Chapter 3 Convex functions

Last update on 2025-02-12 14:32:35+08:00

Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities

Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities

• $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$ and $0 \le \theta \le 1$

• $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if dom f is a convex set and $f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$

for all $x,y\in \operatorname{\mathbf{dom}} f$ with $x\neq y$ and $0<\theta<1$

•
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is concave if $-f$ is convex

• $f: \mathbb{R}^n \to \mathbb{R}$ is strictly concave if -f is strictly convex

Extended-value extension

 $\infty\text{-}\mathbf{extension}$ of a function $f\colon \mathbb{R}^n\to \mathbb{R}$ is

$$\tilde{f} \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}; \qquad \operatorname{dom} \tilde{f} = \mathbb{R}^n$$

defined as

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \operatorname{\mathbf{dom}} f, \\ \infty & x \notin \operatorname{\mathbf{dom}} f. \end{cases}$$

Extended-value extension

 ∞ -extension of a function $f : \mathbb{R}^n \to \mathbb{R}$ is $\tilde{f} : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}; \quad \operatorname{dom} \tilde{f} = \mathbb{R}^n$ defined as $\tilde{f}(x) = \begin{cases} f(x) & x \in \operatorname{dom} f, \\ \infty & x \notin \operatorname{dom} f. \end{cases}$

 $\begin{array}{ll} \text{lemma} & f : \mathbb{R}^n \to \mathbb{R} \text{ is convex} & \Longleftrightarrow & \text{for all } x, y \in \mathbb{R}^n \text{ and } 0 < \theta < 1 \\ & \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y) \end{array}$

as an inequality in $\mathbb{R}\cup\{\infty\}$

Extended-value extension

 $\infty\text{-extension of a function } f: \mathbb{R}^n \to \mathbb{R} \text{ is}$ $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}; \quad \text{dom } \tilde{f} = \mathbb{R}^n$ defined as $\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f, \\ \infty & x \notin \text{dom } f. \end{cases}$ $\text{lamma} \quad f: \mathbb{R}^n \to \mathbb{R} \text{ is convex} \quad \longleftrightarrow \quad \text{for all } x \in \mathbb{R}^n \text{ and } f.$

lemma $f : \mathbb{R}^n \to \mathbb{R}$ is convex \iff for all $x, y \in \mathbb{R}^n$ and $0 < \theta < 1$ $\tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$

as an inequality in $\mathbb{R} \cup \{\infty\}$

remark we can similarly define $(-\infty)$ -extension of a function

definition

- restriction to lines
- first-order condition
- second-order condition

More advanced methods will be discussed in next section.

 $f \colon \mathbb{R}^n \to \mathbb{R}$ is convex \iff the function $g \colon \mathbb{R} \to \mathbb{R}$ defined as

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex in t for all $x \in \operatorname{\mathbf{dom}} f$ and $v \in \mathbb{R}^n$

Useful upshot: we can check convexity of f by checking convexity of functions in one variable. Geometrically, it allows us to check whether a function is convex by restricting it to a line

• f is differentiable if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \cdots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

• f is differentiable if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \cdots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

• f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian

$$\nabla^2 f(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right]_{1 \le i,j \le n}$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

First-order condition

Suppose f is differentiable, then

$$f(y) extsf{f}(x) +
abla f(x)^T(y-x) extsf{(x,f(x))}$$

•
$$f$$
 is convex \iff dom f is convex and
 $f(y) \ge f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in$ dom f

First-order condition

Suppose f is differentiable, then

$$f(y)$$

 $f(x) +
abla f(x)^T(y-x)$
 $(x, f(x))$

•
$$f$$
 is convex \iff dom f is convex and
 $f(y) \ge f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in$ dom f

• f is strictly convex \iff dom f is convex and

$$f(y) > f(x) + \nabla f(x)^T (y - x) \qquad \text{for all } x, y \in \operatorname{\mathbf{dom}} f \text{ and } x \neq y$$

