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Lagrange dual problem



Lagrangian

minimize fo(x)
subject to fi(x) <0, =1,
hl(x)zo, =1, D

variable z € R™, domain D, optimal value p*

Lagrangian L:R"xR™xRP - R with domL =D xR™ x RP

p

L(z,\v) = +Z)\fz Z vihi(z)

i=1

> weighted sum of objective and constraint functions

> )\; and v; are Lagrange multipliers



Lagrange dual function

Lagrange dual function g: R™ x RP - R

g\ v) = irelgL(x,)\, v)
g is concave, can be —oo for some values of A and v
Lower bound property g(A,v) <p*forany A =0
Proof for any feasible T and A = 0

g()HV) = ;IelgL((L',A,V) < L(Ea/\vy) < fO(i’)

minimizing over all feasible = gives g\, v) < p*



Least-norm solution of linear equations

minimize 2Tz

subject to Ax =10
» Lagrangian L(z,v) =27z 4+ v (Az — b)
» to minimize L over x, set gradient equal to zero
VeL(z,v) =2z + ATv =0 — r=—(1/2)ATv
» dual function (concave in 1)
g(v) =L ((-1/2)ATv,v) = —(1/4)vT AATY — "

» lower bound property p* > —(1/4)vTAATY — by for all v



Standard form LP

minimize 'z
subject to Az =10
x>0

» Lagrangian
Lz \v)=clz+vT(Az —b) = ATz = —bTv+ (c+ ATv = N1z
» dual function (linear on affine domain hence concave)

vy ATy —X+¢=0

—00 otherwise

g\ v) = ir;fL(m, A\ V) = {

» lower bound property p* > —bly if ATv4+c>=0



Equality constrained norm minimization

minimize Izl

subject to Az =

» Lagrangian L(z,v) = ||z|| — vT(Az — b) = ||z|| — vT Az + bTv
» dual function

g(v) =inf L(z,v) =

xT

{bTV IATy||, <1

—00 otherwise

where [|[v[|. = supj, <1 u”'v is the dual norm (proof on next page)

» lower bound property p* > by if |ATY|. <1



Proof

observe that

. 0 lyll« <1
T
II;f (HIE” -y x) = {_ otherwise

> if ||yll« <1, then yTz < ||z||||lyll« < ||z for all z, with equality if z =0
» if ||ly|l« > 1, choose = = tu such that |Ju|| < 1 and yTu > 1, then

. Ty _ - _
Jim (2]l = y"z) =t (lfull - [lyll) = —oc



Two-way partitioning problem

minimize 2T Wa

subject to 2 =1, i=1,--,n

» nonconvex problem, feasible set contains 2™ discrete points
> W e S" W;j is cost of assigning i and j to the same set

» interpretation: find the most harmonies way to divide {1,--- ,n} in two sets



» Lagrangian
n
L=a"Wazx+ Zuz(xf - 1)
i=1
» dual function

g(v) = inf (27(W + diag(v))z — 17v) =

x —00 otherwise

{—1TV W + diag(v) = 0
» lower bound property
pt > 1Ty if W+ diag(v) = 0

» example
v=—Amin(W)1 gives bound p* > nApin(W)



Lagrange dual & conjugate function

minimize fo(z)

subject to Az <b

Cz =

IA

dual function
_ s T TN 2Ty _ 4T
gA\v)= inf (fo(x)+ (ATA+CT) 2 —b"A—d 1/)

=—f5 (AT = CTv) =" A —d"v

» recall definition of conjugate f*(y) = sup (yTx — f(z))
rz€dom f

» simplifies derivation of dual if conjugate of fj is known



Entropy maximization

n
minimize folz) = sz log ;
i=1
subject to Ax <b
1Tz =1
» conjugate of fo(z)
i=1

» dual function

n n

g\ v)=— Z e A=l BTy = el Z e UN _pTA —y

i=1 i=1



Lagrange dual problem

maximize g\, v)
subject to A=0

finds best lower bound on p*, obtained from Lagrange dual function
convex optimization problem, optimal value denoted d*

A and v are dual feasible if A > 0 and (\,v) € domg

often simplified by making implicit constraint (\, ) € dom g explicit

vVvYyyvyy

original problem is called primal problem



Standard form LP

primal problem

dual problem

maximize

subject to

minimize '
subject to Ax =10
z =0
g(/\,y):{—bTV ATV—.)\-FC:O
—00 otherwise
Ax0

equivalent form, the Lagrange dual of the standard form LP (primal problem)

—bTy

ATV—FCEO

maximize

subject to



Inequality form LP

primal problem
minimize o
subject to Ax <b

dual problem

maximize g(A\) = _
—00 otherwise
subject to A=0
equivalent form
maximize — b
subject to ATX+¢=0
A=0

Remark: the interesting symmetry between the standard and inequality form LPs and
their duals: the dual of a standard form LP is an LP with only inequality constraints,
and vice versa.



