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Convex function

▶ f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f and 0 ≤ θ ≤ 1



▶ f : Rn → R is strictly convex if dom f is a convex set and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for all x, y ∈ dom f with x ̸= y and 0 < θ < 1

▶ f : Rn → R is concave if −f is convex

▶ f : Rn → R is strictly concave if −f is strictly convex



Extended-value extension

∞-extension of a function f : Rn → R is

f̃ : Rn → R ∪ {∞}; dom f̃ = Rn

defined as

f̃(x) =

{
f(x) x ∈ dom f,

∞ x /∈ dom f.

lemma f : Rn → R is convex ⇐⇒ for all x, y ∈ Rn and 0 < θ < 1

f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

as an inequality in R ∪ {∞}

remark we can similarly define (−∞)-extension of a function
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Elementary techniques for establishing convexity

▶ definition

▶ restriction to lines

▶ first-order condition

▶ second-order condition

More advanced methods will be discussed in next section.



Restriction to a line

f : Rn → R is convex ⇐⇒ the function g : R → R defined as

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex in t for all x ∈ dom f and v ∈ Rn

Useful upshot: we can check convexity of f by checking convexity of functions in one
variable. Geometrically, it allows us to check whether a function is convex by restricting
it to a line



Differentiability

▶ f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

)
exists at each x ∈ dom f

▶ f is twice differentiable if dom f is open and the Hessian

∇2f(x) =

[
∂2f(x)

∂xi∂xj

]
1≤i,j≤n

exists at each x ∈ dom f



Differentiability

▶ f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

)
exists at each x ∈ dom f

▶ f is twice differentiable if dom f is open and the Hessian

∇2f(x) =

[
∂2f(x)

∂xi∂xj

]
1≤i,j≤n

exists at each x ∈ dom f



First-order condition

Suppose f is differentiable, then

▶ f is convex ⇐⇒ dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

▶ f is strictly convex ⇐⇒ dom f is convex and

f(y) > f(x) +∇f(x)T (y − x) for all x, y ∈ dom f and x ̸= y

▶ Proof of first-order convexity condition



First-order condition

Suppose f is differentiable, then

▶ f is convex ⇐⇒ dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

▶ f is strictly convex ⇐⇒ dom f is convex and

f(y) > f(x) +∇f(x)T (y − x) for all x, y ∈ dom f and x ̸= y

▶ Proof of first-order convexity condition



proof of first/second-order condition

step 1. Establish the condition for n = 1 (standard calculus)

step 2. Prove the general case by restriction to lines



Second-order condition

Suppose f is twice differentiable, then

▶ f is convex ⇐⇒ dom f is convex and

∇2f(x) ⪰ 0 for all x ∈ dom f

▶ f is strictly convex ⇐= dom f is convex and

∇2f(x) ≻ 0 for all x ∈ dom f



Second-order condition

Suppose f is twice differentiable, then

▶ f is convex ⇐⇒ dom f is convex and

∇2f(x) ⪰ 0 for all x ∈ dom f

▶ f is strictly convex ⇐= dom f is convex and

∇2f(x) ≻ 0 for all x ∈ dom f



Examples

affine functions

▶ f : Rn → R; f(x) = aTx+ b where a ∈ Rn, b ∈ R

▶ f : Rm×n → R; f(X) = tr(ATX) + b where A ∈ Rm×n, b ∈ R

affine functions are both convex and concave

powers of absolute values

▶ |x|p, for p ≥ 1, convex on R

max functions

▶ f(x) = max{x1, . . . , xn}, is convex on Rn



norms

∥ · ∥ : Rn −→ R

norms are convex functions (e.g. ℓp, Frobenius, spectral, nuclear, . . . )

proof

▶ the domain
dom (∥ · ∥) = Rn

is convex;

▶ for all x, y ∈ Rn and θ ∈ [0, 1]

∥θx+ (1− θ)y∥ ≤ ∥θx∥+ ∥(1− θ)y∥ = θ∥x∥+ (1− θ)∥y∥
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log-determinant

f : Sn → R; f(X) = log detX; dom f = Sn++

is concave

proof for every X ∈ Sn++ and every V ∈ Sn

g(t) = log det(X + tV )

