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Properties and examples



Convex function

> /:R™ — Ris convex if dom f is a convex set and

f0z+ (1 —0)y) <Of(x)+ (1—-0)f(y)

forall z,y edom fand 0 <9 <1

)




» f:R™ — R is strictly convex if dom f is a convex set and

fOx+ (1 —=0)y) <bf(z)+(1-0)f(y)

for all z,y € dom f with x Zyand 0 < 6 < 1

> f:R™ — Ris concave if —f is convex

> {:R™ — R is strictly concave if —f is strictly convex



Extended-value extension

oo-extension of a function f: R™ — R is
f:R* 5 RU{o0}; dom f =R"
defined as

= ) f(x) x€domf,
00 x ¢ dom f.



Extended-value extension

oo-extension of a function f: R™ — R is

f:R* 5 RU{o0}; dom f =R"

defined as
~ f(x) z €domf,
flay =47
00 x ¢ dom f.
lemma f:R" - Risconvex <= forallz,yeR"and0 <6< 1

FOz+ (1 —0)y) <Of(x) +(1—0)f(y)

as an inequality in R U {o0}



Extended-value extension

oo-extension of a function f: R™ — R is

f:R* 5 RU{o0}; dom f =R"

defined as
~ f(x) z €domf,
flay =47
00 x ¢ dom f.
lemma f:R" - Risconvex <= forallz,yeR"and0 <6< 1

FOz+ (1 —0)y) <Of(x) +(1—0)f(y)

as an inequality in R U {o0}

remark we can similarly define (—oo)-extension of a function



Elementary techniques for establishing convexity

» definition
P restriction to lines
» first-order condition

» second-order condition

More advanced methods will be discussed in next section.



Restriction to a line

f:R™ — R is convex <= the function g: R — R defined as
g(t) = f(x + tv), domg={t|z+tv e domf}
is convex in t for all z € dom f and v € R"
Useful upshot: we can check convexity of f by checking convexity of functions in one

variable. Geometrically, it allows us to check whether a function is convex by restricting
it to a line



Differentiability

» f is differentiable if dom f is open and the gradient

sy = (200 2100

exists at each x € dom f




Differentiability

» f is differentiable if dom f is open and the gradient

= (20 016

exists at each x € dom f

» f is twice differentiable if dom f is open and the Hessian

0*f(x)

axi(?:z:j :| 1<ij<n

Vi) = |

exists at each € dom f



First-order condition

Suppose f is differentiable, then

F)
/ f(@)+ V@) (y —z)

/.

\ \
.

> fisconvex <= dom f is convex and

fy) > f@)+ V@) (y—=z) forall z,y € dom f



First-order condition

Suppose f is differentiable, then

F)
/ f(@)+ V@) (y —z)

/.

\ \
.

> fisconvex <= dom f is convex and

fy) > f@)+ V@) (y—=z) forall z,y € dom f

» f is strictly convex <= dom f is convex and

f(y) > flx)+ Vi) (y—x) forall z,y € dom f and z # y

» Proof of first-order convexity condition



proof of first/second-order condition
step 1. Establish the condition for n = 1 (standard calculus)

step 2. Prove the general case by restriction to lines



Second-order condition

Suppose f is twice differentiable, then

» fisconvex <= dom f is convex and

V2f(z) =0 for all x € dom f



Second-order condition

Suppose f is twice differentiable, then

» fisconvex <= dom f is convex and

V2f(z) =0 for all x € dom f

» fis strictly convex <= dom f is convex and

V2f(x) =0 for all z € dom f



Examples

affine functions

> [:R" 5 R; f(x)=aTz+b where a € R", be R

> RS R f(X) =tr(ATX) +b where AER™, bER

affine functions are both convex and concave

powers of absolute values

» |z|P, for p > 1, convex on R

max functions

» f(z) = max{z,...,z,}, is convex on R"



norms
-l R® — R

norms are convex functions (e.g. ¢,, Frobenius, spectral, nuclear, ...)



norms

IRIE R" — R
norms are convex functions  (e.g. ¢,, Frobenius, spectral, nuclear, ...)
proof
» the domain
dom (|- ) = R”

is convex;

» for all z,y € R™ and 6 € [0, 1]

102 + (1 = O)yl| < [0 + I(1 = O)yll = Oll|| + (1 — ) [lyl



log-determinant
f:S" = R; f(X) =logdet X; dom f =S,

is concave



log-determinant
f:S" = R; f(X) =logdet X; dom f =S,

is concave

proof for every X € S, and every V € S"

g(t) = logdet(X + tV)
= logdet X + logdet(I + tX Y2V X ~1/?)

