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Outline

Convex optimization problems

▶ relevant concepts (for general optimization problems & for convex problems)

▶ properties of convex problems (local implies global & optimality condition)

▶ operations preserving convexity (construct new from old)

▶ many examples of convex problems (LP, QP, QCQP, SOCP, etc.)

▶ extensions (quasiconvex optimization & geometric programming)

▶ combination with generalized inequalities (in constraints & in objective functions)
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Optimization problem in standard form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

x ∈ Rn optimization variable
f0 : Rn → R objective function (cost function)
fi : Rn → R inequality constraint functions
hi : Rn → R equality constraint functions



Constraints

▶ implicit constraints

x ∈ D =

(
m⋂
i=0

dom fi

)
∩

(
p⋂

i=1

domhi

)

▶ D is called the domain of the problem

▶ explicit constraints

fi(x) ≤ 0 for 1 ≤ i ≤ m and hi(x) = 0 for 1 ≤ i ≤ p

▶ problem is unconstrained if it has no explicit constraints (m = p = 0)



Example

minimize f0(x) = −
k∑

i=1

log(bi − aTi x)

is an unconstrained problem with implicit constraints

aTi x < bi

for each 1 ≤ i ≤ k.



Feasibility

▶ x is feasible if x ∈ D and x satisfies all constraints

▶ the set of all feasible points is called the feasible set of the problem

▶ the problem is infeasible if the feasible set is empty

▶ the feasibility problem is to determine whether the feasible set is nonempty

find x

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

▶ it can be rephrased as an optimization problem

minimize 0

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p



Optimality

▶ The optimal value is

p∗ = inf

{
f0(x)

∣∣∣∣ fi(x) ≤ 0 for 1 ≤ i ≤ m
hi(x) = 0 for 1 ≤ i ≤ p

}
∈ R ∪ {±∞}

▶ Extreme situations

p∗ = ∞ if problem is infeasible
p∗ = −∞ if problem is unbounded below

▶ Optimal value may not be achieved.



▶ x is optimal if it is feasible and f0(x) = p∗

▶ x is locally optimal if there exists R > 0 such that x is optimal for

minimize f0(z)

subject to fi(z) ≤ 0, i = 1, · · · ,m
hi(z) = 0, i = 1, · · · , p
∥z − x∥2 ≤ R



Examples (when n = 1, m = p = 0)

f0(x) = x log x dom f0 = R++ p∗ = −1/e x = 1/e is optimal

f0(x) = − log x dom f0 = R++ p∗ = −∞ no optimal point

f0(x) = 1/x dom f0 = R++ p∗ = 0 no optimal point

f0(x) = x3 − 3x dom f0 = R p∗ = −∞ x = 1 is locally optimal
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Convex optimization problem in standard form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
aTi x = bi, i = 1, · · · , p

▶ f0, f1, · · · , fm are convex

▶ equality constraints are affine, often written as Ax = b

▶ important property: feasible set of a convex problem is convex

▶ problem is quasiconvex if f0 is quasiconvex (and f1, · · · , fm convex)



Example

minimize f0(x) = x21 + x22

subject to f1(x) = x1/(1 + x22) ≤ 0

h1(x) = (x1 + x2)
2 = 0

▶ f0 is convex
▶ not a convex problem: f1 is not convex, h1 is not affine
▶ equivalent (but not identical) to the convex problem

minimize x21 + x22

subject to x1 ≤ 0

x1 + x2 = 0



Properties of convex optimization problems

▶ Local optima are global;

▶ First order optimality criterion.



Local and global optima

Proposition

Any locally optimal point of a convex optimization problem is globally optimal.

Proof

▶ suppose x is locally optimal, but there exists feasible y with f0(y) < f0(x)

▶ there exists R > 0 such that f0(z) ≥ f0(x) for all feasible z with ∥z − x∥2< R

▶ consider z = θy + (1− θ)x with θ = R/(2∥y − x∥2), then ∥z − x∥2 = R/2

▶ ∥y − x∥2 > R implies 0 < θ < 1/2, hence z is feasible by convexity of domain
▶ by convexity of objective f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x), contradiction



Optimality criterion for differentiable objective

Optimality criterion

Suppose the problem is convex and f0 is differentiable, then

x is optimal ⇐⇒ x is feasible and
∇f0(x)

T (y − x) ≥ 0 for all feasible y

Geometric interpretation

Either ∇f0(x) = 0 or ∇f0(x) defines a supporting hyperplane to the feasible set at x.



