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how to achieve the most from the course

▶ read textbook carefully the most important ever
▶ solve as many exercises as possible extremely important
▶ complete group project and exam very important
▶ attend lectures and participate important



regular performance: 30%

▶ biweekly exercises (ample flexibility, solutions will be provided)
▶ possibly a total of 3 tests lasting for approximately 45 minutes each
▶ tentative test dates: first lecture in March, April and May

group project: 20%

▶ start to search for possible topics as early as possible
▶ tentative presentation date: May 22 (week 16)
▶ tentative due date for project report: May 28 (week 16)

attendance: 10%

▶ lecture attendance (possibly penalty for missing lectures)

final exam: 40%



tentative schedule (subject to change)

week numbers book contents extra activities
1 chap 1 & appendix A
2 chap 2
3 chap 2 & chap 3
4 chap 3
5 chap 4 unit test
6 chap 4
7 chap 5
8 chap 5 & appendix C
9 chap 9 unit test
10 chap 9 & chap 10
11 chap 10 & chap 11
12 chap 11
13 chap 6 & chap 7
14 chap 7 & chap 8 unit test
15 chap 8 & review
16 N/A project presentations
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Mathematical optimization

(mathematical) optimization problem

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m
gj(x) = 0, j = 1, · · · , p

▶ optimization (decision) variables x = (x1, · · · , xn)
▶ objective function f0 : Rn → R
▶ inequality constraint functions fi : Rn → R, i = 1, · · · ,m
▶ equality constraint functions gj : Rn → R, j = 1, · · · , p

optimal solution x∗

the vector x that gives the smallest objective value among all vectors satisfying the
constraints



Examples

portfolio optimization

▶ variables: amounts invested in different assets
▶ constraints: budget, max/min investment per asset, minimum return
▶ objective: overall risk or return variance

device sizing in electronic circuits

▶ variables: device widths and lengths
▶ constraints: manufacturing limits, timing requirements, maximum area
▶ objective: power consumption

data fitting

▶ variables: model parameters
▶ constraints: prior information, parameter limits
▶ objective: measure of misfit or prediction error



Solving optimization problems

general optimization problems

▶ very difficult to solve
▶ methods involve some compromises (e.g. no feasible solution, very long

computation time, or not always finding the solution)

exceptions: certain problem classes can be solved efficiently and reliably

▶ least-square problems
▶ linear programming problems
▶ convex optimization problems
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Least-squares

minimize ∥Ax− b∥22

solving least-squares

▶ analytic solution: x∗ = (ATA)−1AT b

▶ reliable and efficient algorithms and software
▶ computation time proportional to n2k (when A ∈ Rk×n); less if structured
▶ a mature technology

using least-squares

▶ least-squares problems are easy to recognize
▶ a few standard techniques increase flexibility (e.g. including weights, adding

regularization terms)



Linear programming

minimize cTx

subject to aTi x ≤ bi, i = 1, · · · ,m

solving linear programs

▶ no analytical formula for solution
▶ reliable and efficient algorithms and software
▶ computation time proportional to n2m if m ≥ n; less if structured
▶ a mature technology

using linear programming

▶ no as easy to recognize as least-squares problems
▶ a few standard tricks used to convert problems into linear programs (e.g. problems

involving ℓ1- or ℓ∞-norms, piecewise linear functions)



Convex optimization problems

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m

▶ objective and constraint functions are convex

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α, β ≥ 0 and α+ β = 1

▶ includes least-squares problems and linear programs as special cases



solving convex optimization problems

▶ no analytical solution
▶ reliable and efficient algorithms
▶ computation time (roughly) proportional to max{n3, n2m,F} where F is the cost

of evaluating fi’s and their first and second derivatives
▶ almost a technology

using convex optimization

▶ often difficult to recognize
▶ many tricks for transforming problems into convex form
▶ surprisingly many problems can be solved via convex optimization



Nonlinear (nonconvex) optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods

▶ find a point that minimizes the objective function among feasible points near it
▶ fast, can handle large problems
▶ require initial guess
▶ provide no information about distance to global optimum

global optimization methods

▶ find the global solution
▶ worst-case complexity grows exponentially with problem size



the above algorithms are often based on solving convex subproblems

roles of convex optimization in nonconvex problems

▶ initialization for local optimization
▶ convex heuristics for nonconvex optimization
▶ bounds for global optimization
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Course outline

theory

▶ basic convex analysis
▶ recognize and formulate problems as convex optimization problems
▶ Lagrangian duality, characterize optimal solutions

algorithms

▶ problem types: unconstrained, equality constrained, inequality constrained
▶ algorithms: Newton’s algorithm, interior-point methods

applications

▶ data fitting, probability and statistics, computational geometry



Modeling languages for convex optimization

▶ domain specific languages (DSLs) for convex optimization
– describe problem in high level language, close to the math
– can automatically transform problem to standard form, then solve

▶ enables rapid prototyping
▶ it’s now much easier to develop an optimization-based application
▶ ideal for teaching and research (can do a lot with short scripts)

▶ gets close to the basic idea: say what you want, not how to get it





Brief history of convex optimization

theory (convex analysis): 1900-1970

algorithms

▶ 1947: simplex algorithm for linear programming (Dantzig)
▶ 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )
▶ 1970s: ellipsoid method and other subgradient methods
▶ 1984: polynomial-time interior-point methods for linear programming (Karmarkar)
▶ 1994: polynomial-time interior-point methods for nonlinear convex optimization

(Nesterov & Nemirovski)

applications

▶ before 1990: mostly in operations research; few in engineering
▶ since 1990: many new applications in engineering (control, signal processing,

communications, circuit design, . . . ); new problem classes (semidefinite and
second-order cone programming, robust optimization, . . . )

▶ since 2000s: machine learning and statistics, finance



Summary

convex optimization problems

▶ are optimization problems of a special form
▶ arise in many applications
▶ can be solved effectively
▶ are easy to specify using DSLs
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