= logdet X + > log(1 + tA;)

=1

where \;'s are eigenvalues of X ~1/2y x—1/2

g(t) is concave for every choice of X and V, hence f is concave



quadratic function:  f(z) = (1/2)2" Pz + ¢"x +r with P €S



quadratic function:  f(z) = (1/2)2" Pz + ¢"x +r with P €S
dom f =R", Vf(z) =Pz +q, Vif(z)=P

convex iff P > 0



quadratic function:  f(z) = (1/2)2" Pz + ¢"x +r with P €S
dom f =R", Vf(z) =Pz +q, Vif(z)=P

convex iff P > 0

least-square objective:  f(z) = ||Ax — b3



quadratic function:  f(z) = (1/2)2" Pz + ¢"x +r with P €S
dom f =R", Vf(z) =Pz +q, Vif(z)=P

convex iff P > 0

least-square objective:  f(z) = ||Ax — b3
domf =R"  Vf(z)=24T(Az—b), V*f(z) =24TA =0

convex for any A and b



quadratic-over-linear: f(z,y) = 22/y, dom f = {(z,y) € R? | y > 0} is convex



{(z,y) € R? | y > 0} is convex

dom f

fla,y) =22 /y,

quadratic-over-linear:

= NN

&
LZ .. |
L7754




n
log-sum-exp:  f(z) =log (Z emk> is convex
k=1



n
log-sum-exp:  f(z) =log (Z emk> is convex
k=1

dom f = R™; for convenience let z;, = e™*; and let z = (21,...,2y)

21
1 2z

2f(x):-~: _
v > 2k . (sz)2




n
log-sum-exp:  f(z) =log (Z emk> is convex
k=1

dom f = R™; for convenience let z;, = e™*; and let z = (21,...,2y)
21
1 22T
O R B

for every v € R

(Zt)(£2) - (£an)
(5)

by Cauchy inequality, hence V2f(x) = 0 for every x € R"

>0

vI V2 f(x)v =



3=

n
. . _ n
geometric mean:  f(x) = H Tk concave on R} |
k=1



n n
. . _ n
geometric mean:  f(x) = H Tk concave on R} |
k=1

proof is similar to that of log-sum-exp



Properties of convex functions

» sublevel sets
> epigraphs

» Jensen's inequality



Sublevel set

a-sublevel set of f: R® — R

So={z € domf| f(z) < a}

fact: f is convex == all sublevel sets of f are convex (converse is false)

similar definition for superlevel set: f is concave = all superlevel sets of f are
convex



The geometric and arithmetic means of x € R”} are, respectively,

Glz) = (H xk> L AW) = %Zxk.
k=1 k=1

For 0 < a <1, the set
{z e RY|G(z) > aA(x)},

is convex, since it is the O-superlevel set of the concave function G(z) — aA(x)



Epigraph

epigraph of f: R® - R

fact:

epif = {(z,t) eR™' |z € dom f,t > f(x)}
epi f

AN ﬁf
N\
N\

N
N\

f is convex <= epi f is a convex set



Jensen’s inequality

basic version

if f is convex, then for x,y e dom f, 0 <9 <1

f0z+ (1—0)y) <Of(z)+ (1—0)f(y)

if f is convex, then for z1,--- ,zp, € dom f, 61,...,0, >0 with 61 +---+ 6, =1

flbrzr+ -+ Opzr) <O1f(z1) + -+ O f(xk)



fancy version

if f is convex, then for p(x) > 0 on S C dom f with / dzr=1

(o)«

in other words, for any random variable z taking values in dom f

f(Ez) <Ef(z)



fancy version

if f is convex, then for p(x) > 0 on S C dom f with / dzr=1

(o)«

in other words, for any random variable z taking values in dom f

f(Ez) <Ef(z)

the above basic multi-point version is special case with discrete distribution

prob(z;) = 6;, i=1,---,k



Example: log-normal random variable

suppose X ~ N(u,0?)
with f(u) = expu,Y = f(X) is log-normal
we have Ef(X) = exp(u + 02/2)