Proof

(⇐=) For any feasible y, since y ∈ dom f0, by the convexity of f0

f0(y) ≥ f0(x) +∇f0(x)
T (y − x).

The assumption ∇f0(x)
T (y − x) ≥ 0 implies f0(y) ≥ f0(x). Hence x is optimal.

(=⇒) Assume on the contrary that ∇f0(x)
T (y − x) < 0 for some feasible y, then

z(t) = ty + (1− t)x is feasible for t ∈ [0, 1] since the feasible set is convex. Then

d

dt
f0(z(t))

∣∣∣∣
t=0

= ∇f0(x)
T (y − x) < 0,

hence f0(z(t)) < f0(x) for 0 < t ≪ 1, which contradicts the optimality of x.



unconstrained problem

minimize f0(x)

x is optimal ⇐⇒ x ∈ dom f0, ∇f0(x) = 0



Sample proof (for unconstrained problems)

▶ By optimality condition

x is optimal ⇐⇒ x ∈ dom f0, ∇f0(x)
T (y − x) ≥ 0 for each y ∈ dom f0

▶ ∇f0(x) = 0 is clearly sufficient for the above statement.

▶ Since f0 is differentiable, dom f0 is open, hence

y = x− ε∇f0(x) ∈ dom f0

for 0 < ε ≪ 1. For such y we have

∇f0(x)
T (y − x) = −ε∥∇f0(x)∥22 ≤ 0.

▶ Combining above gives
∇f0(x) = 0

which proves necessity.



equality constrained problem

minimize f0(x)

subject to Ax = b

x is optimal ⇐⇒ x ∈ dom f0, Ax = b,
∇f0(x) +AT ν = 0 for some vector ν



minimization over nonnegative orthant

minimize f0(x)

subject to x ⪰ 0

x is optimal ⇐⇒ x ∈ dom f0, x ⪰ 0,

{
∇f0(x)i ≥ 0, if xi = 0

∇f0(x)i = 0, if xi > 0



Proof for minimization over nonnegative orthant

▶ By optimality condition

x is optimal ⇐⇒ x ∈ dom f0, x ⪰ 0, ∇f0(x)
T (y−x) ≥ 0 for each feasible y

▶ We claim ∇f0(x) ⪰ 0; otherwise, there exists some v ⪰ 0 such that

∇f0(x)
T v < 0

and y = x+ ε∇f0(x) is feasible (why?), which violates the optimality condition.



Equivalent convex problems

Two problems are (informally) equivalent if the solution of one is readily obtained from
the solution of the other, and vice-versa.

Some common transformations that preserve convexity

▶ eliminating equality constraints
▶ introducing equality constraints
▶ introducing slack variables for linear inequalities
▶ epigraph form
▶ minimizing over some variables



eliminating equality constraints

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
Ax = b

is equivalent to

minimize f0(Fz + x0) (over z)
subject to fi(Fz + x0) ≤ 0, i = 1, · · · ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z

In many case, however, it is better to retain the equality constraints, since eliminating
them can make the problem harder to understand and analyze, or ruin the efficiency of
an algorithm that solves it.



introducing equality constraints

minimize f0(A0x+ b0)

subject to fi(Aix+ bi) ≤ 0, i = 1, · · · ,m

is equivalent to

minimize f0(y0) (over x, yi)
subject to fi(yi) ≤ 0, i = 1, · · · ,m

yi = Aix+ bi, i = 0, 1, · · · ,m



introducing slack variables for linear inequalities

minimize f0(x)

subject to aTi x ≤ bi, i = 1, · · · ,m

is equivalent to

minimize f0(x) (over x, s)

subject to aTi x+ si = bi, i = 1, · · · ,m
si ≥ 0, i = 1, · · · ,m



epigraph form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
Ax = b

is equivalent to

minimize t (over x, t)
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, · · · ,m
Ax = b



partial minimization

minimize f0(x1, x2)

subject to fi(x1) ≤ 0, i = 1, · · · ,m

is equivalent to

minimize f̃0(x1)

subject to fi(x1) ≤ 0, i = 1, · · · ,m

where
f̃0(x1) = inf

x2

f0(x1, x2)



Quasiconvex optimization

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
Ax = b

with f0 : Rn → R quasiconvex, f1, · · · , fm convex.

