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Lagrangian

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

variable x ∈ Rn, domain D, optimal value p∗

Lagrangian L : Rn × Rm × Rp → R with domL = D × Rm × Rp

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

▶ weighted sum of objective and constraint functions
▶ λi and νi are Lagrange multipliers



Lagrange dual function

Lagrange dual function g : Rm × Rp → R

g(λ, ν) = inf
x∈D

L(x, λ, ν)

g is concave, can be −∞ for some values of λ and ν

Lower bound property g(λ, ν) ≤ p∗ for any λ ⪰ 0

Proof for any feasible x̄ and λ ⪰ 0

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̄, λ, ν) ≤ f0(x̄)

minimizing over all feasible x̄ gives g(λ, ν) ≤ p∗



Least-norm solution of linear equations

minimize xTx

subject to Ax = b

▶ Lagrangian L(x, ν) = xTx+ νT (Ax− b)

▶ to minimize L over x, set gradient equal to zero

∇xL(x, ν) = 2x+AT ν = 0 =⇒ x = −(1/2)AT ν

▶ dual function (concave in ν)

g(ν) = L
(
(−1/2)AT ν, ν

)
= −(1/4)νTAAT ν − bT ν

▶ lower bound property p∗ ≥ −(1/4)νTAAT ν − bT ν for all ν



Standard form LP

minimize cTx

subject to Ax = b

x ⪰ 0

▶ Lagrangian

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx = −bT ν + (c+AT ν − λ)Tx

▶ dual function (linear on affine domain hence concave)

g(λ, ν) = inf
x

L(x, λ, ν) =

{
−bT ν AT ν − λ+ c = 0

−∞ otherwise

▶ lower bound property p∗ ≥ −bT ν if AT ν + c ⪰ 0



Equality constrained norm minimization

minimize ∥x∥
subject to Ax = b

▶ Lagrangian L(x, ν) = ∥x∥ − νT (Ax− b) = ∥x∥ − νTAx+ bT ν

▶ dual function

g(ν) = inf
x

L(x, ν) =

{
bT ν ∥AT ν∥∗ ≤ 1

−∞ otherwise

where ∥v∥∗ = sup∥u∥≤1 u
T v is the dual norm (proof on next page)

▶ lower bound property p∗ ≥ bT ν if ∥AT ν∥∗ ≤ 1



Proof

observe that

inf
x

(
∥x∥ − yTx

)
=

{
0 ∥y∥∗ ≤ 1

−∞ otherwise

▶ if ∥y∥∗ ≤ 1, then yTx ≤ ∥x∥∥y∥∗ ≤ ∥x∥ for all x, with equality if x = 0

▶ if ∥y∥∗ > 1, choose x = tu such that ∥u∥ ≤ 1 and yTu > 1, then

lim
t→∞

(
∥x∥ − yTx

)
= t (∥u∥ − ∥y∥∗) = −∞



Two-way partitioning problem

minimize xTWx

subject to x2i = 1, i = 1, · · · , n

▶ nonconvex problem, feasible set contains 2n discrete points
▶ W ∈ Sn, Wij is cost of assigning i and j to the same set
▶ interpretation: find the most harmonies way to divide {1, · · · , n} in two sets



▶ Lagrangian

L = xTWx+

n∑
i=1

νi(x
2
i − 1)

▶ dual function

g(ν) = inf
x

(
xT (W + diag(ν))x− 1T ν

)
=

{
−1T ν W + diag(ν) ⪰ 0

−∞ otherwise

▶ lower bound property

p∗ ≥ −1T ν if W + diag(ν) ⪰ 0

▶ example
ν = −λmin(W )1 gives bound p∗ ≥ nλmin(W )



Lagrange dual & conjugate function

minimize f0(x)

subject to Ax ⪯ b

Cx = d

dual function

g(λ, ν) = inf
x∈dom f0

(
f0(x) +

(
ATλ+ CT ν

)T
x− bTλ− dT ν

)
= −f∗

0

(
−ATλ− CT ν

)
− bTλ− dT ν

▶ recall definition of conjugate f∗(y) = sup
x∈dom f

(
yTx− f(x)

