
Appendix C Numerical linear algebra background

Last update on 2025-04-02 15:31:23+08:00



Table of contents

Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



Complexity via flop count

execution time (cost) of solving Ax = b with nonsingular A ∈ Rn×n

▶ for general methods, grows as n3

▶ less if A is structured (banded, sparse, Toeplitz, . . . )

flop counts

▶ flop (floating-point operation): one addition, subtraction, multiplication, or
division of two floating-point numbers

▶ to estimate complexity of an algorithm: express number of flops as a (polynomial)
function of the problem dimensions, and simplify by keeping only the leading terms

▶ not an accurate predictor of computation time on modern computers
▶ useful as a rough estimate of complexity



Basic linear algebra subroutines (BLAS)

vector-vector operations with x, y ∈ Rn

▶ inner product xT y: 2n− 1 flops (≈ 2n if n is large)
▶ sum x+ y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

▶ m(2n− 1) flops (≈ 2mn if n is large)
▶ 2N if A is sparse with N nonzero elements
▶ 2p(n+m) if A is given as A = UV T where U ∈ Rm×p and V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n and B ∈ Rn×p

▶ mp(2n− 1) flops (≈ 2mnp if n is large)
▶ less if A and/or B are sparse
▶ (1/2)m(m+ 1)(2n− 1) ≈ m2n if m = p and C symmetric



BLAS on modern computers

▶ there are good implementations of BLAS and variants (e.g., for sparse matrices)
▶ CPU single thread speeds typically 1–10 Gflops/s (109 flops/sec)
▶ CPU multi threaded speeds typically 10–100 Gflops/s
▶ GPU speeds typically 100 Gflops/s–1 Tflops/s (1012 flops/sec)



Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



Linear equations that are easy to solve

diagonal matrices (aij = 0 if i ̸= j) n flops

x = A−1b = (b1/a11, . . . , bn/ann)

lower triangular (aij = 0 if j > i) n2 flops via forward substitution

x1 = b1/a11

x2 = (b2 − a21x1)/a22
...

xn = (bn − an1x1 − · · · − an,n−1xn−1)/ann

upper triangular (aij = 0 if j < i) n2 flops via backward substitution



orthogonal matrices (A−1 = AT )

▶ 2n2 flops to compute x = AT b for general A
▶ less with structure, e.g., if A = I − 2uuT with ∥u∥2 = 1, we can compute

x = AT b = b− 2(uT b)u

in 4n flops

permutation matrices

aij =

{
1, j = πi

0, otherwise

where π = (π1, π2, . . . , πn) is a permutation of (1, 2, . . . , n)

▶ interpretation: Ax = (xπ1 , xπ2 , . . . , xπn)

▶ satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops



Factor-solve method for solving Ax = b

▶ factor A as a product of simple matrices (usually 2 or 3)

A = A1A2 . . . Ak

where Ai diagonal, upper or lower triangular, etc.

▶ compute x = A−1b = A−1
k . . . A−1

2 A−1
1 b by solving k “easy” equations

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1

cost of factorization usually dominates cost of solve

▶ equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, . . . , Axm = bm

cost: one factorization plus m solves



Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



LU factorization

assume that A ∈ Rn×n is nonsingular

LU factorization
A = PLU

where P permutation matrix, L lower triangular, U upper triangular

cost = (2/3)n3 flops



solving linear equations by LU factorization

given a system of linear equations Ax = b with A nonsingular

1. LU factorization. Factor A as A = PLU , cost (2/3)n3 flops
2. Permutation. Solve Pz1 = b, cost 0 flops
3. Forward substitution. Solve Lz2 = z1, cost n2 flops
4. Backward substitution. Solve Ux = z2, cost n2 flops

total cost = (2/3)n3 + 2n2 ≈ (2/3)n3



assume further that A is sparse

sparse LU factorization
A = P1LUP2

▶ adding permutation matrix P2 offers possibility of sparser L and U
▶ P1 and P2 chosen (heuristically) to yield sparse L and U
▶ choice of P1 and P2 depends on sparsity pattern and values of A
▶ cost is usually much less than (2/3)n3; exact value depends in a complicated way

on n, number of zeros in A, and sparsity pattern



Cholesky factorization

assume that A ∈ Sn++

Cholesky factorization
A = LLT

where L lower triangular

cost = (1/3)n3 flops



solving linear equations by Cholesky factorization

given a system of linear equations Ax = b with A ∈ Sn++

1. Cholesky factorization. Factor A as A = LLT , cost (1/3)n3 flops
2. Forward substitution. Solve Lz1 = b, cost n2 flops
3. Backward substitution. Solve LTx = z1, cost n2 flops

total cost = (1/3)n3 + 2n2 ≈ (1/3)n3



assume further that A is sparse

sparse Cholesky factorization

A = PLLTP T

▶ adding permutation matrix P offers possibility of sparser L
▶ P chosen (heuristically) to yield sparse L
▶ choice of P depends only on sparsity pattern of A (unlike sparse LU)
▶ cost is usually much less than (1/3)n3; exact value depends in a complicated way

on n, number of zeros in A, and sparsity pattern



LDLT factorization

assume that A ∈ Sn is nonsingular

LDLT factorization
A = PLDLTP T

where P permutation matrix, L lower triangular, D block diagonal with nonsingular
1× 1 or 2× 2 diagonal blocks

cost = (1/3)n3 flops

▶ cost of solving system of linear equations Ax = b by LDLT factorization

(1/3)n3 + 2n2 + cn ≈ (1/3)n3

▶ for sparse A, can choose P to yield sparse L, with cost much less than (1/3)n3



Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



Equations with structured subblocks

assume the system of linear equations Ax = b can be written in the block form[
A11 A12

