbb{R}^n$ is unknown signal
- $x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- φ: ℝⁿ → ℝ is regularization function or smoothing objective, examples include

 quadratic smoothing

$$\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2$$

total variation reconstruction

$$\phi_{\rm tv}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|$$

Quadratic smoothing example

original signal x and noisy signal $x_{\rm cor}$

optimal trade-off curve between $(\phi_{\rm quad}(\hat{x}))^{1/2}$ and $\|\hat{x}-x_{\rm cor}\|_2$

three quadratically smoothed signals \hat{x} on trade-off curve

Total variation reconstruction example

original signal x and noisy signal $x_{\rm cor}$

three quadratically smoothed signals \hat{x} quadratic smoothing reduces noise and sharp transitions in signal

optimal trade-off curve between $\phi_{\mathrm{tv}}(\hat{x})$ and $\|\hat{x} - x_{\mathrm{cor}}\|_2$

three reconstructed signals \hat{x} using total variation total variation smoothing preserves sharp transitions in signal

Norm approximation

Least-norm problems

Regularized approximation

Robust approximation

Function fitting and interpolation

||Ax - b|| with uncertain $A = \overline{A} + U$ minimize stochastic approach assume A is random, minimize $\mathbf{E} \|Ax - b\|$ set \mathcal{A} of possible values of A, minimize worst-case approach $\sup_{A \in \mathcal{A}} \|Ax - b\|$

tractable only in special cases (with certain norms, distributions, sets \mathcal{A})

residue $r(u) = \|A(u)x - b\|_2$ as a function of the uncertain parameter u

$$\begin{array}{ll} x_{\text{nom}} & \text{minimizes} & \|A_0x - b\|_2^2 \\ x_{\text{stoch}} & \text{minimizes} & \mathbf{E} \|A(u)x - b\|_2^2 \text{ with } u \text{ uniform on } [-1,1] \\ x_{\text{wc}} & \text{minimizes} & \mathbf{sup}_{-1 < u < 1} \|A(u)x - b\|_2^2 \end{array}$$

Stochastic robust LS

assume $A = \overline{A} + U$, with U random, $\mathbf{E}U = 0$, $\mathbf{E}U^T U = P$ minimize $\mathbf{E} \| (\overline{A} + U)x - b \|_2^2$

explicit expression for objective

$$\mathbf{E} \|Ax - b\|_2^2 = \mathbf{E} \|\overline{A}x - b + Ux\|_2^2$$
$$= \|\overline{A}x - b\|_2^2 + \mathbf{E}x^T U^T Ux$$
$$= \|\overline{A}x - b\|_2^2 + x^T Px$$

stochastic robust LS is equivalent to standard LS

minimize $\|\overline{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$

• for $P = \delta I$ get Tikhonov regularized problem

minimize $\|\overline{A}x - b\|_2^2 + \delta \|x\|_2^2$

assume
$$\mathcal{A} = \left\{\overline{A} + u_1A_1 + \dots + u_pA_p \mid \|u\|_2 \le 1\right\}$$

minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 = \sup_{\|u\|_2 \le 1} \|P(x)u + q(x)\|_2^2$
where $P(x) = \begin{bmatrix} A_1x & A_2x & \dots & A_px \end{bmatrix}$ and $q(x) = \overline{A}x - b$

we have seen strong duality between the following pair of problems primal

maximize
$$\|Pu + q\|_2^2$$

subject to $\|u\|_2^2 \le 1$

dual

worst-case robust LS is equivalent to SDP

$$\begin{array}{ll} \text{minimize} & t+\lambda \\ \text{subject to} & \begin{bmatrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{bmatrix} \succeq 0 \\ \end{array}$$

let $A = A_0 + u_1A_1 + u_2A_2$ with u uniformly distributed on unit disk

Norm approximation

Least-norm problems

Regularized approximation

Robust approximation

Function fitting and interpolation

function families

the function $f: \mathbb{R}^k \to \mathbb{R}$ is given by

$$f(u) = x_1 f_1(u) + \dots + x_1 f_1(u)$$

The family $\{f_1, \dots, f_n\}$ is called the set of basis functions and the vector $x \in \mathbb{R}^n$ is called the coefficient vector.

