Appendix C Numerical linear algebra background

Last update on 2025-04-02 15:31:23+08:00

Solving linear equations with factored matrices

LU, Cholesky, LDL^{T} factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

execution time (cost) of solving Ax = b with nonsingular $A \in \mathbb{R}^{n \times n}$

- \blacktriangleright for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

Basic linear algebra subroutines (BLAS)

vector-vector operations with $x, y \in \mathbb{R}^n$

- inner product $x^T y$: 2n 1 flops ($\approx 2n$ if n is large)
- sum x + y, scalar multiplication αx : n flops

matrix-vector product y = Ax with $A \in \mathbb{R}^{m \times n}$

•
$$m(2n-1)$$
 flops ($\approx 2mn$ if n is large)

- \blacktriangleright 2N if A is sparse with N nonzero elements
- ▶ 2p(n+m) if A is given as $A = UV^T$ where $U \in \mathbb{R}^{m \times p}$ and $V \in \mathbb{R}^{n \times p}$

matrix-matrix product C = AB with $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$

•
$$mp(2n-1)$$
 flops ($\approx 2mnp$ if n is large)

less if A and/or B are sparse

•
$$(1/2)m(m+1)(2n-1) \approx m^2 n$$
 if $m = p$ and C symmetric

- there are good implementations of BLAS and variants (e.g., for sparse matrices)
- CPU single thread speeds typically 1–10 Gflops/s (10^9 flops/sec)
- CPU multi threaded speeds typically 10–100 Gflops/s
- ► GPU speeds typically 100 Gflops/s-1 Tflops/s (10¹² flops/sec)

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

Linear equations that are easy to solve

diagonal matrices $(a_{ij} = 0 \text{ if } i \neq j)$ n flops

$$x = A^{-1}b = (b_1/a_{11}, \dots, b_n/a_{nn})$$

lower triangular $(a_{ij} = 0 \text{ if } j > i)$ n^2 flops via forward substitution

$$x_{1} = b_{1}/a_{11}$$

$$x_{2} = (b_{2} - a_{21}x_{1})/a_{22}$$

$$\vdots$$

$$x_{n} = (b_{n} - a_{n1}x_{1} - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

upper triangular ($a_{ij} = 0$ if j < i) n^2 flops via backward substitution

orthogonal matrices $(A^{-1} = A^T)$

▶ $2n^2$ flops to compute $x = A^T b$ for general A

less with structure, e.g., if $A = I - 2uu^T$ with $||u||_2 = 1$, we can compute

$$x = A^T b = b - 2(u^T b)u$$

in 4n flops

permutation matrices

$$a_{ij} = \begin{cases} 1, & j = \pi_i \\ 0, & \text{otherwise} \end{cases}$$

where $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$

- interpretation: $Ax = (x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n})$
- ▶ satisfies $A^{-1} = A^T$, hence cost of solving Ax = b is 0 flops

Factor-solve method for solving Ax = b

• factor A as a product of simple matrices (usually 2 or 3)

 $A = A_1 A_2 \dots A_k$

where A_i diagonal, upper or lower triangular, etc.

• compute $x = A^{-1}b = A_k^{-1} \dots A_2^{-1}A_1^{-1}b$ by solving k "easy" equations

$$A_1 x_1 = b, \quad A_2 x_2 = x_1, \quad \dots, \quad A_k x = x_{k-1}$$

cost of factorization usually dominates cost of solve

equations with multiple righthand sides

$$Ax_1 = b_1, \quad Ax_2 = b_2, \quad \dots, \quad Ax_m = b_m$$

cost: one factorization plus m solves

Solving linear equations with factored matrices

LU, Cholesky, LDL^{T} factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular

