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Norm approximation



Norm approximation problem
let A € R™*™ with m >n and || - || norm on R™

minimize |Az — b

r = Ax — b is called the residual for the problem. WLOG, m > n

interpretations of solution z*

> approximation z, an optimal solution, is called the regression

> geometric Az* is point in R(A) closest to b
> estimation linear measurement model
y=Ar+v

y are measurements, x is unknown, v is measurement error
given y = b, best guess of x is z*
> optimal design x are design variables (input), Ax is result (output)

x* is design that best approximates desired result b



Examples

least-squares approximation || - |2 solution satisfies normal equations
AT Az = ATb
unique solution z* = (AT A)~1ATb if rank A = n

weighted norm approximation

minimize | W(Ax —b) ||

the W € R™*™ is called the weighting matrix. The problem can be considered a norm
approximation problem with the WW-weighted norm

12llw = [[W=]]



Chebyshev (minimax) approximation || - || can be solved as an LP

minimize t
subject to —t1 <Az —-b=<tl1
sum of absolute residuals approximation || - ||; can be solved as an LP
minimize 17y
subject to —y=Az-b=<y

This is called a robust estimator (for reasons that will be clear later)



Penalty function approximation

let A € R™™ and ¢: R — R convex penalty function

minimize d(r)+ -+ o(rm)
subject to r=Axr—b

common penalty functions

adratic

adzone-linear




» quadratic
$(u) = u’

» deadzone-linear (with width a)
6(u) = max/{0, [u] — a}

» log-barrier (with limit a)

00 otherwise

o) = {—a2 log (1 - (u/a)?) |ul <a



example (m = 100, n = 30)

$(u) = |ul,

Deadzone p=2

Log barrier

histogram of residuals for penalties

d(u) =v*, ¢(u) = max{0,|u| —1/2}, ¢(u) = —log(1 —u?)
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shape of penalty function has large effect on distribution of residuals



Huber penalty function (with parameter M)

) = " =M
MO M@ - M) ul > M

linear growth for large uw makes approximation less sensitive to outliers
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approximation with constraints

> nonnegative constraints on variables
minimize ||Az — b||
subject to z>=0
» variable bounds
minimize ||Az — b||
subject to <z =<u
> probability distribution
minimize ||Az — b|
subject to =0, 1Tz=1
» norm ball constraint

minimize ||Az — b
subject to ||z — xol] < d



Least-norm problems



Least-norm problem

let A € R™*™ with m <n and ||-|| norm on R"

minimize Izl

subject to Ax =10

interpretation of solution z*

» reformulation as norm approximation problem Let z = 2y + Zu, then

minimize |20 + Zul|
» geometric z* is point in affine set {x | Az = b} with minimum distance to 0

» estimation x* is most plausible estimate consistent with measurements b = Ax
» design x are design variables (input), b are required results (output)

x* is most efficient design that satisfies requirements



Examples

least-squares || - [|2 can be solved via optimality conditions
20+ ATy =0
Az =0
minimum sum of absolute values || - ||; can be solved as an LP
minimize 17y
subject to —y=z=y
Az =0

extension: least penalty problem

minimize d(x1) + -+ d(zp)
subject to Az =b



Regularized approximation



Bi-criterion formulation

Let A € R™*™ norms on R™ and R" can be different

minimize (with respect to R2) ([[Az = b]|, |||

interpretation: find good approximation Az ~ b with small x
> estimation linear measurement model y = Ax + v with prior knowledge
that ||z|| is small
» optimal design small = is cheaper or more efficient, or the linear model
y = Az is only valid for small z
> robust approximation good approximation Ax ~ b with small x is less
sensitive to errors in A than good approximations with large x



Regularization via a scalarization method

> tracing out optimal trade-off curve
minimize |Az — bl + ~||=||
fory >0
» Tikhonov regularization
minimize | Az — b||3 + 6|z

for 6 > 0, can be solved as a least-square problem

2

e[ Ao~ []

2

with solution
¥ = (ATA+61)*ATh.