)
▶ simplifies derivation of dual if conjugate of f0 is known



Entropy maximization

minimize f0(x) =

n∑
i=1

xi log xi

subject to Ax ⪯ b

1Tx = 1

▶ conjugate of f0(x)

f∗
0 (y) =

n∑
i=1

eyi−1

▶ dual function

g(λ, ν) = −
n∑

i=1

e−aTi λ−ν−1 − bTλ− ν = −e−ν−1
n∑

i=1

e−aTi λ − bTλ− ν



Lagrange dual problem

maximize g(λ, ν)

subject to λ ⪰ 0

▶ finds best lower bound on p∗, obtained from Lagrange dual function
▶ convex optimization problem, optimal value denoted d∗

▶ λ and ν are dual feasible if λ ⪰ 0 and (λ, ν) ∈ dom g

▶ often simplified by making implicit constraint (λ, ν) ∈ dom g explicit
▶ original problem is called primal problem



Standard form LP

primal problem

minimize cTx

subject to Ax = b

x ⪰ 0

dual problem

maximize g(λ, ν) =

{
−bT ν AT ν − λ+ c = 0

−∞ otherwise

subject to λ ⪰ 0

equivalent form, the Lagrange dual of the standard form LP (primal problem)

maximize − bT ν

subject to AT ν + c ⪰ 0



Inequality form LP

primal problem

minimize cTx

subject to Ax ⪯ b

dual problem

maximize g(λ) =

{
−bTλ ATλ+ c = 0

−∞ otherwise

subject to λ ⪰ 0

equivalent form

maximize − bTλ

subject to ATλ+ c = 0

λ ⪰ 0

Remark: the interesting symmetry between the standard and inequality form LPs and
their duals: the dual of a standard form LP is an LP with only inequality constraints,
and vice versa.



Two-way partition problem

primal problem

minimize xTWx

subject to x2i = 1, i = 1, · · · , n

dual problem

maximize g(ν) =

{
−1T ν W + diag(ν) ⪰ 0

−∞ otherwise

equivalent form

maximize − 1T ν

subject to W + diag(ν) ⪰ 0
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Weak duality

Statement
d∗ ≤ p∗

▶ the above weak duality inequality always holds (regardless of convexity)
▶ can be used to find nontrivial lower bounds for difficult problem
▶ if the primal problem is unbounded below (p∗ = −∞), we must have the infeasible

Lagrange dual problem (d∗ = −∞). Conversely, it holds true.

Example

solving SDP

maximize − 1T ν

subject to W + diag(ν) ⪰ 0

gives a lower bound for two-way partitioning problem



Strong duality

Statement
d∗ = p∗

▶ does not hold in general
▶ usually holds for convex problems

Constraint qualifications

▶ conditions that guarantee strong duality for convex problems
▶ there exist many types, example below



Slater’s constraint qualification

If a convex problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
Ax = b

is strictly feasible, namely

∃ x ∈ intD such that fi(x) < 0, i = 1, · · · ,m, Ax = b,

then strong duality holds. If moreover p∗ > −∞, then the dual optimum is attained.

▶ intD can be replaced with relintD (interior relative to affine hull)
▶ linear inequalities do not need to hold with strict inequality
▶ strong duality holds for LP unless both primal and dual are infeasible

(for LP, dual of dual is primal, Slater’s condition and feasibility agree)



Quadratic program

primal problem (assume P ∈ Sn++)

minimize xTPx

subject to Ax ⪯ b

dual function

g(λ) = inf
x

(
xTPx+ λT (Ax− b)

)
= −(1/4)λTAP−1ATλ− bTλ

dual problem

maximize − (1/4)λTAP−1ATλ− bTλ

subject to λ ⪰ 0

▶ by Slater’s condition p∗ = d∗ holds if primal problem is feasible
▶ in fact p∗ = d∗ always holds (dual of dual is primal, dual always satisfies Slater)