Proof of first-order convexity condition

proof of first/second-order condition

step 1. Establish the condition for n = 1 (standard calculus)

step 2. Prove the general case by restriction to lines

Suppose f is twice differentiable, then

 $\blacktriangleright f \text{ is convex } \iff \operatorname{\mathbf{dom}} f \text{ is convex and}$

 $abla^2 f(x) \succeq 0$ for all $x \in \operatorname{\mathbf{dom}} f$

Suppose f is twice differentiable, then • f is convex \iff dom f is convex and $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom } f$ • f is strictly convex \iff dom f is convex and $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$

Examples

affine functions

•
$$f: \mathbb{R}^n \to \mathbb{R};$$
 $f(x) = a^T x + b$ where $a \in \mathbb{R}^n, b \in \mathbb{R}$

▶
$$f: \mathbb{R}^{m \times n} \to \mathbb{R};$$
 $f(X) = \mathbf{tr}(A^T X) + b$ where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}$

affine functions are both convex and concave

powers of absolute values

▶ $|x|^p$, for $p \ge 1$, convex on \mathbb{R}

max functions

•
$$f(x) = \max\{x_1, \dots, x_n\}$$
, is convex on \mathbb{R}^n

$$\|\cdot\|\colon\qquad\mathbb{R}^n\longrightarrow\mathbb{R}$$

norms are convex functions (e.g. ℓ_p , Frobenius, spectral, nuclear, ...)

 $\|\cdot\|:\qquad \mathbb{R}^n\longrightarrow \mathbb{R}$

norms are convex functions (e.g. ℓ_p , Frobenius, spectral, nuclear, ...)

proof

the domain

 $\operatorname{dom}\left(\|\cdot\|\right)=\mathbb{R}^n$

is convex;

► for all $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$ $\|\theta x + (1 - \theta)y\| \le \|\theta x\| + \|(1 - \theta)y\| = \theta\|x\| + (1 - \theta)\|y\|$

log-determinant

$$f: \mathbb{S}^n \to \mathbb{R}; \qquad f(X) = \log \det X; \qquad \operatorname{dom} f = \mathbb{S}^n_{++}$$

is concave

log-determinant

$$f: \mathbb{S}^n \to \mathbb{R}; \qquad f(X) = \log \det X; \qquad \operatorname{dom} f = \mathbb{S}^n_{++}$$

is concave

proof for every
$$X \in \mathbb{S}_{++}^n$$
 and every $V \in \mathbb{S}^n$

$$g(t) = \log \det(X + tV)$$

$$= \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

$$= \log \det X + \sum_{i=1}^n \log(1 + t\lambda_i)$$

where λ_i 's are eigenvalues of $X^{-1/2}VX^{-1/2}$

g(t) is concave for every choice of X and V, hence f is concave

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ with $P \in \mathbb{S}^n$

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ with $P \in \mathbb{S}^n$ dom $f = \mathbb{R}^n$, $\nabla f(x) = P x + q$, $\nabla^2 f(x) = P$

 $\mathsf{convex} \text{ iff } P \succeq 0$

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ with $P \in \mathbb{S}^n$ dom $f = \mathbb{R}^n$, $\nabla f(x) = P x + q$, $\nabla^2 f(x) = P$ convex iff $P \succ 0$

least-square objective: $f(x) = ||Ax - b||_2^2$

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ with $P \in \mathbb{S}^n$ dom $f = \mathbb{R}^n$, $\nabla f(x) = P x + q$, $\nabla^2 f(x) = P$

convex iff $P \succeq 0$

least-square objective: $f(x) = ||Ax - b||_2^2$ dom $f = \mathbb{R}^n$, $\nabla f(x) = 2A^T(Ax - b)$, $\nabla^2 f(x) = 2A^TA \succeq 0$

convex for any A and b

quadratic-over-linear: $f(x,y) = x^2/y$, $\operatorname{dom} f = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ is convex