LU factorization

A = PLU

where P permutation matrix, L lower triangular, U upper triangular

 $\cos t = (2/3)n^3$ flops

solving linear equations by LU factorization

given a system of linear equations Ax = b with A nonsingular

- 1. LU factorization. Factor A as A = PLU, cost $(2/3)n^3$ flops
- 2. *Permutation*. Solve $Pz_1 = b$, cost 0 flops
- 3. Forward substitution. Solve $Lz_2 = z_1$, cost n^2 flops
- 4. Backward substitution. Solve $Ux = z_2$, cost n^2 flops

total cost =
$$(2/3)n^3 + 2n^2 \approx (2/3)n^3$$

assume further that A is sparse

sparse LU factorization

$$A = P_1 L U P_2$$

 \blacktriangleright adding permutation matrix P_2 offers possibility of sparser L and U

- \triangleright P_1 and P_2 chosen (heuristically) to yield sparse L and U
- \blacktriangleright choice of P_1 and P_2 depends on sparsity pattern and values of A
- ▶ cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, and sparsity pattern

assume that $A \in \mathbb{S}^n_{++}$

Cholesky factorization

$$A = LL^T$$

where L lower triangular

 $\cos t = (1/3)n^3$ flops

solving linear equations by Cholesky factorization

given a system of linear equations Ax = b with $A \in \mathbb{S}_{++}^n$

- 1. Cholesky factorization. Factor A as $A = LL^T$, cost $(1/3)n^3$ flops
- 2. Forward substitution. Solve $Lz_1 = b$, cost n^2 flops
- 3. Backward substitution. Solve $L^T x = z_1$, cost n^2 flops

total cost =
$$(1/3)n^3 + 2n^2 \approx (1/3)n^3$$

assume further that A is sparse

sparse Cholesky factorization

$$A = PLL^T P^T$$

- \blacktriangleright adding permutation matrix P offers possibility of sparser L
- P chosen (heuristically) to yield sparse L
- choice of P depends only on sparsity pattern of A (unlike sparse LU)
- cost is usually much less than (1/3)n³; exact value depends in a complicated way on n, number of zeros in A, and sparsity pattern

$\mathsf{L}\mathsf{D}\mathsf{L}^\mathsf{T}$ factorization

assume that $A \in \mathbb{S}^n$ is nonsingular

$\mathsf{L}\mathsf{D}\mathsf{L}^\mathsf{T}$ factorization

$$A = PLDL^T P^T$$

where P permutation matrix, L lower triangular, D block diagonal with nonsingular 1×1 or 2×2 diagonal blocks

 $cost = (1/3)n^3$ flops

• cost of solving system of linear equations Ax = b by LDL^T factorization

$$(1/3)n^3 + 2n^2 + cn \approx (1/3)n^3$$

• for sparse A, can choose P to yield sparse L, with cost much less than $(1/3)n^3$

Solving linear equations with factored matrices

LU, Cholesky, LDL^{T} factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

Equations with structured subblocks

assume the system of linear equations Ax = b can be written in the block form

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

where vabiables $x_1 \in \mathbb{R}^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$; blocks $A_{ij} \in \mathbb{R}^{n_i \times n_j}$

• if A_{11} is nonsingular, can eliminate x_1 by

$$x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)$$

 \blacktriangleright to compute x_2 , solve the reduced equation

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

the matrix

$$S = A_{22} - A_{21}A_{11}^{-1}A_{12}$$

is called the **Schur complement** of A_{11} in A; S is nonsingular iff A is nonsingular

solving linear equations by block elimination

given a system of linear equations with A and A_{11} nonsingular

- 1. Form $A_{11}^{-1}A_{12}$ and $A_{11}^{-1}b_1$.
- 2. Form $S = A_{22} A_{21}A_{11}^{-1}A_{12}$ and $\overline{b} = b_2 A_{21}A_{11}^{-1}b_1$.
- 3. Determine x_2 by solving $Sx_2 = \overline{b}$.
- 4. Determine x_1 by solving $A_{11}x_1 = b_1 A_{12}x_2$.