A nonconvex problem with strong duality

primal problem (nonconvex if A ̸⪰ 0)

minimize xTAx+ 2bTx

subject to xTx ≤ 1

dual problem

maximize − bT (A+ λI)†b− λ

subject to A+ λI ⪰ 0

b ∈ R(A+ λI)

equivalent SDP

maximize − t− λ

subject to
[
A+ λI b

bT t

]
⪰ 0

strong duality holds although primal problem is nonconvex (not easy to show)
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geometric description consider problem with one constraint

minimize t = f0(x)

subject to u = f1(x) ≤ 0

set of value pairs

G = {(u, t) | u = f1(x), t = f0(x) for some x ∈ D}



interpretation of primal optimal value

p∗ = inf{t | (u, t) ∈ G and u ≤ 0}

interpretation of dual objective value

g(λ) = inf{t+ λu | (u, t) ∈ G} = inf{(λ, 1)T (u, t) | (u, t) ∈ G}

t-intercept of the (non-vertical) supporting hyperplane to G with normal vector (λ, 1)T



interpretation of weak duality fix λ ≥ 0 we have

t+ λu ≤ t for any (u, t) ∈ G with u ≤ 0

therefore we obtain

inf{t+ λu | (u, t) ∈ G with u ≤ 0} ≤ inf{t | (u, t) ∈ G with u ≤ 0}

≥ =

g(λ) = inf{t+ λu | (u, t) ∈ G} p∗



epigraph variation we still assume λ ≥ 0, and replace G by

A = {(u, t) | u ≥ f1(x) and t ≥ f0(x) for some x ∈ D}

g(λ) = inf{(λ, 1)T (u, t) | (u, t) ∈ A} and p∗ = inf{t | (0, t) ∈ A}

therefore we obtain g(λ) ≤ (λ, 1)T (0, t) = p∗

strong duality holds ⇐⇒ ∃ nonvertical supporting hyperplane to A at (0, p∗)



Slater’s condition for convex problems implies strong duality236 5 Duality
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Figure 5.6 Illustration of strong duality proof, for a convex problem that sat-
isfies Slater’s constraint qualification. The set A is shown shaded, and the
set B is the thick vertical line segment, not including the point (0, p!), shown
as a small open circle. The two sets are convex and do not intersect, so they
can be separated by a hyperplane. Slater’s constraint qualification guaran-
tees that any separating hyperplane must be nonvertical, since it must pass
to the left of the point (ũ, t̃) = (f1(x̃), f0(x̃)), where x̃ is strictly feasible.

Since fi(x̃) < 0 and λ̃i ≥ 0, we conclude that λ̃ = 0. From (λ̃, ν̃, µ) "= 0 and
λ̃ = 0, µ = 0, we conclude that ν̃ "= 0. Then (5.42) implies that for all x ∈ D,
ν̃T (Ax − b) ≥ 0. But x̃ satisfies ν̃T (Ax̃ − b) = 0, and since x̃ ∈ intD, there are
points in D with ν̃T (Ax − b) < 0 unless AT ν̃ = 0. This, of course, contradicts our
assumption that rankA = p.

The geometric idea behind the proof is illustrated in figure 5.6, for a simple
problem with one inequality constraint. The hyperplane separating A and B defines
a supporting hyperplane to A at (0, p!). Slater’s constraint qualification is used
to establish that the hyperplane must be nonvertical (i.e., has a normal vector of
the form (λ!, 1)). (For a simple example of a convex problem with one inequality
constraint for which strong duality fails, see exercise 5.21.)

5.3.3 Multicriterion interpretation

There is a natural connection between Lagrange duality for a problem without
equality constraints,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m,

(5.43)

▶ convex problems =⇒ A is convex =⇒ supporting hyperplane H at (0, p∗) exists
▶ Slater’s condition =⇒ ∃ (ũ, t̃) ∈ A with ũ < 0 =⇒ H cannot be vertical



Slater’s constraint qualification if a convex problem

minimize f0(x)

subject to F (x) ⪯ 0

Ax = b

is strictly feasible, namely

∃ x ∈ intD such that F (x) ≺ 0 and Ax = b,

then strong duality holds. If moreover p∗ > −∞, then the dual optimum is attained.

Proof Without loss of generality, we assume

▶ p∗ is finite (otherwise the result follows immediately from weak duality)
▶ A has full row rank (achieved by removing redundant equations)



Step 1. Consider sets A, B ⊆ Rm × Rp × R defined as

A = {(u, v, t) | u ⪰ F (x), v = Ax− b, t ≥ f0(x) for some x ∈ D}
B = {(0, 0, s) | s < p∗}236 5 Duality
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Figure 5.6 Illustration of strong duality proof, for a convex problem that sat-
isfies Slater’s constraint qualification. The set A is shown shaded, and the
set B is the thick vertical line segment, not including the point (0, p!), shown
as a small open circle. The two sets are convex and do not intersect, so they
can be separated by a hyperplane. Slater’s constraint qualification guaran-
tees that any separating hyperplane must be nonvertical, since it must pass
to the left of the point (ũ, t̃) = (f1(x̃), f0(x̃)), where x̃ is strictly feasible.