Jensen's inequality is

vvyyy

F(BX) = exp(u) < Ef(X) = exp(p+ 02/2)

which indeed holds since exp(0?/2) > 1



Operations preserving convexity



practical methods for establishing convexity of a function
1. definition; restriction to lines
2. first/second order conditions

3. reconstruct f from simple convex functions by operations preserving convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
partial minimization

perspective

vV V. v v VY

composition



Nonnegative weighted sum & composition with affine function

nonnegative weighted sum
f1, fo are convex, ai,a9 >0 — a1 f1 + ag fa is convex

extends to finite and infinite sums, integrals

composition with affine function

f is convex = f(Az 4 b) is convex



examples

» log barrier for linear inequalities

f(a:)z—Zlog(bi—aiTx), dom f={z|alz<b,i=1,---
i=1

» any norm of affine function
f(z) = ||Az + b



Pointwise maximum

f17 c. 7fm are convex — f(x) = maX{fl(.’I]), B ,fm((I))} is convex



Pointwise maximum

fi,+++, fm are convex = f(x) = max{fi(z),- -

proof on page 80

examples

> piecewise-linear function
f(z) =max{alz+b;|1<i<m}
» sum of r largest components of z € R"

f@)=ap + -+

, fm(x)} is convex



Pointwise maximum

f17 c. 7fm are convex — f(x) = maX{fl(.’I]), B ,fm((I))} is convex

proof on page 80

examples

> piecewise-linear function
f(z) =max{alz+b; |1 <i<m}
» sum of r largest components of z € R"
f@)=ap + -+

proof
flz) =max{z;,, + -tz |1 <i; < <i, <n}



Pointwise supremum

f(x,\) is convex in x for each A € A = g(x) = sup f(z, \) is convex
AEA



Pointwise supremum

f(x,\) is convex in x for each A € A = g(x) = sup f(z, \) is convex
AEA

examples

» distance to farthest point in a set C

f(z) =sup|lz —y||
yeC

» maximum eigenvalue of symmetric matrices

Amax (X)



Pointwise supremum

f(x,\) is convex in x for each A € A = g(x) = sup f(z, \) is convex
AEA

examples

» distance to farthest point in a set C

f(z) =sup|lz —y||
yeC

» maximum eigenvalue of symmetric matrices

)\max(X) = Ssup yTXy
llyll2=1



The conjugate function

conjugate of any function f is

()

r€dom f

sup (y'z — f(2))

0, — £ ()



examples

» for f(x) = —logz
f*(y) = sup(zy +log )
>0

) -1-log(—y), y<0
o0, y=0

> for f(z) = (1/2)2TQz with Q € ST,
£*(4) = sup(y"x ~ (1/2)2" Qu)

=(1/2)y"Q7"y



property

>

f is convex and closed (epi f is closed) = r=r

The conjugate of a differentiable function f is called the Legendre transform of f.
We have

fily) = 2"V f(a") = fa"),
where z* is any maximizer of y’x — f(x) satisfying y = V f(z*)
The conjugate of g(z) = af(z) +bis g*(y) = af*(y/a) — b
sums of independent functions. If f(u,v) = fi(u) + f2(v) with fi and f convex,

then f*(w, z) = fi(w) + f3(2).



Minimization

f(z,y) is convex in (z,y) and C'is a convex set — g(z) = irelgf(x,y) is convex
y



Minimization

f(z,y) is convex in (z,y) and C'is a convex set — g(z) = ingf(x,y) is convex
ye

proof on page 88

examples

» if C is a convex set, then

dist(z, C) = inf ||z —
ist(z, C) ;/IelCHx Yl

is convex



Perspective

perspective of a function f: R™ — R is the function g: R" x R — R
g(@,t) =tf(x/t),  domg={(z,t)|z/t € dom f,t>0}

f is convex = g is convex



Perspective

perspective of a function f: R™ — R is the function g: R" x R — R
g(@,t) =tf(x/t),  domg={(z,t)|z/t € dom f,t>0}

f is convex = g is convex

proof on page 89

examples

» f(x) = 2Tz is convex, hence

glx,t) =zTx/t

is convex for t > 0



» f(x) = —logx is convex, hence
g(z,t) =tlogt — tlogx

. 2 .
is convex on R7 | (relative entropy)

