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how to achieve the most from the course

> read textbook carefully the most important ever
> solve as many exercises as possible extremely important
» complete group project and exam very important

» attend lectures and participate important



regular performance: 30%

> biweekly exercises (ample flexibility, solutions will be provided)
> possibly a total of 3 tests lasting for approximately 45 minutes each
> tentative test dates: first lecture in March, April and May

group project: 20%

> start to search for possible topics as early as possible
> tentative presentation date: May 22 (week 16)
> tentative due date for project report: May 28 (week 16)

attendance: 10%
» lecture attendance (possibly penalty for missing lectures)

final exam: 40%



tentative schedule (subject to change)

week numbers

book contents

extra activities
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chap 1 & appendix A
chap 2
chap 2 & chap 3
chap 3
chap 4
chap 4
chap 5
chap 5 & appendix C
chap 9
chap 9 & chap 10
chap 10 & chap 11
chap 11
chap 6 & chap 7
chap 7 & chap 8
chap 8 & review
N/A

unit test

unit test

unit test

project presentations
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Mathematical optimization

(mathematical) optimization problem
minimize fo(z)

subject to  fi(w) < by, i=1,,m

g](x):(), j:]-a?p

IN

> optimization (decision) variables r=(z1,,Tn)

» objective function fo: R" - R

» inequality constraint functions fi: R* - R, i=1,---,m
» equality constraint functions gj: R* = R, j=1--,p

optimal solution z*

the vector z that gives the smallest objective value among all vectors satisfying the
constraints



Examples

portfolio optimization
» variables: amounts invested in different assets

» constraints: budget, max/min investment per asset, minimum return

» objective: overall risk or return variance
device sizing in electronic circuits

» variables: device widths and lengths
» constraints: manufacturing limits, timing requirements, maximum area

» objective: power consumption
data fitting

» variables: model parameters
» constraints: prior information, parameter limits

» objective: measure of misfit or prediction error



Solving optimization problems

general optimization problems

> very difficult to solve
» methods involve some compromises (e.g. no feasible solution, very long
computation time, or not always finding the solution)

exceptions: certain problem classes can be solved efficiently and reliably

> least-square problems
» linear programming problems

» convex optimization problems
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Least-squares

minimize | Az — b||3

solving least-squares
» analytic solution: z* = (AT A)~1ATh
> reliable and efficient algorithms and software
> computation time proportional to n?k (when A € R¥*™); less if structured

> a mature technology
using least-squares

> least-squares problems are easy to recognize

» a few standard techniques increase flexibility (e.g. including weights, adding
regularization terms)



Linear programming

minimize L

subject to alz < b;, i=1,---,m

solving linear programs

» no analytical formula for solution
> reliable and efficient algorithms and software
» computation time proportional to n?m if m > n; less if structured

» a mature technology
using linear programming

P> no as easy to recognize as least-squares problems

» a few standard tricks used to convert problems into linear programs (e.g. problems
involving ¢;- or {s-norms, piecewise linear functions)



Convex optimization problems

minimize Jfo(@)
subject to fi(z) < by, i=1,--,m

> objective and constraint functions are convex

filoax + By) < afi(x) + Bfi(y)

fa,f>0anda+8=1

» includes least-squares problems and linear programs as special cases



solving convex optimization problems

» no analytical solution
> reliable and efficient algorithms

» computation time (roughly) proportional to max{n3,n?m, F'} where I is the cost
of evaluating f;'s and their first and second derivatives

» almost a technology
using convex optimization

> often difficult to recognize
» many tricks for transforming problems into convex form

» surprisingly many problems can be solved via convex optimization



Nonlinear (nonconvex) optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods

» find a point that minimizes the objective function among feasible points near it
» fast, can handle large problems

> require initial guess

» provide no information about distance to global optimum

global optimization methods

> find the global solution

> worst-case complexity grows exponentially with problem size



the above algorithms are often based on solving convex subproblems

roles of convex optimization in nonconvex problems

» initialization for local optimization
» convex heuristics for nonconvex optimization

» bounds for global optimization
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Course outline

theory

» basic convex analysis
> recognize and formulate problems as convex optimization problems

» Lagrangian duality, characterize optimal solutions
algorithms

» problem types: unconstrained, equality constrained, inequality constrained

> algorithms: Newton's algorithm, interior-point methods
applications

> data fitting, probability and statistics, computational geometry



Modeling languages for convex optimization

v

domain specific languages (DSLs) for convex optimization

— describe problem in high level language, close to the math
— can automatically transform problem to standard form, then solve

enables rapid prototyping
it's now much easier to develop an optimization-based application

ideal for teaching and research (can do a lot with short scripts)

gets close to the basic idea: say what you want, not how to get it



CVXPY example: non-negative least squares

math: CVXPY code:
minimize [ Ax - b||3 import cvxpy as cp
subjectto x =0
A, b= ...
» variable is x x = cp.Variable(n)

obj = cp.norm2(A @ x - b)**

constr = [x >= 0]

» y>0meansx; 20,...,x, 20 prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()

> A, bgiven



Brief history of convex optimization

theory (convex analysis): 1900-1970

algorithms

» 1947: simplex algorithm for linear programming (Dantzig)

» 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)

> 1970s: ellipsoid method and other subgradient methods

» 1984: polynomial-time interior-point methods for linear programming (Karmarkar)

» 1994: polynomial-time interior-point methods for nonlinear convex optimization
(Nesterov & Nemirovski)

applications

» before 1990: mostly in operations research; few in engineering

» since 1990: many new applications in engineering (control, signal processing,
communications, circuit design, ...); new problem classes (semidefinite and
second-order cone programming, robust optimization, ...)

» since 2000s: machine learning and statistics, finance



Summary

convex optimization problems

» are optimization problems of a special form
> arise in many applications
> can be solved effectively

P are easy to specify using DSLs
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