Two-way partition problem

primal problem

minimize 2T Wa

subject to 22 =1,

dual problem
. {—1TV
maximize  g(v) =

equivalent form

maximize —17y

W +diag(v) = 0

otherwise

subject to W + diag(v) = 0



Weak and strong duality



Weak duality

Statement

» the above weak duality inequality always holds (regardless of convexity)

» can be used to find nontrivial lower bounds for difficult problem

» if the primal problem is unbounded below (p* = —o0), we must have the infeasible
Lagrange dual problem (d* = —o00). Conversely, it holds true.
Example
solving SDP
maximize —17y

subject to W +diag(v) = 0

gives a lower bound for two-way partitioning problem



Strong duality

Statement
d* — p*

» does not hold in general

» usually holds for convex problems

Constraint qualifications

> conditions that guarantee strong duality for convex problems

> there exist many types, example below



Slater’s constraint qualification

If a convex problem

minimize fo(z)
subject to fi(x) <0, i=1,---,m
Ax =10

is strictly feasible, namely
JzeintD  suchthat  fi(z) <0, i=1,---,m, Azx=b,

then strong duality holds. If moreover p* > —oo, then the dual optimum is attained.

» int D can be replaced with relint D (interior relative to affine hull)
» linear inequalities do not need to hold with strict inequality

» strong duality holds for LP unless both primal and dual are infeasible
(for LP, dual of dual is primal, Slater’s condition and feasibility agree)



Quadratic program

primal problem (assume P € S% )
minimize ! Pz
subject to Ax <b

dual function

g(\) = inf (27 Pr + \T(Az — b)) = —(1/4)ATAP~TAT X — b7\

dual problem
maximize — (1/AHNTAPTIAT N — T\

subject to A=0

» by Slater’s condition p* = d* holds if primal problem is feasible

» in fact p* = d* always holds (dual of dual is primal, dual always satisfies Slater)



A nonconvex problem with strong duality

primal problem (nonconvex if A % 0)

minimize

subject to

dual problem

maximize

subject to

equivalent SDP

maximize

subject to

T Az + 207 x

:chgl

—bT(A+ Db — X
A+ X =0
be R(A+ )

strong duality holds although primal problem is nonconvex (not easy to show)



Geometric interpretation



geometric description consider problem with one constraint

minimize t = fo(x)
subject to u= fi(z) <0

set of value pairs

G ={(u,t) | u= fi(z),t = fo(x) for some x € D}

Au+t=gAN)—

gQ\D&#\




AN
\
interpretation of primal optimal value

p* =inf{t | (u,t) € G and u < 0}
interpretation of dual objective value

g(\) = inf{t + \u| (u,t) € G} = inf{(\, 1) (u,1) | (u,t) € G}

t-intercept of the (non-vertical) supporting hyperplane to G with normal vector (X, 1)7



interpretation of weak duality fix A > 0 we have

t+ <t for any (u,t) € G with u <0
therefore we obtain
inf{t + \u | (u,t) € Gwith u <0} < inf{t| (u,t) € G with u <0}

v I
g\) =inf{t+ \u| (u,t) € G} p*



epigraph variation  we still assume A > 0, and replace G by

A ={(u,t) |u> fi(x) and t > fo(x) for some = € D}

\
////77 — \
Au+t=gA\)— ff \ \\

g( )\)M""‘\————L

g(\) = inf{(\, 1) (u, 1) | (u,t) € A}

and
therefore we obtain

p* =inf{t | (0,t) € A}
g() < (A 1DT(0,¢)
strong duality holds

—

3 nonvertical supporting hyperplane to A at (0, p*)



Slater’s condition for convex problems implies strong duality

» convex problems —> A is convex = supporting hyperplane H at (0, p*) exists
» Slater’s condition = 3 (&,?) € A with 4 <0 = H cannot be vertical



Slater’s constraint qualification if a convex problem

minimize fo(x)
subject to F(x) <0
Ax =10

is strictly feasible, namely
Jx €intD such that F(x) <0 and Az =0b,
then strong duality holds. If moreover p* > —oo, then the dual optimum is attained.