Remark Locally optimal points may not be globally optimal



x is optimal if
x ∈ X, ∇f0(x)

T (y − x) > 0 for all y ∈ X\{x}.

▶ The condition is only sufficient for optimality
▶ The condition requires the gradient of f0 to be nonzero



Convex representation of sublevel sets of f0

For quasiconvex f0 there exists a family of functions ϕt such that

▶ ϕt(x) is convex in x for each fixed t

▶ t-sublevel set of f0 is 0-sublevel set of ϕt, i.e. f0(x) ≤ t ⇐⇒ ϕt(x) ≤ 0

▶ ϕt(x) is nonincreasing in t for each fixed x, namely ϕs(x) ≤ ϕt(x) if s ≥ t

In practice there are usually natural meaningful choices for ϕt.



Example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0.

We can choose
ϕt(x) = p(x)− tq(x)

▶ ϕt(x) convex in x for t ≥ 0

▶ f0(x) ≤ t ⇐⇒ ϕt(x) ≤ 0



Quasiconvex optimization via convex feasibility problems

ϕt(x) ≤ 0, fi(x) ≤ 0, i = 1, · · · ,m, Ax = b

▶ convex feasibility problem in x for each fixed t

▶ let p∗ be the optimal value for the original quasiconvex problem, then

above problem feasible =⇒ p∗ ≤ t

above problem infeasible =⇒ p∗ ≥ t



Bisection method

given l ≤ p∗, u ≥ p∗, tolerance ϵ > 0

repeat

1. t := (l + u)/2

2. solve the above convex feasibility problem
3. if feasible, u := t; else l := t

until u− l ≤ ϵ

requires exactly ⌈log2((u− l)/ϵ)⌉ iterations
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Linear program (LP)

minimize cTx+ d

subject to Gx ⪯ h

Ax = b

▶ convex problem with affine objective and constraint functions
▶ feasible set is a polyhedron



Standard and inequality form linear programs

A standard form LP

minimize cTx

subject to Ax = b

x ⪰ 0

An inequality form LP

minimize cTx

subject to Ax ⪯ b

Converting LPs to standard form



Examples

Diet problem choose quantities x1, · · · , xn of n kinds of food

▶ one unit of food j costs cj , contains amount aij of nutrient i
▶ healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet

minimize cTx

subject to Ax ⪰ b

x ⪰ 0



Piecewise-linear minimization

minimize max {aTi x+ bi | i = 1, · · · ,m}

equivalent to the LP

minimize t

subject to aTi x+ bi ≤ t, i = 1, · · · ,m



Chebyshev center of a polyhedron

Chebyshev center of
P = {x | aTi x ≤ bi, i = 1, · · · ,m}

is center of largest inscribed ball

B = {xc + u | ∥u∥2 ≤ r}



aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ∥u∥2 ≤ r} = aTi xc + r∥ai∥2 ≤ bi

hence xc and r can be determined by solving the LP

maximize r

subject to aTi xc + r∥ai∥2 ≤ bi, i = 1, · · · ,m



Linear-fractional program

minimize f0(x)

subject to Gx ⪯ h

Ax = b

where

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}

is a quasiconvex optimization problem; can be solved by bisection method.



If the feasible set is nonempty, then the linear-fractional problem is equivalent to the LP

minimize cT y + dz

subject to Gy ⪯ hz

Ay = bz

eT y + fz = 1

z ≥ 0



Generalized linear-fractional program

minimize f0(x)

subject to Gx ⪯ h

Ax = b

where

f0(x) = max

{
cTi x+ di

eTi x+ fi

∣∣∣∣ i = 1, · · · , r
}

dom f0(x) =
{
x
∣∣ eTi x+ fi > 0, i = 1, · · · , r

}
is a quasiconvex optimization problem; can be solved by bisection method.