= log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n∑
i=1

log(1 + tλi)

where λi’s are eigenvalues of X−1/2V X−1/2

g(t) is concave for every choice of X and V , hence f is concave
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quadratic function: f(x) = (1/2)xTPx+ qTx+ r with P ∈ Sn

dom f = Rn, ∇f(x) = Px+ q, ∇2f(x) = P

convex iff P ⪰ 0

least-square objective: f(x) = ∥Ax− b∥22

dom f = Rn, ∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA ⪰ 0

convex for any A and b
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quadratic-over-linear: f(x, y) = x2/y, dom f = {(x, y) ∈ R2 | y > 0} is convex

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]T
⪰ 0
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log-sum-exp: f(x) = log

(
n∑

k=1

exk

)
is convex

dom f = Rn; for convenience let zk = exk ; and let z = (z1, . . . , zn)

∇2f(x) = · · · = 1∑
zk

z1 . . .
zn

− zzT(∑
zk

)2
for every v ∈ Rn

vT∇2f(x)v =

(∑
zkv

2
k

)(∑
zk

)
−
(∑

zkvk

)2
(∑

zk

)2 ≥ 0

by Cauchy inequality, hence ∇2f(x) ⪰ 0 for every x ∈ Rn
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geometric mean: f(x) =

(
n∏

k=1

xk

) 1
n

concave on Rn
++

proof is similar to that of log-sum-exp
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Properties of convex functions

▶ sublevel sets

▶ epigraphs

▶ Jensen’s inequality



Sublevel set

α-sublevel set of f : Rn → R

Sα = {x ∈ dom f | f(x) ≤ α}

fact: f is convex =⇒ all sublevel sets of f are convex (converse is false)

similar definition for superlevel set: f is concave =⇒ all superlevel sets of f are
convex



The geometric and arithmetic means of x ∈ Rn
+ are, respectively,

G(x) =

(
n∏

k=1

xk

) 1
n

, A(x) =
1

n

n∑
k=1

xk.

For 0 ≤ α ≤ 1, the set
{x ∈ Rn

+|G(x) ≥ αA(x)},

is convex, since it is the 0-superlevel set of the concave function G(x)− αA(x)



Epigraph

epigraph of f : Rn → R

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, t ≥ f(x)}

fact: f is convex ⇐⇒ epi f is a convex set



Jensen’s inequality

basic version

if f is convex, then for x, y ∈ dom f , 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

if f is convex, then for x1, · · · , xk ∈ dom f , θ1, . . . , θk ≥ 0 with θ1 + · · ·+ θk = 1

f(θ1x1 + · · ·+ θkxk) ≤ θ1f(x1) + · · ·+ θkf(xk)



fancy version

if f is convex, then for p(x) ≥ 0 on S ⊆ dom f with
∫
S
p(x) dx = 1

f

(∫
S
xp(x) dx

)
≤
∫
S
f(x)p(x) dx

in other words, for any random variable x taking values in dom f

f(Ex) ≤ Ef(x)

the above basic multi-point version is special case with discrete distribution

prob(xi) = θi, i = 1, · · · , k
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Example: log-normal random variable

▶ suppose X ∼ N(µ, σ2)

▶ with f(u) = expu, Y = f(X) is log-normal
▶ we have Ef(X) = exp(µ+ σ2/2)

▶ Jensen’s inequality is

f(EX) = exp(µ) ≤ Ef(X) = exp(µ+ σ2/2)

which indeed holds since exp(σ2/2) > 1



Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities



practical methods for establishing convexity of a function

1. definition; restriction to lines

2. first/second order conditions

3. reconstruct f from simple convex functions by operations preserving convexity

▶ nonnegative weighted sum

▶ composition with affine function

▶ pointwise maximum and supremum

▶ partial minimization

▶ perspective

▶ composition



Nonnegative weighted sum & composition with affine function

nonnegative weighted sum

f1, f2 are convex, α1, α2 ≥ 0 =⇒ α1f1 + α2f2 is convex

extends to finite and infinite sums, integrals

composition with affine function

f is convex =⇒ f(Ax+ b) is convex



examples

▶ log barrier for linear inequalities

f(x) = −
m∑
i=1

log(bi − aTi x), dom f = {x | aTi x < bi, i = 1, · · · ,m}

▶ any norm of affine function
f(x) = ∥Ax+ b∥



Pointwise maximum

f1, · · · , fm are convex =⇒ f(x) = max{f1(x), · · · , fm(x)} is convex

proof on page 80

examples

▶ piecewise-linear function

f(x) = max{aTi x+ bi | 1 ≤ i ≤ m}

▶ sum of r largest components of x ∈ Rn

f(x) = x[1] + · · ·+ x[r]