Proof Without loss of generality, we assume

> p* is finite (otherwise the result follows immediately from weak duality)

» A has full row rank (achieved by removing redundant equations)



Step 1.  Consider sets A, B C R™ x RP x R defined as

A={(u,v,t) |u> F(z), v=Azx —b, t > fo(x) for some z € D}
B ={(0,0,s) | s <p"}

|

Observe that A and B are disjoint and both convex. (Prove it yourself!)

U




Step 2. By separating hyperplane theorem, 3 (X, 7, ;1) # 0 and « € R such that
(u,v,t) € A = MNu+ 5T+ ut > a (1)

(u,v,t) € B == Mo+ To 4 put < o (2)

(1) implies X\ = 0 and x> 0 (otherwise LHS is unbounded below over A).
(2) implies up* < a.

Combining them to obtain

MTF(z) + 07 (Az — b) + pfo(z) > o > pp* forall zeD (3)



Step 3.  We show that > 0 by contradiction. If i = 0, then (3) implies
MNF(@)+ 0T (Az —b) >0 forall zeD.
Assume T is a strictly feasible point, then
MF(z) > 0.
However A = 0 and F(Z) < 0, hence A = 0. It follows that 7 # 0 and
7T(Az —b) >0 forall zeD.

But AT —b=0and % € int D imply 7" (Az —b) < 0 for some = € D, unless 77 A = 0.

The assumption of A having full row rank implies 7 = 0, contradiction.



Step 4. By Step 3 we can divide both sides of (3) by u to obtain
L (%X/u, ;;/M) >p* forall zeD.

Therefore ) )
g (A/u, V/M) = inf L (%A/u, V/M) >p".
By weak duality we also have
pr>d >y (X/u, 77/#) :

Hence all of them are equal — strong duality holds and dual optimum is attained.



Optimality conditions



Certificate of suboptimality and stopping criteria

We do not assume the primal problem is convex, unless explicitly stated

» Without knowing the exact value of p*, we can bound how suboptimal a given
feasible point is

fo(x) —p* < fo(z) — g(\,v),
where e = fo(z) — g(A,v) is called the duality gap.

> p*elg\v), fol@)],  d”€[g(Av), fol)]
» if the duality gap is zero, then z is primal optimal and (), v) is dual optimal

» the stopping criterion (the condition for terminating the algorithm)
fO(x(k)) - g()‘(k)v V(k)) < €abs,

guarantees that when the algorithm terminates, 2(%) is e,ps-suboptimal.



Conditions for achieving optimality, complementary slackness

assume z* is primal optimal, (A*,v*) is dual optimal

g\, v*) = 1nf< +ZA*fZ +Zui*hi(x)>

< fole +Z>\*fz V£ S vihi(e) < fole) (4)

i=1
assume strong duality holds, then both inequalities hold with equality
» 2* minimizes L(x, \*,v*)
> A fi(z*) =0 for each i =1,--- ,m, namely, for each pair of inequalities

Af>0  and fi(z*) <0

at least one of them achieves equality (complementary slackness)



KKT conditions

assume fo, fi, -+, fm and hq,--- , h, are all differentiable (hence with open domains)

Karush-Kuhn-Tucker conditions

1.

2
3.
4

primal constraints filx) <0, i=1,---,m; hi(x)=0,i=1,---
. dual constraints A0

complementary slackness Nifilx)=0,i=1,---,m
. gradient of Lagrangian with respect to x vanishes

V folw +Z/\ Vfi(x +Zuzwl



necessity if strong duality holds (the primal may be nonconvex)
(z*, \*,v") are optimal - (x*, \*, V") satisfy KKT
sufficiency if primal problem is convex
(x*, \*, V") satisfy KKT — (x*, \*, V") are optimal
proof