 $\mbox{quadratic-over-linear:} \quad f(x,y) = x^2/y, \quad \mbox{dom}\, f = \{(x,y) \in \mathbb{R}^2 \mid y > 0\} \quad \mbox{is convex}$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

log-sum-exp:
$$f(x) = \log\left(\sum_{k=1}^{n} e^{x_k}\right)$$
 is co

is convex

log-sum-exp:
$$f(x) = \log\left(\sum_{k=1}^{n} e^{x_k}\right)$$
 is convex

dom $f = \mathbb{R}^n$; for convenience let $z_k = e^{x_k}$; and let $z = (z_1, \dots, z_n)$

$$\nabla^2 f(x) = \dots = \frac{1}{\sum z_k} \begin{bmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{bmatrix} - \frac{zz^T}{\left(\sum z_k\right)^2}$$

log-sum-exp:
$$f(x) = \log\left(\sum_{k=1}^{n} e^{x_k}\right)$$
 is convex

dom $f = \mathbb{R}^n$; for convenience let $z_k = e^{x_k}$; and let $z = (z_1, \dots, z_n)$

$$\nabla^2 f(x) = \dots = \frac{1}{\sum z_k} \begin{bmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{bmatrix} - \frac{z z^T}{\left(\sum z_k\right)^2}$$

for every $v \in \mathbb{R}^n$

$$v^T \nabla^2 f(x) v = \frac{\left(\sum z_k v_k^2\right) \left(\sum z_k\right) - \left(\sum z_k v_k\right)^2}{\left(\sum z_k\right)^2} \ge 0$$

by Cauchy inequality, hence $\nabla^2 f(x) \succeq 0$ for every $x \in \mathbb{R}^n$

geometric mean:
$$f(x) = \left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}}$$
 concave on \mathbb{R}^n_{++}

geometric mean:
$$f(x) = \left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}}$$
 concave on \mathbb{R}^n_{++}

proof is similar to that of log-sum-exp

Properties of convex functions

epigraphs

Jensen's inequality

 α -sublevel set of $f \colon \mathbb{R}^n \to \mathbb{R}$

$$S_{\alpha} = \{ x \in \operatorname{\mathbf{dom}} f \mid f(x) \le \alpha \}$$

fact: f is convex \implies all sublevel sets of f are convex (converse is false) similar definition for superlevel set: f is concave \implies all superlevel sets of f are convex The geometric and arithmetic means of $x \in \mathbb{R}^n_+$ are, respectively,

$$G(x) = \left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}}, \quad A(x) = \frac{1}{n} \sum_{k=1}^{n} x_k.$$

For $0 \le \alpha \le 1$, the set

$$\{x \in \mathbb{R}^n_+ | G(x) \ge \alpha A(x)\},\$$

is convex, since it is the 0-superlevel set of the concave function $G(x) - \alpha A(x)$
epigraph of $f \colon \mathbb{R}^n \to \mathbb{R}$

$$\mathbf{epi}\,f = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \mathbf{dom}\,f, t \ge f(x)\}$$

fact: f is convex \iff epi f is a convex set

basic version

if f is convex, then for $x,y\in \operatorname{\mathbf{dom}} f$, $0\leq \theta\leq 1$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

if f is convex, then for $x_1, \cdots, x_k \in \operatorname{\mathbf{dom}} f$, $\theta_1, \ldots, \theta_k \ge 0$ with $\theta_1 + \cdots + \theta_k = 1$

$$f(\theta_1 x_1 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$$

fancy version

if f is convex, then for $p(x) \ge 0$ on $S \subseteq \operatorname{dom} f$ with $\int_{S} p(x) dx = 1$ $f\left(\int_{S} xp(x) dx\right) \le \int_{S} f(x)p(x) dx$

in other words, for any random variable x taking values in $\mathbf{dom} f$

 $f(\mathbf{E}x) \le \mathbf{E}f(x)$

fancy version

if f is convex, then for $p(x) \ge 0$ on $S \subseteq \operatorname{dom} f$ with $\int_{S} p(x) dx = 1$ $f\left(\int_{S} xp(x) dx\right) \le \int_{S} f(x)p(x) dx$

in other words, for any random variable x taking values in $\operatorname{dom} f$