proof
f(x) = max{xi1 + · · ·+ xir | 1 ≤ i1 < · · · < ir ≤ n}



Pointwise maximum

f1, · · · , fm are convex =⇒ f(x) = max{f1(x), · · · , fm(x)} is convex

proof on page 80

examples

▶ piecewise-linear function

f(x) = max{aTi x+ bi | 1 ≤ i ≤ m}

▶ sum of r largest components of x ∈ Rn

f(x) = x[1] + · · ·+ x[r]

proof
f(x) = max{xi1 + · · ·+ xir | 1 ≤ i1 < · · · < ir ≤ n}



Pointwise maximum

f1, · · · , fm are convex =⇒ f(x) = max{f1(x), · · · , fm(x)} is convex

proof on page 80

examples

▶ piecewise-linear function

f(x) = max{aTi x+ bi | 1 ≤ i ≤ m}

▶ sum of r largest components of x ∈ Rn

f(x) = x[1] + · · ·+ x[r]

proof
f(x) = max{xi1 + · · ·+ xir | 1 ≤ i1 < · · · < ir ≤ n}



Pointwise supremum

f(x, λ) is convex in x for each λ ∈ Λ =⇒ g(x) = sup
λ∈Λ

f(x, λ) is convex

examples

▶ distance to farthest point in a set C

f(x) = sup
y∈C

∥x− y∥

▶ maximum eigenvalue of symmetric matrices

λmax(X) = sup
∥y∥2=1

yTXy
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The conjugate function

conjugate of any function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))



examples

▶ for f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{
−1− log(−y), y < 0

∞, y ≥ 0

▶ for f(x) = (1/2)xTQx with Q ∈ Sn++

f∗(y) = sup
x

(yTx− (1/2)xTQx)

= (1/2)yTQ−1y



property

▶
f is convex and closed (epi f is closed) =⇒ f∗∗ = f

▶ The conjugate of a differentiable function f is called the Legendre transform of f .
We have

f∗(y) = x∗T∇f(x∗)− f(x∗),

where x∗ is any maximizer of yTx− f(x) satisfying y = ∇f(x∗)

▶ The conjugate of g(x) = af(x) + b is g∗(y) = af∗(y/a)− b

▶ sums of independent functions. If f(u, v) = f1(u) + f2(v) with f1 and f2 convex,
then f∗(w, z) = f∗

1 (w) + f∗
2 (z).



Minimization

f(x, y) is convex in (x, y) and C is a convex set =⇒ g(x) = inf
y∈C

f(x, y) is convex

proof on page 88

examples

▶ if C is a convex set, then

dist(x,C) = inf
y∈C

∥x− y∥

is convex
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Perspective

perspective of a function f : Rn → R is the function g : Rn × R → R

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

f is convex =⇒ g is convex

proof on page 89

examples

▶ f(x) = xTx is convex, hence

g(x, t) = xTx/t

is convex for t > 0
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▶ f(x) = − log x is convex, hence

g(x, t) = t log t− t log x

is convex on R2
++ (relative entropy)

▶ if f is convex, then

g(x) = (cTx+ d) · f
(

Ax+ b

cTx+ d

)
is convex on {

x

∣∣∣∣ cTx+ d > 0,
Ax+ b

cTx+ d
∈ dom f

}



Composition

Rn Rk Rg

f

h

f(x) = h(g(x)) = h(g1(x), · · · , gk(x))

where

dom g =

k⋂
i=1

dom gi

dom f = {x ∈ dom g | g(x) ∈ domh}



proposition assume f(x) = h(g(x)) = h(g1(x), · · · , gk(x))