» conditions 1 & 2 imply primal and dual feasibility

» condition 3 (complementary slackness) is responsible for the equality of the last

step in (4), fo(7) =

» condition 4 (an
g\, 7) = L(&, A, 7)
necessity + sufficiency assume
" is optimal — (x*, ",

differentiability + convexity + Slater

L(%, A\, ) where (&, \, D) is any point satisfying the KKT
d convexity) is responsible for the equality of the middle step in (4),

then

v*) satisfy KKT for some \* and v*



Example

Equality constrained convex quadratic minimization

minimize (1/2)a" Pz 4 q"x 4 r
subject to Ax =D

where P € S}, The KKT conditions are

Az* = b, Pr* +q+ ATv* =0,

2o lE] =[]

which can be written as



Example

Water-filling

assume o; >0fori=1,--- . n

n
minimize - Zlog(wi + ;)
i=1

subject to x>0

172 =1
x isoptimal <= x>0, 172 =1, there exists A\ € R" and v € R such that

A= 0, Nix; =0, A+)\i:V’ 1=1,---,n

> if v <1/a;, then \; =0and z; = 1/v — o
» ifv>1/a;, then \j =v —1/a; and 2; =0



determine v from

n
17z = Zmax{o, 1/v—a;} =1
i=1

water-filling algorithm

> left-hand side is a piecewise linear increasing function in 1/v
» n patches, level of patch i is at height o

» flood area with unit amount of water, resulting level is 1/v*

/v IH% s
Tlai




Perturbation and sensitivity analysis



Perturbed problem

perturbed primal problem

minimize fo()
subject to fi(z) < wy, i=1,---
hi(m):vi, 1= gt

perturbed dual problem

maximize g\ v) —ut X —oTy

subject to A=0

» u and v are parameters

» original primal & dual problems are recovered when v =0 and v =0

» p*(u,v) is optimal value as a function of uw and v

» need to understand p*(u,v) from solution to unperturbed problem

» When the original problem is convex, p*(u,v) is a convex function of w and v



Global sensitivity

assume for the unperturbed problem that

» strong duality holds (e.g. convex + Slater)

> )\* and v* are dual optimal
then weak duality for the perturbed problem implies
p(u,v) > g\, ) —ul a —oTyr
=p*(0,0) — uT X —oTp*

Af large = p* increases greatly if u; < 0 (tighten constraint)
Af small = p* does not decrease much if u; > 0 (loosen constraint)

* >0 large = p* increases greatly if v; <0

* *

*> 0 small = p* does not decrease much if v; >0

*

N

< 0 large = p* increases greatly if v; > 0

vVvYvyVvVvyVvyy

N

*

< 0 small = p* does not decrease much if v; <0



Local sensitivity

assume in addition that p*(u,v) is differentiable at (0,0) then

op* op*
\ |
T p*(u)

\p*(O) — Xu

(above picture exhibits p*(u) for a problem with one inequality constraint)
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Duality and problem reformulations

principle
» equivalent formulations of a problem can lead to very different duals

» reformulation can be useful when dual is difficult to derive or uninteresting

common reformulations

» introduce new variables and equality constraints
» make explicit constraints implicit or vice-versa

» apply an increasing function to objective or constraint functions



Introducing new variables and equality constraints

unconstrained problem
primal problem
minimize fo(Az +b)

dual problem
g= igf fo(Az +b) = p*

» no dual variable, hence dual function is constant

» strong duality holds, but dual is useless



reformulated primal problem

minimize fo(y)
subject to Ax+b—y=0

dual of reformulated problem
H T *
maximize b'v — f5(v)

subject to ATy =

it follows from

_fx T AT —
g(l/):inf (f[)(y)—VTy—i-VTA:C-I-bTV) _ { fO(V)+b v v=20
Z7y

—00 otherwise



norm approximation problem
minimize ||Az — b||
reformulated problem

minimize lyl|

subject to y=Ax —b

dual of the reformulated problem

maximize by
subject to ATy =0
vl <1



introducing new variables to the constraint functions

minimize fo(Aox + bg)
subject to fi(Apz +b9) <0, i=1,....,m

reformulated problem

minimize fo(yo)
subject to fily;) <0, i=1,...,m
Ax+b,=vy, 1=0,....m

dual of the reformulated problem

maximize ZbZTVi — fo () — Z Aifi (vi/ )
=0 1=0
subject to A=0

INGEN
=
o
z

~
I
o



Transforming the objective

If we replace the objective fy by an increasing function of fj, the resulting problem is
clearly equivalent. However, their duals can be quite different

Again: norm approximation problem
minimize |[Az — b]|
reformulated problem
minimize %HyHQ
subject to y=Ax —b
dual of the reformulated problem