Example: von Neumann model of a growing economy

maximize min
{
x+i /xi

∣∣ i = 1, · · · , n
}

(over x, x+)
subject to x+ ⪰ 0

Bx+ ⪯ Ax

with domain {(x, x+) | x ≻ 0}

▶ x, x+ ∈ Rn: activity levels of n sectors, in current and next period
▶ (Ax)i, (Bx+)i: produced resp. consumed amounts of good i

▶ x+i /xi: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r

subject to Gx ⪯ h

Ax = b

▶ P ∈ Sn+ thus objective is convex quadratic
▶ minimize a convex quadratic function over a polyhedron



Example

Least-squares

minimize ∥Ax− b∥22

▶ analytical solution x∗ = A†b (where A† is pseudo-inverse)
▶ can add linear constraints such as l ⪯ x ⪯ u



Distance between polyhedra

The Euclidean distance between the polyhedra P1 = {x|A1x ⪯ b1} and
P2 = {x|A2x ⪯ b2} in Rn is defined as

dist(P1,P2) = inf{∥x1 − x2∥2 | x1 ∈ P1, x2 ∈ P2}

We solve the QP

minimize ∥x1 − x2∥22
subject to A1x ⪯ b1, A2x ⪯ b2

▶ If the polyhedra intersect, the distance is zero
▶ The problem is infeasible if and only if one of the polyhedra is empty



Linear program with random cost

Consider the linear program

minimize cTx

subject to Gx ⪯ h

Ax = b

▶ Assume c is random vector with mean c̄ and covariance Σ

▶ Then cTx is random variable with mean c̄Tx and variance xTΣx

E
(
cTx

)
= E (c)T x = c̄Tx

var
(
cTx

)
= E

(
cTx− c̄Tx

)2
= xTE

(
(c− c̄)(c− c̄)T

)
x = xTΣx



We modify the above LP to the following QP

minimize c̄Tx+ γxTΣx

subject to Gx ⪯ h

Ax = b

▶ To keep both the expected cost and the cost variance (risk) under control, choose
a linear combination of both as the new objective, called risk-sensitive cost.

▶ γ > 0 is the risk-aversion parameter, which controls the trade-off between
expected cost and variance.

▶ Coefficient vector (1, γ) lies in the interior of the dual cone of the nonnegative
quadrant.



Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x+ qT0 x+ r0

subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, · · · ,m
Ax = b

▶ Pi ∈ Sn+ thus objective and constraints are convex quadratic
▶ feasible region is intersection of m ellipsoids and an affine set if P1, · · · , Pm ∈ Sn++



Second-order cone program (SOCP)

minimize fTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, · · · ,m
Fx = G

with Ai ∈ Rni×n and F ∈ Rp×n

▶ inequalities are called second-order cone constraints since

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

▶ if ni = 0, reduces to LP
▶ if ci = 0, reduces to QCQP (with linear objective)



Robust linear program

Parameters in optimization problems are often uncertain. Consider the LP

minimize cTx

subject to aTi x ≤ bi, i = 1, · · · ,m

▶ There can be uncertainty in c, ai, bi (in ai for example)

▶ There are two common approaches to handle uncertainty

▶ deterministic model

▶ stochastic model



▶ deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx

subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, · · · ,m

▶ stochastic model: ai is random variable; constraints must hold with probability η

minimize cTx

subject to prob(aTi x ≤ bi) ≥ η, i = 1, · · · ,m



deterministic approach via SOCP

▶ choose ellipsoid as Ei with āi ∈ Rn and Pi ∈ Rn×n

Ei = {āi + Piu | ∥u∥2 ≤ 1}

▶ robust LP

minimize cTx

subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, · · · ,m

▶ equivalent SOCP

minimize cTx

subject to āTi x+ ∥P T
i x∥2 ≤ bi, i = 1, · · · ,m

which follows from

sup
∥u∥2≤1

(āi + Piu)
Tx = āTi x+ ∥P T

i x∥2



stochastic approach via SOCP

▶ assume ai ∼ N (āi,Σi) is Gaussian, then aTi x ∼ N (āTi x, x
TΣix) is also Gaussian

prob(aTi x ≤ bi) = Φ

(
bi − āTi x

∥Σ1/2
i x∥2

)

with Φ(x) = (1/
√
2π)