> if f is convex, then

Ax +b
T
o) = (o) g (500
is convex on 1 )
T T+
{Jf C$+d>O,MEd0mf}




Composition

f(@) = hlg(x)) = hg1(2), - gr(2))

where
k

domg = ﬂ dom g;
i=1

dom f = {x € domyg | g(z) € domh}



proposition assume f(x) = h(g(z)) = h(g1(z), - , gx(x))

h convex, h nondecreasing in each argument, each g; convex = f convex



proposition assume f(x) = h(g(z)) = h(g1(z), - , gx(x))

h convex, h nondecreasing in each argument, each g; convex = f convex

corollary assume f(x) = h(g(x)) = h(g1(x), -, grx(z))

h ‘ﬁ‘eachgi‘ ‘f:hog
convex | | convex convex
convex | | concave | = | convex
concave | N\, | convex concave

concave | | concave concave
remark

> h is oo-extension if & is convex and (—oo)-extension if h is concave;
> the monotonicity of /4 is non-strict and in each argument.



warning monotonicity of & has to hold for & instead of h

counterexample

» g(x) = 2% is convex

h(z) = 0 with dom h = [1, 2] is convex

h(z) is non-decreasing, but & is not
(x) =

f(z) = h(g(z)) = 0 with dom f = [—v/2, —1] U [1, /2] is not convex



fake proof
R R-",R
f
assume all functions are twice differentiable

fl@)=higx) = f'(x)=h"(g(2))g (x)* + h'(g(z))g" (x)

then we have
h”ZO, h/ZO, g//ZO _— f”ZO

without worrying about domains, we conclude

h convex, h nondecreasing, g convex —> [ convex



proof Assume 0 € [0,1] and z,y € dom f

step 1 Show dom f is convex

{Qac +(1-0)y € domyg
each g; convex

g0z + (1 —0)y) < Og(x) + (1 —0)g(y)
0g(x) + (1 —0)g(y) € domh
h(g(0x + (1= 0)y)) < h(Bg(z) + (1 — )g(y)) < o0
g(0x + (1 —60)y) € domh

h convex

h non-decreasing

Led

Therefore we conclude
x4+ (1 —0)y € dom f

step 2 Show f(0x + (1 - 0)y) < 0f(x) + (1 -0)f(y)

[0z + (1 = 0)y) = h(g(0x + (1 - 0)y))
< h(fg(x) + (1 = 0)g(y))
< Oh(g(x)) + (1 = 0)h(g(x)) = 0f(x) + (1 = 0)f(y)



examples

» if g(x) is concave and positive, then

1/g(x)

is convex

» if all g;(x) are convex, then
m
log (Z £9i(x)
i=1

is convex



Quasiconvex functions



Quasiconvex function

> f:R™ — R is quasiconvex if dom f is convex and the sublevel sets
Co={zecdomf|f(z) <a}

are convex for all o € R

B 7/
o N /
Q- \/ ””””
N -
a b ¢

> { is quasiconcave if —f is quasiconvex

> { is quasilinear if it is quasiconvex and quasiconcave



Examples

>
>
>
>
| 4
»

v/|z| is quasiconvex on R

ceil(x) = inf{z € Z | z > x} is quasilinear on R

log x is quasilinear on R,

Note that quasiconvex functions can be concave, or discontinuous.
f(z1,22) = z1239 is quasiconcave on R% |

linear-fractional function

Te+b
f(x):%, dom f = {z|cl'z+d> 0}
is quasilinear
distance ratio
|z — all2

/()

=1 domf={z|]z—al<z-0b]}
[l — bll2

is quasiconvex



Techniques for establishing quasi-convexity

1. direct approaches
» definition

modified Jensen inequality

| 2

> restriction to lines
» first order condition
»

second order condition

2. construct new from old



Properties

Modified Jensen inequality

f is quasi-convex iff dom f is convex and

f(0x+ (1 —0)y) < max{f(z), f(y)}

for all z,y € dom f and 6 € [0,1].



Properties

Modified Jensen inequality

f is quasi-convex iff dom f is convex and

f(0z + (1 —0)y) < max{f(z), f(y)}
for all z,y € dom f and 6 € [0,1].
Warning

many properties of convex functions are false for quasiconvex functions;

e.g. sums of quasiconvex functions are not necessarily quasiconvex.