Since fi(x̃) < 0 and λ̃i ≥ 0, we conclude that λ̃ = 0. From (λ̃, ν̃, µ) "= 0 and
λ̃ = 0, µ = 0, we conclude that ν̃ "= 0. Then (5.42) implies that for all x ∈ D,
ν̃T (Ax − b) ≥ 0. But x̃ satisfies ν̃T (Ax̃ − b) = 0, and since x̃ ∈ intD, there are
points in D with ν̃T (Ax − b) < 0 unless AT ν̃ = 0. This, of course, contradicts our
assumption that rankA = p.

The geometric idea behind the proof is illustrated in figure 5.6, for a simple
problem with one inequality constraint. The hyperplane separating A and B defines
a supporting hyperplane to A at (0, p!). Slater’s constraint qualification is used
to establish that the hyperplane must be nonvertical (i.e., has a normal vector of
the form (λ!, 1)). (For a simple example of a convex problem with one inequality
constraint for which strong duality fails, see exercise 5.21.)

5.3.3 Multicriterion interpretation

There is a natural connection between Lagrange duality for a problem without
equality constraints,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m,

(5.43)

Observe that A and B are disjoint and both convex. (Prove it yourself!)



Step 2. By separating hyperplane theorem, ∃ (λ̃, ν̃, µ) ̸= 0 and α ∈ R such that

(u, v, t) ∈ A =⇒ λ̃Tu+ ν̃T v + µt ≥ α; (1)

(u, v, t) ∈ B =⇒ λ̃Tu+ ν̃T v + µt ≤ α. (2)

(1) implies λ̃ ⪰ 0 and µ ≥ 0 (otherwise LHS is unbounded below over A).

(2) implies µp∗ ≤ α.

Combining them to obtain

λ̃TF (x) + ν̃T (Ax− b) + µf0(x) ≥ α ≥ µp∗ for all x ∈ D (3)



Step 3. We show that µ > 0 by contradiction. If µ = 0, then (3) implies

λ̃TF (x) + ν̃T (Ax− b) ≥ 0 for all x ∈ D.

Assume x̃ is a strictly feasible point, then

λ̃TF (x̃) ≥ 0.

However λ̃ ⪰ 0 and F (x̃) ≺ 0, hence λ̃ = 0. It follows that ν̃ ̸= 0 and

ν̃T (Ax− b) ≥ 0 for all x ∈ D.

But Ax̃− b = 0 and x̃ ∈ intD imply ν̃T (Ax− b) < 0 for some x ∈ D, unless ν̃TA = 0.

The assumption of A having full row rank implies ν̃ = 0, contradiction.



Step 4. By Step 3 we can divide both sides of (3) by µ to obtain

L
(
x, λ̃/µ, ν̃/µ

)
≥ p∗ for all x ∈ D.

Therefore
g
(
λ̃/µ, ν̃/µ

)
= inf

x∈D
L
(
x, λ̃/µ, ν̃/µ

)
≥ p∗.

By weak duality we also have

p∗ ≥ d∗ ≥ g
(
λ̃/µ, ν̃/µ

)
.

Hence all of them are equal – strong duality holds and dual optimum is attained.
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Certificate of suboptimality and stopping criteria

We do not assume the primal problem is convex, unless explicitly stated

▶ Without knowing the exact value of p∗, we can bound how suboptimal a given
feasible point is

f0(x)− p∗ ≤ f0(x)− g(λ, ν),

where ϵ = f0(x)− g(λ, ν) is called the duality gap.
▶ p∗ ∈ [g(λ, ν), f0(x)], d∗ ∈ [g(λ, ν), f0(x)]

▶ if the duality gap is zero, then x is primal optimal and (λ, ν) is dual optimal
▶ the stopping criterion (the condition for terminating the algorithm)

f0(x
(k))− g(λ(k), ν(k)) ≤ ϵabs,

guarantees that when the algorithm terminates, x(k) is ϵabs-suboptimal.