dominant terms in flop count

- ▶ step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- ▶ step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- ▶ step 3: $(2/3)n_2^3$ (LU factorization)
- **•** step 4: neglected $(A_{11} \text{ already factored in step 1})$

total cost
$$\approx f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$$

 ▶ for general A₁₁, standard methods give f = (2/3)n₁³ and s = 2n₁² total cost ≈ (2/3)n₁³ + 2n₁²n₂ + 2n₂²n₁ + (2/3)n₂³ = (2/3)(n₁ + n₂)³
 ▶ for structured A₁₁, could be much smaller, e.g., if A₁₁ diagonal, f = 0 and s = n₁ total cost ≈ 2n₂²n₁ + (2/3)n₂³

Structured matrix plus low rank term

assume
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times n}$, consider

(A + BC)x = b

write equivalently as

$$\begin{bmatrix} A & B \\ C & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

apply block elimination, first solve

$$(I + CA^{-1}B)y = CA^{-1}b$$

then solve

$$Ax = b - By$$

• matrix inversion lemma if A and A + BC are nonsingular, then

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

 \blacktriangleright particularly useful when A has structure, and p small (BC low rank)

Example assume A is diagonal

• method 1: form D = A + BC, then solve Dx = b

$$\cos t \approx (2/3)n^3 + 2pn^2$$

▶ method 2: first solve $(I + CA^{-1}B)y = CA^{-1}b$, then solve Ax = b - By

$$\mathrm{cost}\approx 2p^2n+(2/3)p^3$$

dominated by solving for y

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

Main effort in each iteration

$$\Delta x_{\rm nt} \coloneqq -\nabla^2 f(x)^{-1} \nabla f(x), \qquad \lambda(x)^2 \coloneqq \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$$

requires to evaluate derivatives and solve Newton system

$$H\Delta x = -g$$

where $H = \nabla^2 f(x)$, $g = \nabla f(x)$

Cholesky factorization (standard method)

$$H = LL^T$$
, $\Delta x_{\rm nt} = -L^{-T}L^{-1}g$, $\lambda(x) = \|L^{-1}g\|_2$

• cost
$$(1/3)n^3$$
 flops for unstructured system

• $\cos t \ll (1/3)n^3$ if H sparse or banded

Example

Dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b)$$

assume $A \in \mathbb{R}^{p \times n}$, dense with $p \ll n$, then

$$H = D + A^T H_0 A$$

where

$$D = \mathbf{diag}(\psi_1''(x_1), \dots, \psi_n''(x_n)), \qquad H_0 = (\nabla^2 \psi_0)(Ax + b)$$

standard method

solve via dense Cholesky factorization, cost $\approx (1/3)n^3$

alternative method solve via block elimination

• factor $H_0 = L_0 L_0^T$, write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

 \blacktriangleright eliminate Δx from first equation, compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0) w = -L_0^T A D^{-1} g, \qquad D\Delta x = -g - A^T L_0 w$$

• cost $\approx 2p^2n$ (dominated by computation of $L_0^T A D^{-1} A^T L_0$)

Solving linear equations with factored matrices

LU, Cholesky, LDL^T factorization

Block elimination and matrix inversion lemma

Implementation of Newton's method

mathematical optimization

- problems in engineering design, data analysis and statistics, economics, management, ..., can often be expressed as mathematical optimization problems
- > techniques exist to take into account multiple objectives or uncertainty in the data

tractability

- roughly speaking, tractability in optimization requires convexity
- algorithms for non-convex optimization find local (suboptimal) solutions, or are very expensive
- surprisingly many applications can be formulated as convex problems

Convexity

theoretical consequences

- local optima are global
- extensive duality theory (systematic way of deriving lower bounds on optimal value, necessary and sufficient optimality conditions, certificates of infeasibility, sensitivity analysis)
- solution methods with polynomial worst-case complexity theory (with self-concordance)

practical consequences (convex problems can be solved globally and efficiently)

- \blacktriangleright interior-point methods require 20 80 Newton iterations in practice
- basic algorithms (e.g. Newton, barrier method, ...) are easy to implement
- even if the problem is quite non-convex, convex optimization can still be helpful

Feedback or Suggestions?

and the second sec