 $f(\mathbf{E}x) \le \mathbf{E}f(x)$

the above basic multi-point version is special case with discrete distribution

$$\operatorname{prob}(x_i) = \theta_i, \qquad i = 1, \cdots, k$$

Example: log-normal random variable

Jensen's inequality is

$$f(\mathbb{E}X) = \exp(\mu) \le \mathbb{E}f(X) = \exp(\mu + \sigma^2/2)$$

which indeed holds since $\exp(\sigma^2/2)>1$

Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities

practical methods for establishing convexity of a function

- 1. definition; restriction to lines
- 2. first/second order conditions
- 3. reconstruct f from simple convex functions by operations preserving convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - partial minimization
 - perspective
 - composition

nonnegative weighted sum

 f_1, f_2 are convex, $\alpha_1, \alpha_2 \ge 0 \implies \alpha_1 f_1 + \alpha_2 f_2$ is convex

extends to finite and infinite sums, integrals

composition with affine function

f is convex $\implies f(Ax+b)$ is convex

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom} f = \{x \mid a_i^T x < b_i, i = 1, \cdots, m\}$$

▶ any norm of affine function

$$f(x) = \|Ax + b\|$$

f_1, \cdots, f_m are convex $\implies f(x) = \max\{f_1(x), \cdots, f_m(x)\}$ is convex

$$f_1, \cdots, f_m$$
 are convex $\implies f(x) = \max\{f_1(x), \cdots, f_m(x)\}$ is convex

proof on page 80 examples

▶ piecewise-linear function

$$f(x) = \max\{a_i^T x + b_i \mid 1 \le i \le m\}$$

• sum of r largest components of $x \in \mathbb{R}^n$

$$f(x) = x_{[1]} + \dots + x_{[r]}$$

$$f_1, \cdots, f_m$$
 are convex $\implies f(x) = \max\{f_1(x), \cdots, f_m(x)\}$ is convex

proof on page 80 examples

▶ piecewise-linear function

$$f(x) = \max\{a_i^T x + b_i \mid 1 \le i \le m\}$$

• sum of r largest components of $x \in \mathbb{R}^n$

$$f(x) = x_{[1]} + \dots + x_{[r]}$$

proof

$$f(x) = \max\{x_{i_1} + \dots + x_{i_r} \mid 1 \le i_1 < \dots < i_r \le n\}$$

 $f(x,\lambda) \text{ is convex in } x \text{ for each } \lambda \in \Lambda \qquad \Longrightarrow \qquad g(x) = \sup_{\lambda \in \Lambda} f(x,\lambda) \text{ is convex } x \in \Lambda$

 $f(x,\lambda) \text{ is convex in } x \text{ for each } \lambda \in \Lambda \qquad \Longrightarrow \qquad g(x) = \sup_{\lambda \in \Lambda} f(x,\lambda) \text{ is convex } x \in \Lambda$

examples

 \blacktriangleright distance to farthest point in a set C

$$f(x) = \sup_{y \in C} \|x - y\|$$

maximum eigenvalue of symmetric matrices

 $\lambda_{\max}(X)$

 $f(x,\lambda) \text{ is convex in } x \text{ for each } \lambda \in \Lambda \qquad \Longrightarrow \qquad g(x) = \sup_{\lambda \in \Lambda} f(x,\lambda) \text{ is convex }$

examples

 \blacktriangleright distance to farthest point in a set C

$$f(x) = \sup_{y \in C} \|x - y\|$$

maximum eigenvalue of symmetric matrices

$$\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$$

The conjugate function

conjugate of any function f is

examples

• for
$$f(x) = -\log x$$

$$f^*(y) = \sup_{x>0} (xy + \log x) \\ = \begin{cases} -1 - \log(-y), & y < 0 \\ \infty, & y \ge 0 \end{cases}$$