h convex, h̃ nondecreasing in each argument, each gi convex =⇒ f convex

corollary assume f(x) = h(g(x)) = h(g1(x), · · · , gk(x))

h h̃ each gi f = h ◦ g
convex ↗ convex convex
convex ↘ concave =⇒ convex
concave ↘ convex concave
concave ↗ concave concave

remark

▶ h̃ is ∞-extension if h is convex and (−∞)-extension if h is concave;
▶ the monotonicity of h̃ is non-strict and in each argument.
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warning monotonicity of h̃ has to hold for h̃ instead of h

counterexample

▶ g(x) = x2 is convex
▶ h(x) = 0 with domh = [1, 2] is convex
▶ h(x) is non-decreasing, but h̃ is not
▶ f(x) = h(g(x)) = 0 with dom f = [−

√
2,−1] ∪ [1,

√
2] is not convex



fake proof
R R Rg

f

h

assume all functions are twice differentiable

f(x) = h(g(x)) =⇒ f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

then we have
h′′ ≥ 0, h′ ≥ 0, g′′ ≥ 0 =⇒ f ′′ ≥ 0

without worrying about domains, we conclude

h convex, h̃ nondecreasing, g convex =⇒ f convex



proof Assume θ ∈ [0, 1] and x, y ∈ dom f

step 1 Show dom f is convex

each gi convex =⇒

{
θx+ (1− θ)y ∈ dom g

g(θx+ (1− θ)y) ⪯ θg(x) + (1− θ)g(y)

h convex =⇒ θg(x) + (1− θ)g(y) ∈ domh

h̃ non-decreasing =⇒ h̃(g(θx+ (1− θ)y)) ≤ h̃(θg(x) + (1− θ)g(y)) < ∞
=⇒ g(θx+ (1− θ)y) ∈ domh

Therefore we conclude
θx+ (1− θ)y ∈ dom f

step 2 Show f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f(θx+ (1− θ)y) = h(g(θx+ (1− θ)y))

≤ h(θg(x) + (1− θ)g(y))

≤ θh(g(x)) + (1− θ)h(g(x)) = θf(x) + (1− θ)f(y)



examples

▶ if g(x) is concave and positive, then

1/g(x)

is convex

▶ if all gi(x) are convex, then

log

(
m∑
i=1

egi(x)

)
is convex



Properties and examples

Operations preserving convexity

Quasiconvex functions

Log-concave and log-convex functions

Convexity with respect to generalized inequalities



Quasiconvex function

▶ f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Cα = {x ∈ dom f | f(x) ≤ α}

are convex for all α ∈ R

▶ f is quasiconcave if −f is quasiconvex
▶ f is quasilinear if it is quasiconvex and quasiconcave



Examples

▶
√

|x| is quasiconvex on R
▶ ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear on R
▶ log x is quasilinear on R++

▶ Note that quasiconvex functions can be concave, or discontinuous.
▶ f(x1, x2) = x1x2 is quasiconcave on R2

++

▶ linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear
▶ distance ratio

f(x) =
∥x− a∥2
∥x− b∥2

, dom f = {x | ∥x− a∥2 ≤ ∥x− b∥2}

is quasiconvex



Techniques for establishing quasi-convexity

1. direct approaches

▶ definition

▶ modified Jensen inequality

▶ restriction to lines

▶ first order condition

▶ second order condition

2. construct new from old



Properties

Modified Jensen inequality

f is quasi-convex iff dom f is convex and

f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

for all x, y ∈ dom f and θ ∈ [0, 1].

Warning

many properties of convex functions are false for quasiconvex functions;

e.g. sums of quasiconvex functions are not necessarily quasiconvex.
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Log-concave and log-convex function

A positive function f : Rn → R is

▶ log-concave if log f is concave: dom f is convex and

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for all x, y ∈ dom f and 0 ≤ θ ≤ 1

▶ log-convex of log f is convex: dom f is convex and

f(θx+ (1− θ)y) ≤ f(x)θf(y)1−θ for all x, y ∈ dom f and 0 ≤ θ ≤ 1



Examples

▶ powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

▶ Gamma function is log-convex

Γ(x) =

∫ ∞

0
ux−1e−u du, domΓ = [1,∞)

▶ many common probability density functions are log-concave, e.g. Gaussian

f(x) =
1√

(2π)n detΣ
exp

(
−1

2
(x− x̄)TΣ−1(x− x̄)

)
▶ cumulative Gaussian distribution function is log-concave

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du



Operations preserving log-convexity

▶ If f(x) and g(x) are log-convex, then

f(x)g(x) and f(x) + g(x)

are log-convex.