A21 A22

] [
x1
x2

]
=

[
b1
b2

]
where vabiables x1 ∈ Rn1 and x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

▶ if A11 is nonsingular, can eliminate x1 by

x1 = A−1
11 (b1 −A12x2)

▶ to compute x2, solve the reduced equation

(A22 −A21A
−1
11 A12)x2 = b2 −A21A

−1
11 b1

▶ the matrix
S = A22 −A21A

−1
11 A12

is called the Schur complement of A11 in A; S is nonsingular iff A is nonsingular



solving linear equations by block elimination

given a system of linear equations with A and A11 nonsingular

1. Form A−1
11 A12 and A−1

11 b1.
2. Form S = A22 −A21A

−1
11 A12 and b = b2 −A21A

−1
11 b1.

3. Determine x2 by solving Sx2 = b.
4. Determine x1 by solving A11x1 = b1 −A12x2.



dominant terms in flop count

▶ step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)
▶ step 2: 2n22n1 (cost dominated by product of A21 and A−1

11 A12)
▶ step 3: (2/3)n32 (LU factorization)
▶ step 4: neglected (A11 already factored in step 1)

total cost ≈ f + n2s+ 2n22n1 + (2/3)n32



▶ for general A11, standard methods give f = (2/3)n31 and s = 2n21

total cost ≈ (2/3)n31 + 2n21n2 + 2n22n1 + (2/3)n32 = (2/3)(n1 + n2)
3

▶ for structured A11, could be much smaller, e.g., if A11 diagonal, f = 0 and s = n1

total cost ≈ 2n22n1 + (2/3)n32



Structured matrix plus low rank term

assume A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, consider

(A+BC)x = b

▶ write equivalently as [
A B
C −I

] [
x
y

]
=

[
b
0

]
▶ apply block elimination, first solve

(I + CA−1B)y = CA−1b

▶ then solve
Ax = b−By



Matrix inversion lemma

▶ matrix inversion lemma if A and A+BC are nonsingular, then

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

▶ particularly useful when A has structure, and p small (BC low rank)



Example assume A is diagonal

▶ method 1: form D = A+BC, then solve Dx = b

cost ≈ (2/3)n3 + 2pn2

▶ method 2: first solve (I + CA−1B)y = CA−1b, then solve Ax = b−By

cost ≈ 2p2n+ (2/3)p3

dominated by solving for y



Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



Newton’s method in unconstrained problems

Main effort in each iteration

∆xnt := −∇2f(x)−1∇f(x), λ(x)2 := ∇f(x)T∇2f(x)−1∇f(x)

requires to evaluate derivatives and solve Newton system

H∆x = −g

where H = ∇2f(x), g = ∇f(x)



Cholesky factorization (standard method)

H = LLT , ∆xnt = −L−TL−1g, λ(x) = ∥L−1g∥2

▶ cost (1/3)n3 flops for unstructured system
▶ cost ≪ (1/3)n3 if H sparse or banded



Example

Dense Newton system with structure

f(x) =

n∑
i=1

ψi(xi) + ψ0(Ax+ b)

assume A ∈ Rp×n, dense with p≪ n, then

H = D +ATH0A

where
D = diag(ψ′′

1(x1), . . . , ψ
′′
n(xn)), H0 = (∇2ψ0)(Ax+ b)

standard method solve via dense Cholesky factorization, cost ≈ (1/3)n3



alternative method solve via block elimination

▶ factor H0 = L0L
T
0 , write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

▶ eliminate ∆x from first equation, compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

▶ cost ≈ 2p2n (dominated by computation of LT
0AD

−1ATL0)



Matrix structure and algorithm complexity

Solving linear equations with factored matrices

LU, Cholesky, LDLT factorization

Block elimination and matrix inversion lemma

Implementation of Newton’s method

Course summary



Modeling

mathematical optimization

▶ problems in engineering design, data analysis and statistics, economics,
management, . . . , can often be expressed as mathematical optimization problems

▶ techniques exist to take into account multiple objectives or uncertainty in the data

tractability

▶ roughly speaking, tractability in optimization requires convexity
▶ algorithms for non-convex optimization find local (suboptimal) solutions, or are

very expensive
▶ surprisingly many applications can be formulated as convex problems



Convexity

theoretical consequences

▶ local optima are global
▶ extensive duality theory (systematic way of deriving lower bounds on optimal value,

necessary and sufficient optimality conditions, certificates of infeasibility, sensitivity
analysis)

▶ solution methods with polynomial worst-case complexity theory (with
self-concordance)

practical consequences (convex problems can be solved globally and efficiently)

▶ interior-point methods require 20− 80 Newton iterations in practice
▶ basic algorithms (e.g. Newton, barrier method, . . . ) are easy to implement
▶ even if the problem is quite non-convex, convex optimization can still be helpful





Feedback or Suggestions?

https://www.wenjuan.com/s/jiaqA3L/



	Matrix structure and algorithm complexity
	Solving linear equations with factored matrices
	LU, Cholesky, LDLT factorization
	Block elimination and matrix inversion lemma
	Implementation of Newton's method
	Course summary