▶ for
$$f(x) = (1/2)x^TQx$$
 with $Q \in \mathbb{S}^n_{++}$
$$f^*(y) = \sup_x (y^Tx - (1/2)x^TQx)$$
$$= (1/2)y^TQ^{-1}y$$

property

- $f \text{ is convex and closed } (\operatorname{\mathbf{epi}} f \text{ is closed}) \qquad \Longrightarrow \qquad f^{**} = f$
- The conjugate of a differentiable function f is called the Legendre transform of f. We have

$$f^*(y) = x^{*T} \nabla f(x^*) - f(x^*),$$

where x^* is any maximizer of $y^Tx-f(x)$ satisfying $y=\nabla f(x^*)$

- ▶ The conjugate of g(x) = af(x) + b is $g^*(y) = af^*(y/a) b$
- ▶ sums of independent functions. If $f(u, v) = f_1(u) + f_2(v)$ with f_1 and f_2 convex, then $f^*(w, z) = f_1^*(w) + f_2^*(z)$.

 $f(x,y) \text{ is convex in } (x,y) \text{ and } C \text{ is a convex set } \implies g(x) = \inf_{y \in C} f(x,y) \text{ is convex } g(x) = f(x,y) \text{ i$

 $f(x,y) \text{ is convex in } (x,y) \text{ and } C \text{ is a convex set } \implies g(x) = \inf_{y \in C} f(x,y) \text{ is convex }$

proof on page 88 examples

 \blacktriangleright if C is a convex set, then

$$\operatorname{dist}(x,C) = \inf_{y \in C} \|x - y\|$$

is convex

Perspective

perspective of a function $f \colon \mathbb{R}^n \to \mathbb{R}$ is the function $g \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$

$$\begin{split} g(x,t) &= tf(x/t), \qquad \operatorname{dom} g = \{(x,t) \mid x/t \in \operatorname{dom} f, t > 0\} \\ f \text{ is convex} \qquad \Longrightarrow \qquad g \text{ is convex} \end{split}$$

Perspective

perspective of a function $f \colon \mathbb{R}^n \to \mathbb{R}$ is the function $g \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$

$$\begin{split} g(x,t) &= tf(x/t), \qquad \operatorname{dom} g = \{(x,t) \mid x/t \in \operatorname{dom} f, t > 0\} \\ f \text{ is convex} \qquad \Longrightarrow \qquad g \text{ is convex} \end{split}$$

proof on page 89 examples

► $f(x) = x^T x$ is convex, hence

$$g(x,t) = x^T x/t$$

is convex for t > 0

•
$$f(x) = -\log x$$
 is convex, hence

$$g(x,t) = t\log t - t\log x$$

is convex on \mathbb{R}^2_{++} (relative entropy)

 \blacktriangleright if f is convex, then $g(x) = (c^T x + d) \cdot f\left(\frac{Ax + b}{c^T x + d}\right)$

is convex on

$$\left\{ x \ \left| \ c^T x + d > 0, \ \frac{Ax + b}{c^T x + d} \in \operatorname{\mathbf{dom}} f \right. \right\}$$

