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Complexity via flop count

execution time (cost) of solving Ax = b with nonsingular A ∈ Rn×n

▶ for general methods, grows as n3

▶ less if A is structured (banded, sparse, Toeplitz, . . . )

flop counts

▶ flop (floating-point operation): one addition, subtraction, multiplication, or
division of two floating-point numbers

▶ to estimate complexity of an algorithm: express number of flops as a (polynomial)
function of the problem dimensions, and simplify by keeping only the leading terms

▶ not an accurate predictor of computation time on modern computers
▶ useful as a rough estimate of complexity



Basic linear algebra subroutines (BLAS)

vector-vector operations with x, y ∈ Rn

▶ inner product xT y: 2n− 1 flops (≈ 2n if n is large)
▶ sum x+ y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

▶ m(2n− 1) flops (≈ 2mn if n is large)
▶ 2N if A is sparse with N nonzero elements
▶ 2p(n+m) if A is given as A = UV T where U ∈ Rm×p and V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n and B ∈ Rn×p

▶ mp(2n− 1) flops (≈ 2mnp if n is large)
▶ less if A and/or B are sparse
▶ (1/2)m(m+ 1)(2n− 1) ≈ m2n if m = p and C symmetric



BLAS on modern computers

▶ there are good implementations of BLAS and variants (e.g., for sparse matrices)
▶ CPU single thread speeds typically 1–10 Gflops/s (109 flops/sec)
▶ CPU multi threaded speeds typically 10–100 Gflops/s
▶ GPU speeds typically 100 Gflops/s–1 Tflops/s (1012 flops/sec)
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Linear equations that are easy to solve

diagonal matrices (aij = 0 if i ̸= j) n flops

x = A−1b = (b1/a11, . . . , bn/ann)

lower triangular (aij = 0 if j > i) n2 flops via forward substitution

x1 = b1/a11

x2 = (b2 − a21x1)/a22
...

xn = (bn − an1x1 − · · · − an,n−1xn−1)/ann

upper triangular (aij = 0 if j < i) n2 flops via backward substitution



orthogonal matrices (A−1 = AT )

▶ 2n2 flops to compute x = AT b for general A
▶ less with structure, e.g., if A = I − 2uuT with ∥u∥2 = 1, we can compute

x = AT b = b− 2(uT b)u

in 4n flops

permutation matrices

aij =

{
1, j = πi

0, otherwise

where π = (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n)

▶ interpretation: Ax = (xπ1 , xπ2 , . . . , xπn)

▶ satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops



Factor-solve method for solving Ax = b

▶ factor A as a product of simple matrices (usually 2 or 3)

A = A1A2 . . . Ak

where Ai diagonal, upper or lower triangular, etc.

▶ compute x = A−1b = A−1
k . . . A−1

2 A−1
1 b by solving k “easy” equations

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1

cost of factorization usually dominates cost of solve

▶ equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, . . . , Axm = bm

cost: one factorization plus m solves
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LU factorization

assume that A ∈ Rn×n is nonsingular

LU factorization
A = PLU

where P permutation matrix, L lower triangular, U upper triangular

cost = (2/3)n3 flops



solving linear equations by LU factorization

given a system of linear equations Ax = b with A nonsingular

1. LU factorization. Factor A as A = PLU , cost (2/3)n3 flops
2. Permutation. Solve Pz1 = b, cost 0 flops
3. Forward substitution. Solve Lz2 = z1, cost n2 flops
4. Backward substitution. Solve Ux = z2, cost n2 flops

total cost = (2/3)n3 + 2n2 ≈ (2/3)n3



assume further that A is sparse

sparse LU factorization
A = P1LUP2

▶ adding permutation matrix P2 offers possibility of sparser L and U
▶ P1 and P2 chosen (heuristically) to yield sparse L and U
▶ choice of P1 and P2 depends on sparsity pattern and values of A
▶ cost is usually much less than (2/3)n3; exact value depends in a complicated way

on n, number of zeros in A, and sparsity pattern



Cholesky factorization

assume that A ∈ Sn++

Cholesky factorization
A = LLT

where L lower triangular

cost = (1/3)n3 flops



solving linear equations by Cholesky factorization

given a system of linear equations Ax = b with A ∈ Sn++

1. Cholesky factorization. Factor A as A = LLT , cost (1/3)n3 flops
2. Forward substitution. Solve Lz1 = b, cost n2 flops
3. Backward substitution. Solve LTx = z1, cost n2 flops

total cost = (1/3)n3 + 2n2 ≈ (1/3)n3



assume further that A is sparse

sparse Cholesky factorization

A = PLLTP T

▶ adding permutation matrix P offers possibility of sparser L
▶ P chosen (heuristically) to yield sparse L
▶ choice of P depends only on sparsity pattern of A (unlike sparse LU)
▶ cost is usually much less than (1/3)n3; exact value depends in a complicated way

on n, number of zeros in A, and sparsity pattern



LDLT factorization

assume that A ∈ Sn is nonsingular

LDLT factorization
A = PLDLTP T

where P permutation matrix, L lower triangular, D block diagonal with nonsingular
1× 1 or 2× 2 diagonal blocks

cost = (1/3)n3 flops

▶ cost of solving system of linear equations Ax = b by LDLT factorization

(1/3)n3 + 2n2 + cn ≈ (1/3)n3

▶ for sparse A, can choose P to yield sparse L, with cost much less than (1/3)n3
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Equations with structured subblocks

assume the system of linear equations Ax = b can be written in the block form[
A11 A12