Conditions for achieving optimality, complementary slackness

assume x∗ is primal optimal, (λ∗, ν∗) is dual optimal

g(λ∗, ν∗) = inf
x∈D

(
f0(x) +

m∑
i=1

λ∗
i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

ν∗i hi(x
∗) ≤ f0(x

∗) (4)

assume strong duality holds, then both inequalities hold with equality

▶ x∗ minimizes L(x, λ∗, ν∗)

▶ λ∗
i fi(x

∗) = 0 for each i = 1, · · · ,m, namely, for each pair of inequalities

λ∗
i ≥ 0 and fi(x

∗) ≤ 0

at least one of them achieves equality (complementary slackness)



KKT conditions

assume f0, f1, · · · , fm and h1, · · · , hp are all differentiable (hence with open domains)

Karush-Kuhn-Tucker conditions

1. primal constraints fi(x) ≤ 0, i = 1, · · · ,m; hi(x) = 0, i = 1, · · · , p
2. dual constraints λ ⪰ 0

3. complementary slackness λifi(x) = 0, i = 1, · · · ,m
4. gradient of Lagrangian with respect to x vanishes

∇f0(x) +

m∑
i=1

λi∇fi(x) +

p∑
i=1

νi∇hi(x) = 0



necessity if strong duality holds (the primal may be nonconvex)

(x∗, λ∗, ν∗) are optimal =⇒ (x∗, λ∗, ν∗) satisfy KKT

sufficiency if primal problem is convex

(x∗, λ∗, ν∗) satisfy KKT =⇒ (x∗, λ∗, ν∗) are optimal

proof

▶ conditions 1 & 2 imply primal and dual feasibility
▶ condition 3 (complementary slackness) is responsible for the equality of the last

step in (4), f0(x̃) = L(x̃, λ̃, ν̃) where (x̃, λ̃, ν̃) is any point satisfying the KKT
▶ condition 4 (and convexity) is responsible for the equality of the middle step in (4),

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

necessity + sufficiency assume differentiability + convexity + Slater then

x∗ is optimal ⇐⇒ (x∗, λ∗, ν∗) satisfy KKT for some λ∗ and ν∗



Example

Equality constrained convex quadratic minimization

minimize (1/2)xTPx+ qTx+ r

subject to Ax = b

where P ∈ Sn+. The KKT conditions are

Ax∗ = b, Px∗ + q +AT ν∗ = 0,

which can be written as [
P AT

A 0

] [
x∗

ν∗

]
=

[
−q
b

]



Example

Water-filling

assume αi > 0 for i = 1, · · · , n

minimize −
n∑

i=1

log(xi + αi)

subject to x ⪰ 0

1Tx = 1

x is optimal ⇐⇒ x ⪰ 0, 1Tx = 1, there exists λ ∈ Rn and ν ∈ R such that

λ ⪰ 0, λixi = 0,
1

xi + αi
+ λi = ν, i = 1, · · · , n

▶ if ν ≤ 1/αi, then λi = 0 and xi = 1/ν − αi

▶ if ν ≥ 1/αi, then λi = ν − 1/αi and xi = 0



determine ν from

1Tx =

n∑
i=1

max{0, 1/ν − αi} = 1

water-filling algorithm

▶ left-hand side is a piecewise linear increasing function in 1/ν

▶ n patches, level of patch i is at height αi

▶ flood area with unit amount of water, resulting level is 1/ν∗
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Perturbed problem

perturbed primal problem

minimize f0(x)

subject to fi(x) ≤ ui, i = 1, · · · ,m
hi(x) = vi, i = 1, · · · , p

perturbed dual problem

maximize g(λ, ν)− uTλ− vT ν

subject to λ ⪰ 0

▶ u and v are parameters
▶ original primal & dual problems are recovered when u = 0 and v = 0

▶ p∗(u, v) is optimal value as a function of u and v

▶ need to understand p∗(u, v) from solution to unperturbed problem
▶ When the original problem is convex, p∗(u, v) is a convex function of u and v