▶ If f(x, λ) is log-convex in x for each λ ∈ C, then

g(x) =

∫
C
f(x, λ) dλ

is also log-convex.

▶ Laplace transform of a nonnegative function, Moment generating function



Operations preserving log-concavity

▶ If f(x) and g(x) are log-concave, then

f(x)g(x)

is log-concave, but
f(x) + g(x)

is not necessarily log-concave.

▶ (Integration Theorem) If f : Rn × Rm → R is log-concave in (x, y), then

g(x) =

∫
f(x, y) dy

is log-concave. (Very useful, but difficult to prove.)



Applications of integration theorem

Convolution product If f(x) and g(x) are log-concave, then

(f ∗ g) (x) =
∫

f(x− y)g(y) dy

is log-concave.



Yield function Y (x) = prob(x+ w ∈ S)

▶ x ∈ Rn: nominal (target) parameter values for product,
▶ w ∈ Rn: random variations of parameters, with probability density function p(w),
▶ S ⊆ Rn: set of acceptable values.

Assume

S is a convex set and p(w) is log-concave

then

Y (x) is log-concave and the yield regions {x | Y (x) ≥ α} are convex

Proof

Y (x) =

∫
g(x+ w)p(w) dw, where g(u) =

{
1 u ∈ S

0 u /∈ S
is log-concave.
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From density function to distribution function

Assume the density function p(x) is log-concave, then the distribution function is

F (x) = prob(w ⪯ x) =

∫ xn

−∞
· · ·
∫ x1

−∞
p(w) dw1 . . . dwn

=

∫
Rn

g(w − x)p(w) dw

where

S = (−∞, 0]n and g(u) =

{
1 u ∈ S,

0 u /∈ S.

S is convex, p(x) is log-concave =⇒ F (x) is log-concave.
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Monotonicity with respect to generalized inequalities

▶ Suppose K is a proper cone. A function f : Rn → R is called K-nondecreasing if

x ⪯K y ⇒ f(x) ≤ f(y).

▶ Matrix monotone functions. A function f : Sn → R is called matrix monotone if it
is monotone wrt the positive semidefinite cone.

▶ tr(WX) is matrix nondecreasing if W ⪰ 0

▶ tr(X−1) is matrix decreasing on Sn++

▶ detX is matrix increasing on Sn++

▶ A differentiable function f , with convex domain, is K-nondecreasing if and only if

∇f(x) ⪰K∗ 0

for all x ∈ domf



Convexity with respect to generalized inequalities

▶ let K ⊆ Rm be a proper cone with associated generalized inequality ⪯K .

▶ f : Rn → Rm is K-convex if dom f is convex and

f(θx+ (1− θ)y) ⪯K θf(x) + (1− θ)f(y)

for every x, y ∈ dom f and 0 ≤ θ ≤ 1.



Example
f : Sm → Sm, f(X) = X2 is Sm+ -convex

Observe: dom f = Sm is convex.

Need to show: for any X,Y ∈ Sm and θ ∈ [0, 1], we have

(θX + (1− θ)Y )2 ⪯Sm+ θX2 + (1− θ)Y 2

⇐⇒ zT (θX + (1− θ)Y )2z ≤ θzTX2z + (1− θ)zTY 2z for all z ∈ Rm

⇐⇒ ∥θXz + (1− θ)Y z∥22 ≤ θ ∥Xz∥22 + (1− θ) ∥Y z∥22

which holds since ∥ · ∥22 is convex on Rm.

Example Convexity wrt componentwise inequality (page 110)

Example The function Xp is matrix convex on Sn++ for 1 ≤ p ≤ 2 and matrix concave
for 0 ≤ p ≤ 1

Example The function f(X) = eX is not matrix convex on Sn, for n ≥ 2



Dual characterization of K-convexity

Differentiable K-convex functions

Composition theorem
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