∫ x
−∞ e−t2/2 dt cumulative distribution function of N (0, 1)

▶ robust LP

minimize cTx

subject to prob(aTi x ≤ bi) ≥ η, i = 1, · · · ,m

▶ equivalent SOCP when η > 1/2

minimize cTx

subject to āTi x+Φ−1(η)∥Σ1/2
i x∥2 ≤ bi, i = 1, · · · ,m



Minimal surface p 159
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Monomials and posynomials

▶ monomial function

f(x) = cxa11 · · ·xann , dom f = Rn
++

with c > 0 and ai ∈ R

▶ posynomial function

f(x) =

K∑
k=1

ckx
a1k
1 · · ·xank

n , dom f = Rn
++

sum of monomials



change variables to yi = log xi and take logarithm

▶ monomial f(x) = cxa11 · · ·xann transforms to

log f(ey1 , · · · , eyn) = aT y + b, (b = log c)

▶ posynomial f(x) =
∑K

k=1 ckx
a1k
1 · · ·xank

n transforms to

log f(ey1 , · · · , eyn) = log

(
K∑
k=1

ea
T
k y+bk

)
, (bk = log ck)



Geometric program (GP)

geometric program in standard form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, · · · ,m
hi(x) = 1, i = 1, · · · , p

with fi posynomial, hi monomial



geometric program in convex form

change variables to yi = log xi and take logarithm of objective and constraints

minimize log

(
K∑
k=1

ea
T
0ky+b0k

)

subject to log

(
K∑
k=1

ea
T
iky+bik

)
≤ 0, i = 1, · · · ,m

Gy + d = 0



Example

Frobenius norm diagonal scaling

▶ Assume M ∈ Rn×n defines a linear transformation. After scaling the coordinates
by D = diag(d1, . . . , dn) ∈ Rn×n, the resulting matrix becomes DMD−1.

▶ How to choose D such that DMD−1 is small under the Frobenius norm?

∥DMD−1∥2F =

n∑
i,j=1

(DMD−1)2ij =

n∑
i,j=1

M2
ijd

2
i /d

2
j .

▶ It is an unconstrained geometric program

minimize
n∑

i,j=1

M2
ijd

2
i /d

2
j

with variable d = (d1, . . . , dn).
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Convex problem with generalized inequality constraints

minimize f0(x)

subject to fi(x) ⪯Ki 0, i = 1, · · · ,m
Ax = b

▶ f0 : Rn → R is convex
▶ fi : Rn → Rki is Ki-convex, where Ki is a proper cone
▶ same properties as standard convex problem

(convex feasible set, local optimum is global, etc)



Conic form problem (cone program)

special case of above with affine objective and constraints

minimize cTx

subject to Fx+ g ⪯K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones



SOCP as equivalent conic form programming

SOCP

minimize fTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, · · ·m

equivalent conic form programming

minimize fTx

subject to − (Aix+ bi, c
T
i x+ di) ⪯Ki 0, i = 1, · · ·m

in which
Ki = {(y, t) ∈ Rni+1 | ∥y∥2 ≤ t}



Semidefinite program (SDP)

minimize cTx

subject to x1F1 + · · ·+ xnFn +G ⪯ 0

Ax = b

with Fi, G ∈ Sk

▶ inequality constraint is called linear matrix inequality (LMI)
▶ includes problems with multiple LMI constrains:

x1F
′
1 + · · ·+ xnF

′
n +G′ ⪯ 0 and x1F

′′
1 + · · ·+ xnF

′′
n +G′′ ⪯ 0

is equivalent to single LMI

x1

[
F ′
1 0
0 F ′′

1

]
+ · · ·+ xn

[
F ′
n 0
0 F ′′

n

]
+

[
G′ 0
0 G′′

]
⪯ 0



LP as equivalent SDP

LP

minimize cTx

subject to Ax ⪯ b

equivalent SDP

minimize cTx

subject to diag(Ax− b) ⪯ 0

note different interpretation of generalized inequality



Eigenvalue minimization

minimize λmax (A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn with given Ai ∈ Sk

equivalent SDP with variables (x, t) ∈ Rn+1

minimize t

subject to A(x) ⪯ tI

follows from
λmax(A) ≤ t ⇐⇒ A ⪯ tI



Matrix norm minimization

minimize ∥A(x)∥2 =
(
λmax

(
A(x)TA(x)