Global sensitivity

assume for the unperturbed problem that

▶ strong duality holds (e.g. convex + Slater)
▶ λ∗ and ν∗ are dual optimal

then weak duality for the perturbed problem implies

p∗(u, v) ≥ g(λ∗, ν∗)− uTλ∗ − vT ν∗

= p∗(0, 0)− uTλ∗ − vT ν∗

▶ λ∗
i large =⇒ p∗ increases greatly if ui < 0 (tighten constraint)

▶ λ∗
i small =⇒ p∗ does not decrease much if ui > 0 (loosen constraint)

▶ ν∗i > 0 large =⇒ p∗ increases greatly if vi < 0

▶ ν∗i > 0 small =⇒ p∗ does not decrease much if vi > 0

▶ ν∗i < 0 large =⇒ p∗ increases greatly if vi > 0

▶ ν∗i < 0 small =⇒ p∗ does not decrease much if vi < 0



Local sensitivity

assume in addition that p∗(u, v) is differentiable at (0, 0) then

λ∗
i = −∂p∗

∂ui
(0, 0), ν∗i = −∂p∗

∂vi
(0, 0)

(above picture exhibits p∗(u) for a problem with one inequality constraint)
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Duality and problem reformulations

principle

▶ equivalent formulations of a problem can lead to very different duals
▶ reformulation can be useful when dual is difficult to derive or uninteresting

common reformulations

▶ introduce new variables and equality constraints
▶ make explicit constraints implicit or vice-versa
▶ apply an increasing function to objective or constraint functions



Introducing new variables and equality constraints

unconstrained problem

primal problem
minimize f0(Ax+ b)

dual problem
g = inf

x
f0(Ax+ b) = p∗

▶ no dual variable, hence dual function is constant
▶ strong duality holds, but dual is useless



reformulated primal problem

minimize f0(y)

subject to Ax+ b− y = 0

dual of reformulated problem

maximize bT ν − f∗
0 (ν)

subject to AT ν = 0

it follows from

g(ν) = inf
x,y

(
f0(y)− νT y + νTAx+ bT ν

)
=

{
−f∗

0 (ν) + bT ν AT ν = 0

−∞ otherwise



norm approximation problem

minimize ∥Ax− b∥

reformulated problem

minimize ∥y∥
subject to y = Ax− b

dual of the reformulated problem

maximize bT ν

subject to AT ν = 0

∥ν∥∗ ≤ 1



introducing new variables to the constraint functions

minimize f0(A0x+ b0)

subject to fi(A0x+ b0) ≤ 0, i = 1, . . . ,m

reformulated problem

minimize f0(y0)

subject to fi(yi) ≤ 0, i = 1, . . . ,m

Aix+ bi = yi, i = 0, . . . ,m

dual of the reformulated problem

maximize
m∑
i=0

bTi νi − f∗
0 (ν0)−

m∑
i=0

λif
∗
i (νi/λi)

subject to λ ⪰ 0
m∑
i=0

AT
i νi = 0



Transforming the objective

If we replace the objective f0 by an increasing function of f0, the resulting problem is
clearly equivalent. However, their duals can be quite different

Again: norm approximation problem

minimize ∥Ax− b∥

reformulated problem

minimize
1

2
∥y∥2

subject to y = Ax− b

dual of the reformulated problem

maximize − 1

2
∥ν∥2∗ + bT ν

subject to AT ν = 0



Implicit constraints

LP with box constraints

primal problem

minimize cTx

subject to Ax = b

− 1 ⪯ x ⪯ 1

dual problem

maximize − bT ν − 1Tλ1 − 1Tλ2

subject to c+AT ν + λ1 − λ2 = 0

λ1 ⪰ 0, λ2 ⪰ 0



reformulated primal problem

minimize f0(x) =

{
cTx −1 ⪯ x ⪯ 1

∞ otherwise

subject to Ax = b

dual function

g(ν) = inf
−1⪯x⪯1

(
cTx+ νT (Ax− b)

)
= −bT ν − ∥AT ν + c∥1

dual of the reformulated problem

maximize − bT ν − ∥AT ν + c∥1
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Theorems of alternatives

▶ consider two systems of inequality and equality constraints
▶ called weak alternatives if no more than one system is feasible
▶ called strong alternatives if exactly one of them is feasible
▶ examples: for any a ∈ R, with variable x ∈ R