» smoothing regularization

minimize HAx—bH%+6||AmH%—i—n”m\\%



Optimal input design

linear dynamical system with impulse response h

t

y(t) =Y h(r)u(t—7), t=0,1,---,N
7=0

track desired output using a small and slowly varying input signal



input design problem multi-criterion problem with 3 objectives
1. tracking error with desired output ¥ges

N

Jtrack = Z (y(t) - ydes(t))2

t=0

2. input magnitude

3. input variation



regularized least-square formulation

minimize Jirack + 0Jder + N Jmag

for fixed § > 0, n > 0, a least-squares problem in w(0), -, u(N).



example

3 solutions on

optimal trade-off surface

51 | ‘ ) 1 fw ey
i M I i
o W\,\w\ b ~af ”;‘\A, 0.5 l
= ' \[" l = 0 v ‘ o~
5 g I > (
- \“ —0.5 \ [
1o _1 b |
0 50 100 150 200 0 50 100 150 200
t t
4
2 iy
= ’.j - Y
T ‘A\ ) {
-2 \/ |
I/ A
—4 I Sy
0 50 100 150 150 200
t
4
2 ~
l;/ Or J \ ’//"’/\ - ! 11/7 -
—92 \V/ \ //(
_4 -1 [N v
0 50 100 150 200 0 50 100 150 200
t t

top: 0 =0, small n = 0.005;

5 =0.3,7=0.05

middle: § =0, large n = 0.05;

bottom: large



¢1-norm regularization

regularization with an ¢1-norm can be used for finding a sparse solution

minimize | Az — bl[2 4+ v|z[]1

by varying the parameter v we can sweep out the optimal trade-off curve between
||Az — b||2 and ||z||1, which serves as an approximation of the optimal trade-off curve
between || Az — b||2 and the sparsity or cardinality of x.

the problem can be recast and solved as an SOCP



Signal reconstruction or de-noising

minimize (with respect to R%) (I — zcorll2, @(Z))

» z € R™ is unknown signal

» Z.or =+ v is (known) corrupted version of x, with additive noise v

» variable Z (reconstructed signal) is estimate of z
> ¢: R™ — R is regularization function or smoothing objective, examples include

quadratic smoothing

n—1

(bquad(:%) = Z (ii-i-l - i1)2

=1

total variation reconstruction

n—1
Gee(®) = D |Biv1 — &
i=1



Quadratic smoothing example
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original signal x and noisy signal xcor
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Total variation reconstruction example

0 500 1000 1500 2000

0 500 1000 1500 2000
7
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quadratic smoothing reduces noise and sharp transitions in signal
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Robust approximation



Robust approximation

minimize ||Az — b|| with uncertain A= A+ U
stochastic approach assume A is random, minimize
E| Az — b|
worst-case approach set A of possible values of A, minimize
sup||Az — b
AcA

tractable only in special cases (with certain norms, distributions, sets A)



Example minimize | Az — b|| with A(u) = Ag + uAy

r(u)

residue r(u) = ||A(u)x — b||2 as a function of the uncertain parameter u
Tnom  Minimizes |[Agz — b||3
Tstoch Minimizes  E||A(u)z — b||3 with u uniform on [—1,1]

Twe minimizes  sup_j<,<;||A(u)z — b||3



Stochastic robust LS

assume A = A + U, with U random, EU =0, EUTU = P

minimize E||(A+U)zx — b|3

> explicit expression for objective

E||Az — b||3 = E||Az — b+ Ux||3
= [[Az — b3+ Ex"UTUx
= |[Az — b||3 + 2T Px

» stochastic robust LS is equivalent to standard LS
minimize Az — 0|2 + | P22
» for P = 61 get Tikhonov regularized problem

minimize  |[Az — b||2 + 6|=|3



Worst-case robust LS

assume A = {Z+ ur Ay + -+ up Ay | Jull2 < 1}

minimize sup||[Az —b||? = sup ||P(z)u+ q(z)|>
AeA [ull2<1

where P(z) = [A1z Az ... Apz] and q(z) = Az —b



> we have seen strong duality between the following pair of problems

primal
maximize | Pu + q|3
subject to ull3 <1
dual
minimize t+ A
I P q
subject to PT X 0| =0
g 0 t