Log-concave and log-convex functions



Log-concave and log-convex function

A positive function f: R" — R is
» log-concave if log f is concave: dom f is convex and
fOz+ (1 —0)y) > f(2)?f(y)? forall z,y e dom f and 0 <60 <1
» log-convex of log f is convex: dom f is convex and

f0x+ (1 —0)y) < f(2)?f(y)? forall z,y edom f and 0 <6 <1



Examples

» powers: x® on R, is log-convex for a < 0, log-concave for a > 0
» Gamma function is log-convex
o
I(z) = / u® e du, domT = [1,00)
0
» many common probability density functions are log-concave, e.g. Gaussian

——1 ex —}x—a’:Tflzz:—a’:
o) = s e (e =)' S e - )

» cumulative Gaussian distribution function is log-concave

2
@ e U /2
(@) \/27r/



Operations preserving log-convexity

» If f(x) and g(z) are log-convex, then

f(x)g(z)  and  f(z)+g(x)

are log-convex.
» If f(x,\) is log-convex in = for each A\ € C, then
@)= [ f N ar
C
is also log-convex.

» Laplace transform of a nonnegative function, Moment generating function



Operations preserving log-concavity

» If f(x) and g(z) are log-concave, then

f(x)g(x)

is log-concave, but
f(z) +g()

is not necessarily log-concave.

» (Integration Theorem) If f: R” x R™ — R is log-concave in (z,y), then

g(x) = /f(any) dy

is log-concave. (Very useful, but difficult to prove.)



Applications of integration theorem

Convolution product If f(z) and g(x) are log-concave, then

(F+9) @) = [ £~ v)oto

is log-concave.



Yield function Y (xz) = prob(z +w € S)

» x € R™: nominal (target) parameter values for product,
» w € R™ random variations of parameters, with probability density function p(w),

> S C R"™: set of acceptable values.



Yield function Y (xz) = prob(z +w € S)

» x € R™: nominal (target) parameter values for product,
» w € R™ random variations of parameters, with probability density function p(w),

> S C R"™: set of acceptable values.

Assume
S is a convex set and p(w) is log-concave
then

Y (x) is log-concave and  the yield regions {z | Y (z) > a} are convex



Yield function Y (xz) = prob(z +w € S)

» x € R™: nominal (target) parameter values for product,
» w € R™ random variations of parameters, with probability density function p(w),
> S C R"™: set of acceptable values.

Assume

S is a convex set and p(w) is log-concave

then

Y (x) is log-concave and  the yield regions {z | Y (z) > a} are convex
Proof

1
Y(r) = /9(55 +w)p(w)dw, where g(u) = ues is log-concave.
0 u¢gs



From density function to distribution function

Assume the density function p(z) is log-concave, then the distribution function is

F(z) = prob(w < z) / / w)dwy ... dwy,
— [ gtw - 2)pw)du
where

1 wes,

S = (—o0,0]" and g(u) = {0 wé s

S is convex, p(z) is log-concave = F(z) is log-concave.



Convexity with respect to generalized inequalities



Monotonicity with respect to generalized inequalities

» Suppose K is a proper cone. A function f : R™ — R is called K-nondecreasing if

v 2y = f(z) < fy)

» Matrix monotone functions. A function f : S™ — R is called matrix monotone if it
is monotone wrt the positive semidefinite cone.

tr(WX) is matrix nondecreasing if W > 0

tr(X 1) is matrix decreasing on S7

detX is matrix increasing on S’}

A differentiable function f, with convex domain, is K-nondecreasing if and only if

V() =k~ 0

for all x € domf



Convexity with respect to generalized inequalities

> let K C R™ be a proper cone with associated generalized inequality <.

> /:R"™ — R™ is K-convex if dom f is convex and

f(0z + (1 —0)y) <k 0f(z)+ (1 —0)f(y)

for every x,y € dom f and 0 < 6 < 1.



Example
f:S™ —S™, f(X)=X%* s ST-convex

Observe: dom f = S™ is convex.

Need to show: for any X, Y € S™ and 6 € [0, 1], we have

(6X + (1 - 0)Y)* =gm 6X7 4 (1 - 0)Y?
— X +1-0Y)22<0TX%2+(1-0)2TY?2  forall z€ R™
= 0Xz+ (1= 0)Yz2lly <O X2[3+(1-0)|[Y2];

which holds since || - ||3 is convex on R™.
Example Convexity wrt componentwise inequality (page 110)

Example The function X? is matrix convex on S} _ for 1 < p < 2 and matrix concave
for0<p<1

Example The function f(X) = e*

is not matrix convex on S%, for n > 2



Dual characterization of K-convexity
Differentiable K-convex functions

Composition theorem
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