Composition

$$f(x) = h(g(x)) = h(g_1(x), \cdots, g_k(x))$$

where

$$\operatorname{dom} g = \bigcap_{i=1}^{k} \operatorname{dom} g_{i}$$
$$\operatorname{dom} f = \{x \in \operatorname{dom} g \mid g(x) \in \operatorname{dom} h\}$$

proposition assume $f(x) = h(g(x)) = h(g_1(x), \dots, g_k(x))$

 $h \ {\rm convex}, \ \tilde{h} \ {\rm nondecreasing} \ {\rm in \ each \ argument}, \ {\rm each \ } g_i \ {\rm convex} \quad \Longrightarrow \quad f \ {\rm convex}$

proposition assume $f(x) = h(g(x)) = h(g_1(x), \cdots, g_k(x))$

 $h \text{ convex}, \ \tilde{h} \text{ nondecreasing in each argument}, \text{ each } g_i \text{ convex} \implies f \text{ convex}$

corollary

assume
$$f(x) = h(g(x)) = h(g_1(x), \dots, g_k(x))$$

h	$ ilde{h}$	each g_i		$f = h \circ g$
convex	\nearrow	convex		convex
convex	\searrow	concave	\Rightarrow	convex
concave	\searrow	convex		concave
concave	\nearrow	concave		concave

remark

- \tilde{h} is ∞ -extension if h is convex and $(-\infty)$ -extension if h is concave;
- \blacktriangleright the monotonicity of \tilde{h} is non-strict and in each argument.

warning monotonicity of \tilde{h} has to hold for \tilde{h} instead of h

counterexample

fake proof

assume all functions are twice differentiable

$$f(x) = h(g(x)) \qquad \Longrightarrow \qquad f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

then we have

$$h'' \ge 0, \ h' \ge 0, \ g'' \ge 0 \qquad \Longrightarrow \qquad f'' \ge 0$$

without worrying about domains, we conclude

 $h \operatorname{convex}, \ \tilde{h} \operatorname{nondecreasing}, \ g \operatorname{convex} \implies f \operatorname{convex}$

proof Assume $\theta \in [0,1]$ and $x, y \in \operatorname{dom} f$

step 1 Show $\operatorname{dom} f$ is convex

$$\begin{array}{ll} \operatorname{each} g_i \operatorname{convex} & \Longrightarrow & \begin{cases} \theta x + (1 - \theta)y \in \operatorname{dom} g\\ g(\theta x + (1 - \theta)y) \preceq \theta g(x) + (1 - \theta)g(y) \end{cases} \\ h \operatorname{convex} & \Longrightarrow & \theta g(x) + (1 - \theta)g(y) \in \operatorname{dom} h \\ \tilde{h} \operatorname{non-decreasing} & \Longrightarrow & \tilde{h}(g(\theta x + (1 - \theta)y)) \leq \tilde{h}(\theta g(x) + (1 - \theta)g(y)) < \infty \\ & \Longrightarrow & g(\theta x + (1 - \theta)y) \in \operatorname{dom} h \end{cases} \end{array}$$

Therefore we conclude

$$\theta x + (1 - \theta)y \in \operatorname{\mathbf{dom}} f$$

 $\underline{\operatorname{step 2}} \qquad \text{Show } f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$

$$f(\theta x + (1 - \theta)y) = h(g(\theta x + (1 - \theta)y))$$

$$\leq h(\theta g(x) + (1 - \theta)g(y))$$

$$\leq \theta h(g(x)) + (1 - \theta)h(g(x)) = \theta f(x) + (1 - \theta)f(y)$$

examples

• if g(x) is concave and positive, then

1/g(x)

is convex

• if all $g_i(x)$ are convex, then

$$\log\left(\sum_{i=1}^m e^{g_i(x)}\right)$$

is convex

Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities

Quasiconvex function

• $f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

```
C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}
```

are convex for all $\alpha \in \mathbb{R}$

• f is quasiconcave if -f is quasiconvex

 \blacktriangleright f is quasilinear if it is quasiconvex and quasiconcave

Examples

• $\sqrt{|x|}$ is quasiconvex on $\mathbb R$

- ▶ $ceil(x) = inf\{z \in \mathbb{Z} \mid z \ge x\}$ is quasilinear on \mathbb{R}
- ▶ $\log x$ is quasilinear on \mathbb{R}_{++}

Note that quasiconvex functions can be concave, or discontinuous.