1
maximize - §||1/||z+bTV

subject to ATy =0



Implicit constraints

LP with box constraints

primal problem

minimize 'z
subject to Axr =b
-1<z=<1
dual problem
maximize —bTy—1Tx =17

subject to c+ATv+ M =X =0
A1 =0, A2 =0



reformulated primal problem

T
cr -1=xXzX1
minimize fo(x) = { -

oo otherwise

subject to Ar =b

dual function
s T T .
g(v) = 711;621 (c"z+ v (Az — b))

= —blv—||ATv 4+ ¢|
dual of the reformulated problem

maximize vy — HATV + ¢l



Theorems of alternatives



Theorems of alternatives

consider two systems of inequality and equality constraints
called weak alternatives if no more than one system is feasible

called strong alternatives if exactly one of them is feasible

vvyyy

examples: for any a € R, with variable z € R

— x> a and x < a— 1 are weak alternatives
— x> a and z < a are strong alternatives

» a theorem of alternatives states that two inequality systems are (weak or strong)
alternatives

> can be considered the extension of duality to feasibility problems



Feasibility problems

» consider system of (not necessarily convex) inequalities and equalities

file) <0, i=1,...,m, hi(x) =0, i=1,---,p

> express as feasibility problem
minimize 0
subject to  fi(z) <0, e

hi(x) =0, i=1,---

» if system is feasible, p* = 0; if not, p* = 0o

IN



Duality for feasibility problems

>

v

dual function of feasibility problem is

g(\,v) = inf (Z Nifi(z)+ ) Vihi(x)>
i=1 =1

for A = 0, we have g(\,v) < p*
it follows that feasibility of the inequality system

A =0, g\ v) >0

implies the original system is infeasible
so this is a weak alternative to original system
it is strong if f; convex, h; affine, and a constraint qualification holds

g is positive homogeneous so we can write alternative system as

A >0, g\ v)>1



Example: Nonnegative solution of linear equations

> consider system

—vTy ATy =\

» dual function is g(\,v) = { .
—oo  otherwise

» can express strong alternative of Az = b,z = 0 as

ATy =0, Iy < -1

(we can replace v7b < —1 with v1h = —1)



Farkas' lemma

» Farkas' lemma:
Az <0, fz<0 and ATy+c=0,

are strong alternatives

» proof: use (strong) duality for (feasible) LP

minimize L

subject to Ax <0

» the dual is

maximize 0
subject to ATy+c=0
y=0

y=0



Generalized inequalities



Problems with generalized inequalities

primal problem (proper cone K; C R¥i for i =1,--- ,m)
minimize fo(z)
subject to fi(z) <k, 0, 1=1,---,
hz(x) =0, =1, » D

» Lagrange multiplier for f;(x) <k, 0 is vector \; € R*:, for h;(x) = 0 scalar v; € R

» Lagrangian L:R" xRF1 x ... x RFm x RP — R
L("BvAl?"' 7)\ +Z)\sz +ZVZ %
» dual function g:RFUx ... x RFm x RP — R

gAML, Am,v) =inf L(x, A\, -+, A, V)

€D



Lower bound property if Ai =g+ 0, then g(A1, -+, Ay, v) < p*

Proof For any feasible Z we have

p

f > fO +Z)\sz +ZVzhz
> inf L(x,)\1,~-- ,)\m,u)
zeD
:90\17 a)\may)

We conclude by minimizing over all feasible .



dual problem

maximize g1, A, V)

subject to Ai =k: 0, 1=1,---,m

weak duality (always holds)

strong duality (holds for convex problem with constraint qualification)
p* — d*

Slater's condition: primal problem is strictly feasible



Semidefinite program

primal SDP (assume F;, G € S¥)
minimize '

subject to o+t F, G

Lagrange multiplier
Zesk

Lagrangian
Lz, Z) =c'e+tr (Z(x1FL + - + 2, F, — Q)



dual function

—tr(ZG) c¢i+tr(ZF;)=0foralli=1,---,n

9(2) = inf L(z, Z) = { |
z —00 otherwise

dual SDP

maximize —tr(ZQ)
subject to Z =0
¢i +tr(ZF;) =0, i=1,---.,n

strong duality
p* = d* holds if primal SDP is strictly feasible (3 « such that z1F} + - - - + 2, F,, < G)
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