A21 A22

] [
x1
x2

]
=

[
b1
b2

]
where vabiables x1 ∈ Rn1 and x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

▶ if A11 is nonsingular, can eliminate x1 by

x1 = A−1
11 (b1 −A12x2)

▶ to compute x2, solve the reduced equation

(A22 −A21A
−1
11 A12)x2 = b2 −A21A

−1
11 b1

▶ the matrix
S = A22 −A21A

−1
11 A12

is called the Schur complement of A11 in A; S is nonsingular iff A is nonsingular



solving linear equations by block elimination

given a system of linear equations with A and A11 nonsingular

1. Form A−1
11 A12 and A−1

11 b1.
2. Form S = A22 −A21A

−1
11 A12 and b = b2 −A21A

−1
11 b1.

3. Determine x2 by solving Sx2 = b.
4. Determine x1 by solving A11x1 = b1 −A12x2.



dominant terms in flop count

▶ step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)
▶ step 2: 2n22n1 (cost dominated by product of A21 and A−1

11 A12)
▶ step 3: (2/3)n32 (LU factorization)
▶ step 4: neglected (A11 already factored in step 1)

total cost ≈ f + n2s+ 2n22n1 + (2/3)n32



▶ for general A11, standard methods give f = (2/3)n31 and s = 2n21

total cost ≈ (2/3)n31 + 2n21n2 + 2n22n1 + (2/3)n32 = (2/3)(n1 + n2)
3

▶ for structured A11, could be much smaller, e.g., if A11 diagonal, f = 0 and s = n1

total cost ≈ 2n22n1 + (2/3)n32



Structured matrix plus low rank term

assume A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, consider

(A+BC)x = b

▶ write equivalently as [
A B
C −I

] [
x
y

]
=

[
b
0

]
▶ apply block elimination, first solve

(I + CA−1B)y = CA−1b

▶ then solve
Ax = b−By



Matrix inversion lemma

▶ matrix inversion lemma if A and A+BC are nonsingular, then

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

▶ particularly useful when A has structure, and p small (BC low rank)



Example assume A is diagonal

▶ method 1: form D = A+BC, then solve Dx = b

cost ≈ (2/3)n3 + 2pn2

▶ method 2: first solve (I + CA−1B)y = CA−1b, then solve Ax = b−By

cost ≈ 2p2n+ (2/3)p3

dominated by solving for y
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Newton’s method in unconstrained problems

Main effort in each iteration

∆xnt := −∇2f(x)−1∇f(x), λ(x)2 := ∇f(x)T∇2f(x)−1∇f(x)

requires to evaluate derivatives and solve Newton system

H∆x = −g

where H = ∇2f(x), g = ∇f(x)



Cholesky factorization (standard method)

H = LLT , ∆xnt = −L−TL−1g, λ(x) = ∥L−1g∥2

▶ cost (1/3)n3 flops for unstructured system
▶ cost ≪ (1/3)n3 if H sparse or banded



Example

Dense Newton system with structure

f(x) =

n∑
i=1

ψi(xi) + ψ0(Ax+ b)

assume A ∈ Rp×n, dense with p≪ n, then

H = D +ATH0A

where
D = diag(ψ′′

1(x1), . . . , ψ
′′
n(xn)), H0 = (∇2ψ0)(Ax+ b)

standard method solve via dense Cholesky factorization, cost ≈ (1/3)n3



alternative method solve via block elimination

▶ factor H0 = L0L
T
0 , write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

▶ eliminate ∆x from first equation, compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

▶ cost ≈ 2p2n (dominated by computation of LT
0AD

−1ATL0)
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Modeling

mathematical optimization

▶ problems in engineering design, data analysis and statistics, economics,
management, . . . , can often be expressed as mathematical optimization problems

▶ techniques exist to take into account multiple objectives or uncertainty in the data

tractability

▶ roughly speaking, tractability in optimization requires convexity
▶ algorithms for non-convex optimization find local (suboptimal) solutions, or are

very expensive
▶ surprisingly many applications can be formulated as convex problems



Convexity

theoretical consequences

▶ local optima are global
▶ extensive duality theory (systematic way of deriving lower bounds on optimal value,

necessary and sufficient optimality conditions, certificates of infeasibility, sensitivity
analysis)

▶ solution methods with polynomial worst-case complexity theory (with
self-concordance)

practical consequences (convex problems can be solved globally and efficiently)

▶ interior-point methods require 20− 80 Newton iterations in practice
▶ basic algorithms (e.g. Newton, barrier method, . . . ) are easy to implement
▶ even if the problem is quite non-convex, convex optimization can still be helpful





Feedback or Suggestions?

https://www.wenjuan.com/s/jiaqA3L/
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