•
$$f(x_1, x_2) = x_1 x_2$$
 is quasiconcave on \mathbb{R}^2_{++}

linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \text{dom } f = \{x \mid c^T x + d > 0\}$$

is quasilinear

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom} f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

Techniques for establishing quasi-convexity

- 1. direct approaches
 - definition
 - modified Jensen inequality
 - restriction to lines
 - first order condition
 - second order condition
- 2. construct new from old

Modified Jensen inequality

f is quasi-convex iff $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

for all $x, y \in \operatorname{\mathbf{dom}} f$ and $\theta \in [0, 1]$.

Modified Jensen inequality

f is quasi-convex iff $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

for all $x, y \in \operatorname{\mathbf{dom}} f$ and $\theta \in [0, 1]$.

Warning

many properties of convex functions are false for quasiconvex functions; e.g. sums of quasiconvex functions are not necessarily quasiconvex.
Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities

A positive function $f \colon \mathbb{R}^n \to \mathbb{R}$ is

• **log-concave** if $\log f$ is concave: **dom** f is convex and

 $f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta} \qquad \text{for all } x, y \in \operatorname{\mathbf{dom}} f \text{ and } 0 \le \theta \le 1$

b log-convex of $\log f$ is convex: dom f is convex and

 $f(\theta x + (1 - \theta)y) \le f(x)^{\theta} f(y)^{1 - \theta}$ for all $x, y \in \operatorname{dom} f$ and $0 \le \theta \le 1$

Examples

▶ powers: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$

Gamma function is log-convex

$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} \, \mathrm{d}u, \qquad \operatorname{\mathbf{dom}} \Gamma = [1, \infty)$$

many common probability density functions are log-concave, e.g. Gaussian

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} \exp\left(-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})\right)$$

cumulative Gaussian distribution function is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \,\mathrm{d}\, u$$

Operations preserving log-convexity

• If f(x) and g(x) are log-convex, then

$$f(x)g(x)$$
 and $f(x) + g(x)$

are log-convex.

▶ If $f(x, \lambda)$ is log-convex in x for each $\lambda \in C$, then

$$g(x) = \int_C f(x,\lambda) \,\mathrm{d}\lambda$$

is also log-convex.

Laplace transform of a nonnegative function, Moment generating function

Operations preserving log-concavity

• If f(x) and g(x) are log-concave, then

f(x)g(x)

is log-concave, but

f(x) + g(x)

is not necessarily log-concave.

• (Integration Theorem) If $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave in (x, y), then

$$g(x) = \int f(x, y) \,\mathrm{d}y$$

is log-concave. (Very useful, but difficult to prove.)

Convolution product If f(x) and g(x) are log-concave, then

$$(f * g)(x) = \int f(x - y)g(y) \,\mathrm{d}y$$

is log-concave.

Yield function $Y(x) = \mathbf{prob}(x + w \in S)$

- $x \in \mathbb{R}^n$: nominal (target) parameter values for product,
- $w \in \mathbb{R}^n$: random variations of parameters, with probability density function p(w),
- $S \subseteq \mathbb{R}^n$: set of acceptable values.

Yield function $Y(x) = \mathbf{prob}(x + w \in S)$

• $x \in \mathbb{R}^n$: nominal (target) parameter values for product,

• $w \in \mathbb{R}^n$: random variations of parameters, with probability density function p(w),

• $S \subseteq \mathbb{R}^n$: set of acceptable values.

Assume

S is a convex set \qquad and $\qquad p(w)$ is log-concave

then

Y(x) is log-concave and the yield regions $\{x \mid Y(x) \ge \alpha\}$ are convex

Yield function $Y(x) = \mathbf{prob}(x + w \in S)$

• $x \in \mathbb{R}^n$: nominal (target) parameter values for product,

• $w \in \mathbb{R}^n$: random variations of parameters, with probability density function p(w),

• $S \subseteq \mathbb{R}^n$: set of acceptable values.