» worst-case robust LS is equivalent to SDP

minimize t+ A
I P(x) q(z)
subject to Pz X 0 | =0
gz 0t



Example

frequency

let A= Ag+ uy A1 + usAs with u uniformly distributed on unit disk
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Function fitting and interpolation



function families

the function f : R¥ — R is given by

flw) =z1fi(u) + -+ 21 f1(u)

The family {f1,---, fn} is called the set of basis functions and the vector z € R" is
called the coefficient vector.
polynomials

> fz(t) — ti—l

» orthonormal polynomials wrt some positive function (or measure)

» Lagrange basis f1,- -, f, associated with distinct points t1, - - - ,t, which satisfy
1 i=j
() =
filt) { 0 il

> trigonometric polynomials of degree less than n



piecewise-linear functions

» triangularization of the domain
> the basis functions f; are affine on each simplex
piecewise polynomials and splines

> piecewise-affine functions on a triangulated domain is readily extended to piecewise
polynomials and other functions

> piecewise polynomials are defined as polynomials which are continuous, i.e., the
polynomials agree at the boundaries between simplexes

> restricting the piecewise polynomials to have continuous derivatives up to a certain
order, we define various classes of spline functions
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(left) piecewise-linear function on the unit square
(right) a cubic spline with continuous first and second derivatives



Constraints

function value interpolation and inequalities

» box constraints
< flv)<u

» Lipschitz constraint
) = F@) < Llloy —well, jok=1,..,m
> inequalities on the function values at an infinite number of points
f(u) >0 forallu e D

derivative constraints

» the norm of the gradient at v not exceed a given limit
IVf(v) < M|
» a linear matrix inequality (convex)

11 < V2f(v) <ul



constraints on the derivatives at an infinite number of points

> f is monotone
f(u) > f(v) for all u,v € D, u = v.

» the function is convex

fl(u+0v)/2) < (f(u) + f(v))/2 for all u,v € D

integral constraints

» moment constraint

/Dtmf(t)dt =a



minimum norm function fitting we are given data

(U173/1)7 ey (u’n’wym)7
and seek a function f € F that matches this data as closely as possible

in least-squares fitting we consider the problem

minimize Z(f(%) - yz‘)Q

i=1

least-norm interpolation we have fewer data points than the dimension of the
subspace of functions. We require that

f(ui):yi, izl,...,m

among the functions, we seek one that is smoothest, or smallest. These lead to
least-norm problems



0

D

0

0.5

0

u

uw

(right) spline fitting

(left) polynomial fitting



sparse descriptions and basis pursuit

in basis pursuit, there is a very large number of basis functions, and the goal is to find a
good fit of the given data as a linear combination of a small number of the basis
functions. sparse descriptions and basis pursuit can be used for de-noising or smoothing

we seek a function f € F that fits the data well
f(ul)%yl’ izla"'>m>

with a sparse coefficient vector z, i.e., card(z) small.

regressor selection based on ¢1-norm regularization

m

minimize Z(f(uz) — )2+ 9]z

i=1
Then we solve the least-squares problem

minimize Z(f(u@) —y;)?

i=1

with variables z;,7 € B, and z; = 0,i ¢ B
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interpolation with convex functions

Question: When does there exist a convex function f : R¥ — R, with dom f = R¥,
that satisfies the interpolation conditions

f(uz):yla izlv"'>m>

at given points u; € R¥? (Here we do not restrict f to lie in any finite-dimensional
subspace of functions)

Answer: if and only if there exist g1, ..., gm such that
T .
yi Zyi+9; (uj—wi), ij=1....m

if f is differentiable, we can take g; = V f(u;)

in the more general case, we can construct g; by finding a supporting hyperplane to
epi f at (u;,y;). The vectors g; are called subgradients.
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least-squares fit of a convex function to data. The (piecewise-linear) function shown
minimizes the sum of squared fitting error, over all convex functions
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