))1/2
where A(x) = A0 + x1A1 + · · ·+ xnAn with given Ai ∈ Rp×q

equivalent SDP with variables x ∈ Rn and t ∈ R

minimize t

subject to
[

tI A(x)
A(x)T tI

]
⪰ 0

follows from

∥A∥2 ≤ t ⇐⇒ ATA ⪯ t2I, t ≥ 0

⇐⇒
[
tI A
AT tI

]
⪰ 0
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Vector optimization

general vector optimization problem

minimize (with respect to K) f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

vector objective f0 : Rn → Rq minimized with respect to proper cone K ⊆ Rq

convex vector optimization problem

minimize (with respect to K) f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
Ax = b

where f0 is K-convex and f1, · · · , fm are convex



Optimal and Pareto optimal points

set of achievable objective values

O = {f0(x) | x feasible}

▶ feasible x∗ is optimal if f0(x∗) is the minimum value of O (optimal value)
▶ feasible xpo is Pareto optimal if f0(xpo) is a minimal value of O (Pareto optimal

value)



Example

Best linear unbiased estimator p176



Multicriterion optimization

vector optimization problem with K = Rq
+

f0(x) = (F1(x), · · · , Fq(x))

▶ q different objectives Fi, we want all of them to be small
▶ feasible x∗ is optimal if

y feasible =⇒ f0(x
∗) ⪯ f0(y)

if an optimal point exists, the objectives are noncompeting
▶ feasible xpo is Pareto optimal if

y feasible, f0(y) ⪯ f0(x
po) =⇒ f0(x

po) = f0(y)

if multiple Pareto optimal values exist, there is a trade-off between the objectives



Examples

Regularized least-squares

minimize (with respect to R2
+)

(
∥Ax− b∥22, ∥x∥22

)

the optimal trade-off curve, shown darker, is formed by Pareto optimal points



Risk-return trade-off in portfolio optimization

minimize (with respect to R2
+)

(
−p̄Tx, xTΣx

)
subject to 1Tx = 1

x ⪰ 0

▶ x ∈ Rn investment portfolio; xi fraction invested in asset i
▶ p ∈ Rn (relative) asset price, random variable with mean p̄ and covariance Σ

▶ r = pTx (relative) return, random variable with mean p̄Tx and variance xTΣx



Scalarization

To find Pareto optimal points, choose λ ≻K∗ 0 and solve scalar problem

minimize λT f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

▶ if x is optimal for scalar problem, then it is Pareto optimal for vector optimization
problem

▶ for convex vector optimization problem, can find (almost) all Pareto optimal points
by varying λ ≻K∗ 0



Scalarization for multicriterion problems

In this more concrete situation
K = K∗ = Rq

+.

To find Pareto optimal points, write

λ =

a1...
aq

 ∈ Rq
++ and f0(x) =

F1(x)
...

Fq(x)

 ,

then minimize the positive weighted sum

λT f0(x) = a1F1(x) + · · ·+ aqFq(x)



Geometric interpretation

▶ O is the set of achievable objective values
▶ Pareto optimal values f0(x1) and f0(x2) can both be obtained by scalarization:

f0(x1) minimizes λT
1 u and f0(x2) minimizes λT

2 u over all u ∈ O
▶ f0(x3) is Pareto optimal, but cannot be found by scalarization



Examples

Regularized least-square problem

Take λ = (1, γ) with γ > 0

minimize ∥Ax− b∥22 + γ∥x∥22

least-square problem for fixed γ > 0



Risk-return trade-off problem

Take λ = (1, γ) with γ > 0

minimize − p̄Tx+ γxTΣx

subject to 1Tx = 1

x ⪰ 0

quadratic program for each fixed γ > 0


	Optimization problems
	Convex optimization
	Linear optimization
	Quadratic optimization
	Geometric programming
	Generalized inequality constraints
	Vector optimization