Assume

 $S \ \text{is a convex set} \qquad \text{and} \qquad p(w) \ \text{is log-concave}$

then

Y(x) is log-concave and the yield regions $\{x \mid Y(x) \geq \alpha\}$ are convex Proof

$$Y(x) = \int g(x+w)p(w) \, \mathrm{d}w, \quad \text{where} \quad g(u) = \begin{cases} 1 & u \in S \\ 0 & u \notin S \end{cases} \quad \text{is log-concave.}$$

From density function to distribution function

Assume the density function p(x) is log-concave, then the distribution function is

$$F(x) = \operatorname{prob}(w \leq x) = \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} p(w) \, \mathrm{d}w_1 \dots \mathrm{d}w_n$$
$$= \int_{\mathbb{R}^n} g(w - x) p(w) \, \mathrm{d}w$$

where

$$S = (-\infty, 0]^n \quad \text{and} \quad g(u) = \begin{cases} 1 & u \in S, \\ 0 & u \notin S. \end{cases}$$

 $S \text{ is convex}, \qquad p(x) \text{ is log-concave} \qquad \Longrightarrow \qquad F(x) \text{ is log-concave}.$

Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities

Monotonicity with respect to generalized inequalities

Suppose K is a proper cone. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called K-nondecreasing if

 $x \preceq_K y \Rightarrow f(x) \le f(y).$

- Matrix monotone functions. A function $f : \mathbb{S}^n \to \mathbb{R}$ is called matrix monotone if it is monotone wrt the positive semidefinite cone.
- $\mathbf{tr}(WX)$ is matrix nondecreasing if $W \succeq 0$
- $\mathbf{tr}(X^{-1})$ is matrix decreasing on \mathbb{S}^n_{++}
- det X is matrix increasing on \mathbb{S}^n_{++}
- \blacktriangleright A differentiable function f, with convex domain, is K-nondecreasing if and only if

 $\nabla f(x) \succeq_{K^*} 0$

for all $x \in \mathbf{dom} f$

- ▶ let $K \subseteq \mathbb{R}^m$ be a proper cone with associated generalized inequality \preceq_K .
- $f: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)$$

for every $x, y \in \operatorname{\mathbf{dom}} f$ and $0 \le \theta \le 1$.

Example

$$f \colon \mathbb{S}^m \to \mathbb{S}^m, \qquad f(X) = X^2 \qquad \text{is } \mathbb{S}^m_+\text{-convex}$$

Observe: $\operatorname{dom} f = \mathbb{S}^m$ is convex.

Need to show: for any $X,Y\in \mathbb{S}^m$ and $\theta\in [0,1],$ we have

$$\begin{aligned} (\theta X + (1 - \theta)Y)^2 \preceq_{\mathbb{S}^m_+} \theta X^2 + (1 - \theta)Y^2 \\ \iff z^T (\theta X + (1 - \theta)Y)^2 z \leq \theta z^T X^2 z + (1 - \theta)z^T Y^2 z \quad \text{for all } z \in \mathbb{R}^m \\ \iff \|\theta X z + (1 - \theta)Y z\|_2^2 \leq \theta \|X z\|_2^2 + (1 - \theta) \|Y z\|_2^2 \end{aligned}$$

which holds since $\|\cdot\|_2^2$ is convex on \mathbb{R}^m .

Example Convexity wrt componentwise inequality (page 110)

Example The function X^p is matrix convex on \mathbb{S}^n_{++} for $1\leq p\leq 2$ and matrix concave for $0\leq p\leq 1$

Example The function $f(X) = e^X$ is not matrix convex on \mathbb{S}^n , for $n \ge 2$

Dual characterization of *K*-convexity

Differentiable *K*-convex functions

Composition theorem