– x > a and x ≤ a− 1 are weak alternatives
– x > a and x ≤ a are strong alternatives

▶ a theorem of alternatives states that two inequality systems are (weak or strong)
alternatives

▶ can be considered the extension of duality to feasibility problems



Feasibility problems

▶ consider system of (not necessarily convex) inequalities and equalities

fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, · · · , p

▶ express as feasibility problem

minimize 0

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

▶ if system is feasible, p∗ = 0; if not, p∗ = ∞



Duality for feasibility problems

▶ dual function of feasibility problem is

g(λ, ν) = inf
x

(
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

▶ for λ ⪰ 0, we have g(λ, ν) ≤ p∗

▶ it follows that feasibility of the inequality system

λ ⪰ 0, g(λ, ν) > 0

implies the original system is infeasible
▶ so this is a weak alternative to original system
▶ it is strong if fi convex, hi affine, and a constraint qualification holds
▶ g is positive homogeneous so we can write alternative system as

λ ⪰ 0, g(λ, ν) ≥ 1



Example: Nonnegative solution of linear equations

▶ consider system
Ax = b, x ⪰ 0

▶ dual function is g(λ, ν) =

{
−νT b AT ν = λ

−∞ otherwise

▶ can express strong alternative of Ax = b, x ⪰ 0 as

AT ν ⪰ 0, νT b ≤ −1

(we can replace νT b ≤ −1 with νT b = −1)



Farkas’ lemma

▶ Farkas’ lemma:

Ax ⪯ 0, cTx < 0 and AT y + c = 0, y ⪰ 0

are strong alternatives

▶ proof: use (strong) duality for (feasible) LP

minimize cTx

subject to Ax ⪯ 0

▶ the dual is

maximize 0

subject to AT y + c = 0

y ⪰ 0



Lagrange dual problem

Weak and strong duality

Geometric interpretation

Optimality conditions

Perturbation and sensitivity analysis

Examples

Theorems of alternatives

Generalized inequalities



Problems with generalized inequalities

primal problem (proper cone Ki ⊆ Rki for i = 1, · · · ,m)

minimize f0(x)

subject to fi(x) ⪯Ki 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

▶ Lagrange multiplier for fi(x) ⪯Ki 0 is vector λi ∈ Rki , for hi(x) = 0 scalar νi ∈ R
▶ Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp −→ R

L(x, λ1, · · · , λm, ν) = f0(x) +

m∑
i=1

λT
i fi(x) +

p∑
i=1

νihi(x)

▶ dual function g : Rk1 × · · · × Rkm × Rp −→ R

g(λ1, · · · , λm, ν) = inf
x∈D

L(x, λ1, · · · , λm, ν)



Lower bound property if λi ⪰K∗
i
0, then g(λ1, · · · , λm, ν) ≤ p∗

Proof For any feasible x̃ we have

f0(x̃) ≥ f0(x̃) +

m∑
i=1

λT
i fi(x̃) +

p∑
i=1

νihi(x̃)

≥ inf
x∈D

L(x, λ1, · · · , λm, ν)

= g(λ1, · · · , λm, ν)

We conclude by minimizing over all feasible x̃.



dual problem

maximize g(λ1, · · · , λm, ν)

subject to λi ⪰K∗
i
0, i = 1, · · · ,m

weak duality (always holds)
p∗ ≥ d∗

strong duality (holds for convex problem with constraint qualification)

p∗ = d∗

Slater’s condition: primal problem is strictly feasible



Semidefinite program

primal SDP (assume Fi, G ∈ Sk)

minimize cTx

subject to x1F1 + · · ·+ xnFn ⪯ G

Lagrange multiplier
Z ∈ Sk

Lagrangian
L(x, Z) = cTx+ tr (Z(x1F1 + · · ·+ xnFn −G))



dual function

g(Z) = inf
x

L(x, Z) =

{
− tr(ZG) ci + tr(ZFi) = 0 for all i = 1, · · · , n
−∞ otherwise

dual SDP

maximize − tr(ZG)

subject to Z ⪰ 0

ci + tr(ZFi) = 0, i = 1, · · · , n

strong duality

p∗ = d∗ holds if primal SDP is strictly feasible (∃ x such that x1F1 + · · ·+ xnFn ≺ G)
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