polynomials

$$\blacktriangleright f_i(t) = t^{i-1}$$

orthonormal polynomials wrt some positive function (or measure)

▶ Lagrange basis f_1, \cdots, f_n associated with distinct points t_1, \cdots, t_n which satisfy

$$f_i(t_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

 \blacktriangleright trigonometric polynomials of degree less than n

piecewise-linear functions

- triangularization of the domain
- the basis functions f_i are affine on each simplex

piecewise polynomials and splines

- piecewise-affine functions on a triangulated domain is readily extended to piecewise polynomials and other functions
- piecewise polynomials are defined as polynomials which are continuous, i.e., the polynomials agree at the boundaries between simplexes
- restricting the piecewise polynomials to have continuous derivatives up to a certain order, we define various classes of spline functions

(left) piecewise-linear function on the unit square (right) a cubic spline with continuous first and second derivatives

Constraints

function value interpolation and inequalities

box constraints

$$l \leq f(v) \leq u$$

Lipschitz constraint

$$|f(v_j) - f(v_k)| \le L ||v_j - v_k||, \quad j, k = 1, \dots, m$$

inequalities on the function values at an infinite number of points

 $f(u) \ge 0$ for all $u \in D$

derivative constraints

 \blacktriangleright the norm of the gradient at v not exceed a given limit

 $\|\nabla f(v) \leq M\|$

a linear matrix inequality (convex)

 $lI \preceq \nabla^2 f(v) \preceq uI$

constraints on the derivatives at an infinite number of points

► *f* is monotone

 $f(u) \ge f(v)$ for all $u, v \in D, u \succeq v$.

the function is convex

$$f((u+v)/2) \le (f(u) + f(v))/2 \text{ for all } u, v \in D$$

integral constraints

moment constraint

$$\int_D t^m f(t) dt = a$$

minimum norm function fitting we are given data

 $(u_1, y_1), \ldots, (u_m, y_m),$

and seek a function $f \in \mathcal{F}$ that matches this data as closely as possible in least-squares fitting we consider the problem

minimize
$$\sum_{i=1}^{m} (f(u_i) - y_i)^2$$

least-norm interpolation we have fewer data points than the dimension of the subspace of functions. We require that

$$f(u_i) = y_i, \qquad i = 1, \dots, m$$

among the functions, we seek one that is smoothest, or smallest. These lead to least-norm problems

sparse descriptions and basis pursuit

in basis pursuit, there is a very large number of basis functions, and the goal is to find a good fit of the given data as a linear combination of a small number of the basis functions. sparse descriptions and basis pursuit can be used for de-noising or smoothing

we seek a function $f \in \mathcal{F}$ that fits the data well

 $f(u_i) \approx y_i, \qquad i = 1, \dots, m,$

with a sparse coefficient vector x, i.e., card(x) small.

regressor selection based on $\ell_1\text{-norm}$ regularization

minimize

e
$$\sum_{i=1}^{m} (f(u_i) - y_i)^2 + \gamma \|x\|_1$$

Then we solve the least-squares problem

minimize
$$\sum_{i=1}^m (f(u_i) - y_i)^2$$

m

with variables $x_i, i \in \mathcal{B}$, and $x_i = 0, i \notin \mathcal{B}$

(top) original signal (solid) and approximation by basis pursuit (dashed) (bottom) the approximation error

Question: When does there exist a convex function $f : \mathbb{R}^k \to \mathbb{R}$, with dom $f = \mathbb{R}^k$, that satisfies the interpolation conditions

$$f(u_i) = y_i, \qquad i = 1, \dots, m,$$

at given points $u_i \in \mathbb{R}^k$? (Here we do not restrict f to lie in any finite-dimensional subspace of functions)

Answer: if and only if there exist g_1, \ldots, g_m such that

$$y_j \ge y_i + g_i^{\top}(u_j - u_i), \qquad i, j = 1, \dots, m$$

if f is differentiable, we can take $g_i = \nabla f(u_i)$

in the more general case, we can construct g_i by finding a supporting hyperplane to epi f at (u_i, y_i) . The vectors g_i are called subgradients.

least-squares fit of a convex function to data. The (piecewise-linear) function shown minimizes the sum of squared fitting error, over all convex functions